Stroboscopic thermally-driven mechanical motion
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-16577S
Grantová Agentura České Republiky
20-16577S
Grantová Agentura České Republiky
PubMed
36418396
PubMed Central
PMC9684504
DOI
10.1038/s41598-022-24074-z
PII: 10.1038/s41598-022-24074-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Unstable nonlinear systems can produce a large displacement driven by a small thermal initial noise. Such inherently nonlinear phenomena are stimulating in stochastic physics, thermodynamics, and in the future even in quantum physics. In one-dimensional mechanical instabilities, recently made available in optical levitation, the rapidly increasing noise accompanying the unstable motion reduces a displacement signal already in its detection. It limits the signal-to-noise ratio for upcoming experiments, thus constraining the observation of such essential nonlinear phenomena and their further exploitation. An extension to a two-dimensional unstable dynamics helps to separate the desired displacement from the noisy nonlinear driver to two independent variables. It overcomes the limitation upon observability, thus enabling further exploitation. However, the nonlinear driver remains unstable and rapidly gets noisy. It calls for a challenging high-order potential to confine the driver dynamics and rectify the noise. Instead, we propose and analyse a feasible stroboscopically-cooled driver that provides the desired detectable motion with sufficiently high signal-to-noise ratio. Fast and deep cooling, together with a rapid change of the driver stiffness, are required to reach it. However, they have recently become available in levitating optomechanics. Therefore, our analysis finally opens the road to experimental investigation of thermally-driven motion in nonlinear systems, its thermodynamical analysis, and future quantum extensions.
Zobrazit více v PubMed
Gieseler J, Novotny L, Quidant R. Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys. 2013;9:806–810. doi: 10.1038/nphys2798. DOI
Gieseler J, Spasenović M, Novotny L, Quidant R. Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle. Phys. Rev. Lett. 2014;112:103603. doi: 10.1103/PhysRevLett.112.103603. PubMed DOI
Hoang TM, et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett. 2016;117:123604. doi: 10.1103/PhysRevLett.117.123604. PubMed DOI
Jain V, et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 2016;116:243601. doi: 10.1103/PhysRevLett.116.243601. PubMed DOI
Ricci F, et al. Optically levitated nanoparticle as a model system for stochastic bistable dynamics. Nat. Commun. 2017;8:15141. doi: 10.1038/ncomms15141. PubMed DOI PMC
Rondin L, et al. Direct measurement of Kramers turnover with a levitated nanoparticle. Nat. Nanotechnol. 2017;12:1130–1133. doi: 10.1038/nnano.2017.198. PubMed DOI
Delić U, et al. Levitated cavity optomechanics in high vacuum. Quantum Sci. Technol. 2020;5:025006. doi: 10.1088/2058-9565/ab7989. DOI
Li T, Kheifets S, Raizen MG. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 2011;7:527–530. doi: 10.1038/nphys1952. DOI
Asenbaum P, Kuhn S, Nimmrichter S, Sezer U, Arndt M. Cavity cooling of free silicon nanoparticles in high vacuum. Nat. Commun. 2013;4:2743. doi: 10.1038/ncomms3743. PubMed DOI PMC
Kiesel N, et al. Cavity cooling of an optically levitated submicron particle. Proc. Natl. Acad. Sci. 2013;110:14180–14185. doi: 10.1073/pnas.1309167110. PubMed DOI PMC
Millen J, Fonseca PZG, Mavrogordatos T, Monteiro TS, Barker PF. Cavity cooling a single charged levitated nanosphere. Phys. Rev. Lett. 2015;114:123602. doi: 10.1103/PhysRevLett.114.123602. PubMed DOI
Frimmer M, Gieseler J, Novotny L. Cooling mechanical oscillators by coherent control. Phys. Rev. Lett. 2016;117:163601. doi: 10.1103/PhysRevLett.117.163601. PubMed DOI
Fonseca PZG, Aranas EB, Millen J, Monteiro TS, Barker PF. Nonlinear dynamics and strong cavity cooling of levitated nanoparticles. Phys. Rev. Lett. 2016;117:173602. doi: 10.1103/PhysRevLett.117.173602. PubMed DOI
Tebbenjohanns F, Frimmer M, Militaru A, Jain V, Novotny L. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Phys. Rev. Lett. 2019;122:223601. doi: 10.1103/PhysRevLett.122.223601. PubMed DOI
