Thermally induced micro-motion by inflection in optical potential
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28490794
PubMed Central
PMC5432010
DOI
10.1038/s41598-017-01848-4
PII: 10.1038/s41598-017-01848-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recent technological progress in a precise control of optically trapped objects allows much broader ventures to unexplored territory of thermal motion in non-linear potentials. In this work, we exploit an experimental set-up of holographic optical tweezers to experimentally investigate Brownian motion of a micro-particle near the inflection point of the cubic optical potential. We present two complementary views on the non-linear Brownian motion. On an ensemble of stochastic trajectories, we simultaneously determine (i) the detailed short-time position statistics and (ii) the long-distance first-passage time statistics. We evaluate specific statistical moment ratios demonstrating strongly non-linear stochastic dynamics. This is a crucial step towards a possible massive exploitation of the broad class of complex non-linear stochastic effects with objects of more complex structure and shape including living ones.
Department of Optics Palacký University 17 listopadu 1192 12 771 46 Olomouc Czech Republic
Institute of Scientific Instruments of CAS Královopolská 147 612 64 Brno Czech Republic
Zobrazit více v PubMed
Hänggi P, Marchesoni F. Artificial brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 2009;81:387–442. doi: 10.1103/RevModPhys.81.387. DOI
Kolomeisky AB, Fisher ME. Molecular motors: A theorist’s perspective. Ann. Rev. Phys. Chem. 2007;58:675–695. doi: 10.1146/annurev.physchem.58.032806.104532. PubMed DOI
Alberts, B. et al. Molecular Biology of the Cell 5 edn, (Garland Science, 2007).
Mukherjee S, Bora RP, Warshel A. Torque, chemistry and efficiency in molecular motors: a study of the rotary-“chemical coupling in F1-ATPase. Quarterly Reviews of Biophysics. 2015;48:395–403. doi: 10.1017/S0033583515000050. PubMed DOI PMC
Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Artificial molecular machines. Chem. Rev. 2015;115:10081–10206. doi: 10.1021/acs.chemrev.5b00146. PubMed DOI PMC
Maragò OM, Jones PH, Gucciardi PG, Volpe G, Ferrari AC. Optical trapping and manipulation of nanostructures. Nature Nanotech. 2013;8:807–819. doi: 10.1038/nnano.2013.208. PubMed DOI
Bowman RW, Padgett MJ. Optical trapping and binding. Rep. Prog. Phys. 2013;76:026401. doi: 10.1088/0034-4885/76/2/026401. PubMed DOI
Dholakia K, Čižmár T. Shaping the future of manipulation. Nature Photon. 2011;5:335–342. doi: 10.1038/nphoton.2011.80. DOI
Grier DG. A revolution in optical manipulation. Nature. 2003;424:810–816. doi: 10.1038/nature01935. PubMed DOI
Huang R, et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nature Phys. 2011;7:576–580. doi: 10.1038/nphys1953. DOI
Gieseler J, Quidant R, Dellago C, Novotny L. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nature Nanotech. 2014;9:358–364. doi: 10.1038/nnano.2014.40. PubMed DOI
Millen J, Deesuwan T, Barker P, Anders J. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nature Nanotech. 2014;9:425–429. doi: 10.1038/nnano.2014.82. PubMed DOI
Woerdemann M, Alpmann C, Esseling M, Denz C. Advanced optical trapping by complex beam shaping. Laser Photon. Rev. 2013;7:839–854. doi: 10.1002/lpor.201200058. DOI
McCann LI, Dykman M, Golding B. Thermally activated transitions in a bistable three-dimensional optical trap. Nature. 1999;402:785–787. doi: 10.1038/45492. DOI
Gieseler J, Novotny L, Quidant R. Thermal nonlinearities in a nanomechanical oscillator. Nature Phys. 2013;9:806–810. doi: 10.1038/nphys2798. DOI
Blicke V, Bechinger C. Realization of a micrometre-sized stochastic heat engine. Nature Phys. 2012;8:143–146. doi: 10.1038/nphys2163. DOI
Martinez IA, et al. Brownian Carnot engine. Nature Phys. 2016;12:67–70. doi: 10.1038/nphys3518. PubMed DOI PMC
Taylor M, et al. Biological measurement beyond the quantum limit. Nature Photon. 2013;7:229–233. doi: 10.1038/nphoton.2012.346. DOI
Redner, S. A guide to first-passage processes 1 edn, (Cambridge University Press, 2007).
