Thermally induced micro-motion by inflection in optical potential

. 2017 May 10 ; 7 (1) : 1697. [epub] 20170510

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28490794
Odkazy

PubMed 28490794
PubMed Central PMC5432010
DOI 10.1038/s41598-017-01848-4
PII: 10.1038/s41598-017-01848-4
Knihovny.cz E-zdroje

Recent technological progress in a precise control of optically trapped objects allows much broader ventures to unexplored territory of thermal motion in non-linear potentials. In this work, we exploit an experimental set-up of holographic optical tweezers to experimentally investigate Brownian motion of a micro-particle near the inflection point of the cubic optical potential. We present two complementary views on the non-linear Brownian motion. On an ensemble of stochastic trajectories, we simultaneously determine (i) the detailed short-time position statistics and (ii) the long-distance first-passage time statistics. We evaluate specific statistical moment ratios demonstrating strongly non-linear stochastic dynamics. This is a crucial step towards a possible massive exploitation of the broad class of complex non-linear stochastic effects with objects of more complex structure and shape including living ones.

Zobrazit více v PubMed

Hänggi P, Marchesoni F. Artificial brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 2009;81:387–442. doi: 10.1103/RevModPhys.81.387. DOI

Kolomeisky AB, Fisher ME. Molecular motors: A theorist’s perspective. Ann. Rev. Phys. Chem. 2007;58:675–695. doi: 10.1146/annurev.physchem.58.032806.104532. PubMed DOI

Alberts, B. et al. Molecular Biology of the Cell 5 edn, (Garland Science, 2007).

Mukherjee S, Bora RP, Warshel A. Torque, chemistry and efficiency in molecular motors: a study of the rotary-“chemical coupling in F1-ATPase. Quarterly Reviews of Biophysics. 2015;48:395–403. doi: 10.1017/S0033583515000050. PubMed DOI PMC

Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Artificial molecular machines. Chem. Rev. 2015;115:10081–10206. doi: 10.1021/acs.chemrev.5b00146. PubMed DOI PMC

Maragò OM, Jones PH, Gucciardi PG, Volpe G, Ferrari AC. Optical trapping and manipulation of nanostructures. Nature Nanotech. 2013;8:807–819. doi: 10.1038/nnano.2013.208. PubMed DOI

Bowman RW, Padgett MJ. Optical trapping and binding. Rep. Prog. Phys. 2013;76:026401. doi: 10.1088/0034-4885/76/2/026401. PubMed DOI

Dholakia K, Čižmár T. Shaping the future of manipulation. Nature Photon. 2011;5:335–342. doi: 10.1038/nphoton.2011.80. DOI

Grier DG. A revolution in optical manipulation. Nature. 2003;424:810–816. doi: 10.1038/nature01935. PubMed DOI

Huang R, et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nature Phys. 2011;7:576–580. doi: 10.1038/nphys1953. DOI

Gieseler J, Quidant R, Dellago C, Novotny L. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nature Nanotech. 2014;9:358–364. doi: 10.1038/nnano.2014.40. PubMed DOI

Millen J, Deesuwan T, Barker P, Anders J. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nature Nanotech. 2014;9:425–429. doi: 10.1038/nnano.2014.82. PubMed DOI

Woerdemann M, Alpmann C, Esseling M, Denz C. Advanced optical trapping by complex beam shaping. Laser Photon. Rev. 2013;7:839–854. doi: 10.1002/lpor.201200058. DOI

McCann LI, Dykman M, Golding B. Thermally activated transitions in a bistable three-dimensional optical trap. Nature. 1999;402:785–787. doi: 10.1038/45492. DOI

Gieseler J, Novotny L, Quidant R. Thermal nonlinearities in a nanomechanical oscillator. Nature Phys. 2013;9:806–810. doi: 10.1038/nphys2798. DOI

Blicke V, Bechinger C. Realization of a micrometre-sized stochastic heat engine. Nature Phys. 2012;8:143–146. doi: 10.1038/nphys2163. DOI

Martinez IA, et al. Brownian Carnot engine. Nature Phys. 2016;12:67–70. doi: 10.1038/nphys3518. PubMed DOI PMC

Taylor M, et al. Biological measurement beyond the quantum limit. Nature Photon. 2013;7:229–233. doi: 10.1038/nphoton.2012.346. DOI

Redner, S. A guide to first-passage processes 1 edn, (Cambridge University Press, 2007).