Tebbenjohanns F, Frimmer M, Militaru A, Jain V, Novotny L. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Phys. Rev. Lett. 2019;122:223601. doi: 10.1103/PhysRevLett.122.223601. PubMed DOI
Delić U, et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett. 2019;122:123602. doi: 10.1103/PhysRevLett.122.123602. PubMed DOI
Delić U, et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science. 2020;367:892. doi: 10.1126/science.aba3993. PubMed DOI
Bang J, et al. Five-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell. Phys. Rev. Res. 2020;2:043054. doi: 10.1103/PhysRevResearch.2.043054. DOI
Magrini L, et al. Real-time optimal quantum control of mechanical motion at room temperature. Nature. 2021;595:373–377. doi: 10.1038/s41586-021-03602-3. PubMed DOI
Gieseler J, Deutsch B, Quidant R, Novotny L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 2012;109:103603. doi: 10.1103/PhysRevLett.109.103603. PubMed DOI
Setter A, Toroš M, Ralph JF, Ulbricht H. Real-time Kalman filter: Cooling of an optically levitated nanoparticle. Phys. Rev. A. 2018;97:033822. doi: 10.1103/PhysRevA.97.033822. DOI
Conangla GP, et al. Optimal feedback cooling of a charged levitated nanoparticle with adaptive control. Phys. Rev. Lett. 2019;122:223602. doi: 10.1103/PhysRevLett.122.223602. PubMed DOI
Ferialdi L, Setter A, Toroš M, Timberlake C, Ulbricht H. Optimal control for feedback cooling in cavityless levitated optomechanics. New J. Phys. 2019;21:073019. doi: 10.1088/1367-2630/ab2b69. DOI
Kamba M, Kiuchi H, Yotsuya T, Aikawa K. Recoil-limited feedback cooling of single nanoparticles near the ground state in an optical lattice. Phys. Rev. A. 2021;103:L051701. doi: 10.1103/PhysRevA.103.L051701. DOI
Neumeier L, Quidant R, Chang DE. Self-induced back-action optical trapping in nanophotonic systems. New J. Phys. 2015;17:123008. doi: 10.1088/1367-2630/17/12/123008. DOI
Ciampini, M. A. et al. Experimental nonequilibrium memory erasure beyond Landauer’s bound. arXiv:2107.04429 [cond-mat. stat-mech] (2021).
Wu Q, et al. Nonequilibrium quantum thermodynamics of a particle trapped in a controllable time-varying potential. PRX Quantum. 2022;3:010322. doi: 10.1103/PRXQuantum.3.010322. DOI
Šiler M, et al. Thermally induced micro-motion by inflection in optical potential. Sci. Rep. 2017;7:1697. doi: 10.1038/s41598-017-01848-4. PubMed DOI PMC
Šiler M, et al. Diffusing up the hill: Dynamics and equipartition in highly unstable systems. Phys. Rev. Lett. 2018;121:230601. doi: 10.1103/PhysRevLett.121.230601. PubMed DOI
Rahman ATMA, Barker PF. Optical levitation using broadband light. Optica. 2020;7:906–912. doi: 10.1364/OPTICA.392210. DOI
Dechant A, Kiesel N, Lutz E. Underdamped stochastic heat engine at maximum efficiency. EPL (Europhysics Letters) 2017;119:50003. doi: 10.1209/0295-5075/119/50003. DOI
Roßnagel J, Abah O, Schmidt-Kaler F, Singer K, Lutz E. Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 2014;112:030602. doi: 10.1103/PhysRevLett.112.030602. PubMed DOI
Gieseler J, Millen J. Levitated nanoparticles for microscopic thermodynamics: A review. Entropy. 2018;20:326. doi: 10.3390/e20050326. PubMed DOI PMC
Kaltenbaek R, et al. Macroscopic quantum resonators (MAQRO): 2015 update. EPJ Quantum Technol. 2016;3:5. doi: 10.1140/epjqt/s40507-016-0043-7. DOI
Romero-Isart O. Coherent inflation for large quantum superpositions of levitated microspheres. New J. Phys. 2017;19:123029. doi: 10.1088/1367-2630/aa99bf. DOI
Weiss T, Roda-Llordes M, Torrontegui E, Aspelmeyer M, Romero-Isart O. Large quantum delocalization of a levitated nanoparticle using optimal control: Applications for force sensing and entangling via weak forces. Phys. Rev. Lett. 2021;127:023601. doi: 10.1103/PhysRevLett.127.023601. PubMed DOI
Kaltenbaek, R. Tests. & in space. In Allori, V., Bassi, A., Dürr, D. & Zanghi, N., (eds) Do Wave Functions Jump?: Perspectives of the Work of GianCarlo Ghirardi 401–411 (Springer International Publishing, Cham, 2021) 10.1007/978-3-030-46777-7_27.
Windey D, et al. Cavity-based 3d cooling of a levitated nanoparticle via coherent scattering. Phys. Rev. Lett. 2019;122:123601. doi: 10.1103/PhysRevLett.122.123601. PubMed DOI
Ranfagni, A., Børkje, K., Marino, F. & Marin, F. Two-dimensional quantum motion of a levitated nanosphere vol. 2112, 11383 (2021).