Kramers HA. Brownian motion in the field of force and the diffusion model of chemical reactions. Physica. 1940;7:284–304. doi: 10.1016/S0031-8914(40)90098-2. DOI
Sigeti D, Horsthemke W. Pseudo-regular oscillations induced by external noise. J. Stat. Phys. 1989;54:1217–1222. doi: 10.1007/BF01044713. DOI
Lindner B, Longtin A, Bulsara A. Analytic expressions for rate and CV of a type I neuron driven by white Gaussian noise. Neural Computation. 2003;15:1761–1788. doi: 10.1162/08997660360675035. PubMed DOI
Reimann P, et al. Giant acceleration of free diffusion by use of tilted periodic potentials. Phys. Rev. Lett. 2001;87:010602. doi: 10.1103/PhysRevLett.87.010602. PubMed DOI
Reimann P, et al. Diffusion in tilted periodic potentials: Enhancement, universality, and scaling. Phys. Rev. E. 2002;65:031104. doi: 10.1103/PhysRevE.65.031104. PubMed DOI
Guérin T, Dean DS. Universal time-dependent dispersion properties for diffusion in a one-dimensional critically tilted potential. Phys. Rev. E. 2017;95:012109. doi: 10.1103/PhysRevE.95.012109. PubMed DOI
Horsthemke, W. & Lefever, R. Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology (Springer-Verlag, 2006).
Zemánek P, Šiler M, Brzobohatý O, Jákl P, Filip R. Noise-to-signal transition of a Brownian particle in the cubic potential: II. optical trapping geometry. J. Opt. 2016;18:065402. doi: 10.1088/2040-8978/18/6/065402. DOI
Filip R, Zemánek P. Noise-to-signal transition of a Brownian particle in the cubic potential: I. general theory. J. Opt. 2016;18:065401. doi: 10.1088/2040-8978/18/6/065401. DOI
Gardiner, C. Handbook of stochastic methods for physics, chemistry, and the natural sciences. Springer series in synergetics 3 edn, (Springer-Verlag, 2004).
Ryabov A, Zemánek P, Filip R. Thermally-induced passage and current of particles in highly unstable optical potential. Phys. Rev. E. 2016;16:042108. doi: 10.1103/PhysRevE.94.042108. PubMed DOI
Seifert U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012;75:126001. doi: 10.1088/0034-4885/75/12/126001. PubMed DOI
Li T, Kheifets S, Raizen MG. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 2011;7:527–530. doi: 10.1038/nphys1952. DOI
Romero-Isart O, Juan M, Quidant R, Cirac JI. Toward quantum superposition of living organisms. New J. Phys. 2010;12:033015. doi: 10.1088/1367-2630/12/3/033015. DOI
Kiesel N, et al. Cavity cooling of an optically levitated submicron particle. Proc. Natl. Acad. Sci. USA. 2013;110:14180–14185. doi: 10.1073/pnas.1309167110. PubMed DOI PMC
Jain V, et al. Direct Measurement of Photon Recoil from a Levitated Nanoparticle. Phys. Rev. Lett. 2016;116:243601. doi: 10.1103/PhysRevLett.116.243601. PubMed DOI
Sun B, Roichman Y, Grier DG. Theory of holographic optical trapping. Opt. Express. 2008;16:15765–15776. doi: 10.1364/OE.16.015765. PubMed DOI
Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays. Opt. Express. 2007;15:1913–1922. doi: 10.1364/OE.15.001913. PubMed DOI
Jesacher A, Maurer C, Schwaighofer A, Bernet S, Ritsch-Marte M. Full phase and amplitude control of holographic optical tweezers with high efficiency. Opt. Express. 2008;16:4479–4486. doi: 10.1364/OE.16.004479. PubMed DOI
Happel, J. & Brenner, H. Low Reynolds number hydrodynamics (Prentice–Hall, Englewood Cliffs, 1965).
Schaeffer E, Norrelykke SF, Howard J. Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. Langmuir. 2007;23:3654–3665. doi: 10.1021/la0622368. PubMed DOI