Kramers HA. Brownian motion in the field of force and the diffusion model of chemical reactions. Physica. 1940;7:284–304. doi: 10.1016/S0031-8914(40)90098-2. DOI

Sigeti D, Horsthemke W. Pseudo-regular oscillations induced by external noise. J. Stat. Phys. 1989;54:1217–1222. doi: 10.1007/BF01044713. DOI

Lindner B, Longtin A, Bulsara A. Analytic expressions for rate and CV of a type I neuron driven by white Gaussian noise. Neural Computation. 2003;15:1761–1788. doi: 10.1162/08997660360675035. PubMed DOI

Reimann P, et al. Giant acceleration of free diffusion by use of tilted periodic potentials. Phys. Rev. Lett. 2001;87:010602. doi: 10.1103/PhysRevLett.87.010602. PubMed DOI

Reimann P, et al. Diffusion in tilted periodic potentials: Enhancement, universality, and scaling. Phys. Rev. E. 2002;65:031104. doi: 10.1103/PhysRevE.65.031104. PubMed DOI

Guérin T, Dean DS. Universal time-dependent dispersion properties for diffusion in a one-dimensional critically tilted potential. Phys. Rev. E. 2017;95:012109. doi: 10.1103/PhysRevE.95.012109. PubMed DOI

Horsthemke, W. & Lefever, R. Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology (Springer-Verlag, 2006).

Zemánek P, Šiler M, Brzobohatý O, Jákl P, Filip R. Noise-to-signal transition of a Brownian particle in the cubic potential: II. optical trapping geometry. J. Opt. 2016;18:065402. doi: 10.1088/2040-8978/18/6/065402. DOI

Filip R, Zemánek P. Noise-to-signal transition of a Brownian particle in the cubic potential: I. general theory. J. Opt. 2016;18:065401. doi: 10.1088/2040-8978/18/6/065401. DOI

Gardiner, C. Handbook of stochastic methods for physics, chemistry, and the natural sciences. Springer series in synergetics 3 edn, (Springer-Verlag, 2004).

Ryabov A, Zemánek P, Filip R. Thermally-induced passage and current of particles in highly unstable optical potential. Phys. Rev. E. 2016;16:042108. doi: 10.1103/PhysRevE.94.042108. PubMed DOI

Seifert U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012;75:126001. doi: 10.1088/0034-4885/75/12/126001. PubMed DOI

Li T, Kheifets S, Raizen MG. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 2011;7:527–530. doi: 10.1038/nphys1952. DOI

Romero-Isart O, Juan M, Quidant R, Cirac JI. Toward quantum superposition of living organisms. New J. Phys. 2010;12:033015. doi: 10.1088/1367-2630/12/3/033015. DOI

Kiesel N, et al. Cavity cooling of an optically levitated submicron particle. Proc. Natl. Acad. Sci. USA. 2013;110:14180–14185. doi: 10.1073/pnas.1309167110. PubMed DOI PMC

Jain V, et al. Direct Measurement of Photon Recoil from a Levitated Nanoparticle. Phys. Rev. Lett. 2016;116:243601. doi: 10.1103/PhysRevLett.116.243601. PubMed DOI

Sun B, Roichman Y, Grier DG. Theory of holographic optical trapping. Opt. Express. 2008;16:15765–15776. doi: 10.1364/OE.16.015765. PubMed DOI

Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays. Opt. Express. 2007;15:1913–1922. doi: 10.1364/OE.15.001913. PubMed DOI

Jesacher A, Maurer C, Schwaighofer A, Bernet S, Ritsch-Marte M. Full phase and amplitude control of holographic optical tweezers with high efficiency. Opt. Express. 2008;16:4479–4486. doi: 10.1364/OE.16.004479. PubMed DOI

Happel, J. & Brenner, H. Low Reynolds number hydrodynamics (Prentice–Hall, Englewood Cliffs, 1965).

Schaeffer E, Norrelykke SF, Howard J. Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. Langmuir. 2007;23:3654–3665. doi: 10.1021/la0622368. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Stroboscopic thermally-driven mechanical motion

. 2022 Nov 22 ; 12 (1) : 20091. [epub] 20221122

Uncertainty-induced instantaneous speed and acceleration of a levitated particle

. 2021 Sep 14 ; 11 (1) : 18185. [epub] 20210914

Heat capacities of thermally manipulated mechanical oscillator at strong coupling

. 2019 Jul 26 ; 9 (1) : 10855. [epub] 20190726

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...