Toroš M, Delić U, Hales F, Monteiro TS. Coherent-scattering two-dimensional cooling in levitated cavity optomechanics. Phys. Rev. Res. 2021;3:023071. doi: 10.1103/PhysRevResearch.3.023071. DOI
Johannes R, et al. A single-atom heat engine. Science. 2016;352:325–329. doi: 10.1126/science.aad6320. PubMed DOI
Arita Y, Wright EM, Dholakia K. Optical binding of two cooled micro-gyroscopes levitated in vacuum. Optica. 2018;5:910–917. doi: 10.1364/OPTICA.5.000910. DOI
Bykov DS, et al. Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre. Light Sci. Appl. 2018;7:22. doi: 10.1038/s41377-018-0015-z. PubMed DOI PMC
Svak V, et al. Stochastic dynamics of optically bound matter levitated in vacuum. Optica. 2021;8:220–229. doi: 10.1364/OPTICA.404851. DOI
Dholakia K, Zemánek P. Colloquium: Gripped by light: Optical binding. Rev. Mod. Phys. 2010;82:1767–1791. doi: 10.1103/RevModPhys.82.1767. DOI
Lechner W, Habraken SJM, Kiesel N, Aspelmeyer M, Zoller P. Cavity optomechanics of levitated nanodumbbells: Nonequilibrium phases and self-assembly. Phys. Rev. Lett. 2013;110:143604. doi: 10.1103/PhysRevLett.110.143604. PubMed DOI
Setter A, Vovrosh J, Ulbricht H. Characterization of non-linearities through mechanical squeezing in levitated optomechanics. Appl. Phys. Lett. 2019;115:153106. doi: 10.1063/1.5116121. DOI
Weiss T, Romero-Isart O. Quantum motional state tomography with nonquadratic potentials and neural networks. Phys. Rev. Res. 2019;1:033157. doi: 10.1103/PhysRevResearch.1.033157. DOI
Flajšmanová J, et al. Using the transient trajectories of an optically levitated nanoparticle to characterize a stochastic duffing oscillator. Sci. Rep. 2020;10:14436. doi: 10.1038/s41598-020-70908-z. PubMed DOI PMC
Ma J, et al. Observation of nonlinear dynamics in an optical levitation system. Commun. Phys. 2020;3:197. doi: 10.1038/s42005-020-00467-2. DOI
Ornigotti L, Ryabov A, Holubec V, Filip R. Brownian motion surviving in the unstable cubic potential and the role of Maxwell’s demon. Phys. Rev. E. 2018;97:032127. doi: 10.1103/PhysRevE.97.032127. PubMed DOI
Ornigotti L, Filip R. Uncertainty-induced instantaneous speed and acceleration of a levitated particle. Sci. Rep. 2021;11:18185. doi: 10.1038/s41598-021-97663-z. PubMed DOI PMC
William Coffey JTW, Kalmykov YuP. Langevin Equation, The: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering. Singapore, River Edge, NJ: World Scientific; 2004.
Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edn. (Cambridge University Press, 1999).
Taylor MA, Knittel J, Bowen WP. Fundamental constraints on particle tracking with optical tweezers. New J. Phys. 2013;15:023018. doi: 10.1088/1367-2630/15/2/023018. DOI
Oliver BM. Noise figure and its measurement. Hewlett-Packard J. 1958;9:5.
Arita, Y. et al. Cooling the optical-spin driven limit cycle oscillations of a levitated gyroscope. arXiv:2204.06925 [physics.optics] (2022).
Laha, P., Moore, D. W. & Filip, R. Non-Gaussian entanglement via splitting of a few thermal quanta. arXiv:2208.07816 [quant-ph] (2022). PubMed
Ding S, Maslennikov G, Hablützel R, Loh H, Matsukevich D. Quantum parametric oscillator with trapped ions. Phys. Rev. Lett. 2017;119:150404. doi: 10.1103/PhysRevLett.119.150404. PubMed DOI
Maslennikov G, et al. Quantum absorption refrigerator with trapped ions. Nat. Commun. 2019;10:202. doi: 10.1038/s41467-018-08090-0. PubMed DOI PMC
Frattini NE, et al. 3-wave mixing Josephson dipole element. Appl. Phys. Lett. 2017;110:222603. doi: 10.1063/1.4984142. DOI
Hillmann T, et al. Universal gate set for continuous-variable quantum computation with microwave circuits. Phys. Rev. Lett. 2020;125:160501. doi: 10.1103/PhysRevLett.125.160501. PubMed DOI
Vrajitoarea A, Huang Z, Groszkowski P, Koch J, Houck AA. Quantum control of an oscillator using a stimulated Josephson nonlinearity. Nat. Phys. 2020;16:211–217. doi: 10.1038/s41567-019-0703-5. DOI
Rieser, J. et al. Observation of strong and tunable light-induced dipole-dipole interactions between optically levitated nanoparticles. arXiv:2203.04198 [physics.optics] (2022). PubMed
Srednicki, M. Quantum Field Theory (Cambridge University Press, 2007).
Byron, F. W. & Fuller, R. W. Mathematics of Classical and Quantum Physics (Courier Corporation, 1992).