Uncertainty-induced instantaneous speed and acceleration of a levitated particle

. 2021 Sep 14 ; 11 (1) : 18185. [epub] 20210914

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34521904

Grantová podpora
19-17765S Grantová Agentura České Republiky
731473 Horizon 2020 Framework Programme

Odkazy

PubMed 34521904
PubMed Central PMC8440777
DOI 10.1038/s41598-021-97663-z
PII: 10.1038/s41598-021-97663-z
Knihovny.cz E-zdroje

Levitating nanoparticles trapped in optical potentials at low pressure open the experimental investigation of nonlinear ballistic phenomena. With engineered non-linear potentials and fast optical detection, the observation of autonomous transient mechanical effects, such as instantaneous speed and acceleration stimulated purely by initial position uncertainty, are now achievable. By using parameters of current low pressure experiments, we simulate and analyse such uncertainty-induced particle ballistics in a cubic optical potential demonstrating their evolution, faster than their standard deviations, justifying the feasibility of the experimental verification. We predict, the maxima of instantaneous speed and acceleration distributions shift alongside the potential force, while the maximum of position distribution moves opposite to it. We report that cryogenic cooling is not necessary in order to observe the transient effects, while a low uncertainty in initial particle speed is required, via cooling or post-selection, to not mask the effects. These results stimulate the discussion for both attractive stochastic thermodynamics, and extension of recently explored quantum regime.

Zobrazit více v PubMed

Rondin L, et al. Direct measurement of kramers turnover with a levitated nanoparticle. Nat. Nanotechnol. 2017;12:1130–1133. doi: 10.1038/nnano.2017.198. PubMed DOI

Ricci F, et al. Optically levitated nanoparticle as a model system for stochastic bistable dynamics. Nat. Commun. 2017;8:15141. doi: 10.1038/ncomms15141. PubMed DOI PMC

Li T, Kheifets S, Raizen MG. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 2011;7:527–530. doi: 10.1038/nphys1952. DOI

Jain V, et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 2016;116:243601. doi: 10.1103/PhysRevLett.116.243601. PubMed DOI

Gieseler J, Novotny L, Quidant R. Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys. 2013;9:806–810. doi: 10.1038/nphys2798. DOI

Fonseca PZG, Aranas EB, Millen J, Monteiro TS, Barker PF. Nonlinear dynamics and strong cavity cooling of levitated nanoparticles. Phys. Rev. Lett. 2016;117:173602. doi: 10.1103/PhysRevLett.117.173602. PubMed DOI

Ma J, et al. Observation of nonlinear dynamics in an optical levitation system. Commun. Phys. 2020;3:197. doi: 10.1038/s42005-020-00467-2. DOI

Kheifets S, Simha A, Melin K, Li T, Raizen MG. Observation of brownian motion in liquids at short times: Instantaneous velocity and memory loss. Science. 2014;343:1493–1496. doi: 10.1126/science.1248091. PubMed DOI

Li T, Raizen MG. Brownian motion at short time scales. Ann. Phys. 2013;525:281–295. doi: 10.1002/andp.201200232. DOI

Li T, Kheifets S, Medellin D, Raizen MG. Measurement of the instantaneous velocity of a brownian particle. Science. 2010;328:1673–1675. doi: 10.1126/science.1189403. PubMed DOI

Huang R, et al. Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid. Nat. Phys. 2011;7:576–580. doi: 10.1038/nphys1953. DOI

Flajšmanová J, et al. Using the transient trajectories of an optically levitated nanoparticle to characterize a stochastic duffing oscillator. Sci. Rep. 2020;10:14436. doi: 10.1038/s41598-020-70908-z. PubMed DOI PMC

Gieseler J, Deutsch B, Quidant R, Novotny L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 2012;109:103603. doi: 10.1103/PhysRevLett.109.103603. PubMed DOI

Asenbaum P, Kuhn S, Nimmrichter S, Sezer U, Arndt M. Cavity cooling of free silicon nanoparticles in high vacuum. Nat. Commun. 2013;4:2743. doi: 10.1038/ncomms3743. PubMed DOI PMC

Tebbenjohanns F, Frimmer M, Militaru A, Jain V, Novotny L. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Phys. Rev. Lett. 2019;122:223601. doi: 10.1103/PhysRevLett.122.223601. PubMed DOI

Conangla GP, et al. Optimal feedback cooling of a charged levitated nanoparticle with adaptive control. Phys. Rev. Lett. 2019;122:223602. doi: 10.1103/PhysRevLett.122.223602. PubMed DOI

Delić U, et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science. 2020;367:892. doi: 10.1126/science.aba3993. PubMed DOI

Delić UCV, et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett. 2019;122:123602. doi: 10.1103/PhysRevLett.122.123602. PubMed DOI

Frimmer M, Gieseler J, Novotny L. Cooling mechanical oscillators by coherent control. Phys. Rev. Lett. 2016;117:163601. doi: 10.1103/PhysRevLett.117.163601. PubMed DOI

Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys.75, 126001. https://doi.org/10.1088%2F0034-4885%2F75%2F12%2F126001 (2012). PubMed

Ryabov A, Holubec V, Berestneva E. Living on the edge of instability. IOPScience. 2019;2019:084014. doi: 10.1088/1742-5468/ab333f. DOI

Rodenburg B, Neukirch LP, Vamivakas AN, Bhattacharya M. Quantum model of cooling and force sensing with an optically trapped nanoparticle. Optica. 2016;3:318. doi: 10.1364/OPTICA.3.000318. DOI

Timberlake C, Gasbarri G, Vinante A, Setter A, Ulbricht H. Acceleration sensing with magnetically levitated oscillators above a superconductor. Appl. Phys. Lett. 2019;115:224101. doi: 10.1063/1.5129145. DOI

Lecamwasam R, et al. Dynamics and stability of an optically levitated mirror. Phys. Rev. A. 2020;101:053857. doi: 10.1103/PhysRevA.101.053857. DOI

Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Artificial molecular machines. Chem. Rev. 2015;115:10081–10206. doi: 10.1021/acs.chemrev.5b00146. PubMed DOI PMC

Blickle V, Bechinger C. Realization of a micrometre-sized stochastic heat engine. Nat. Phys. 2012;8:143–146. doi: 10.1038/nphys2163. DOI

Ornigotti L, Ryabov A, Holubec V, Filip R. Brownian motion surviving in the unstable cubic potential and the role of Maxwell’s demon. Phys. Rev. E. 2018;97:032127. doi: 10.1103/PhysRevE.97.032127. PubMed DOI

Filip, R. & Zemánek, P. Noise-to-signal transition of a Brownian particle in the cubic potential: I. General theory. J. Opt.18, 065401. https://doi.org/10.1088%2F2040-8978%2F18%2F6%2F065401 (2016).

Šiler M, et al. Thermally induced micro-motion by inflection in optical potential. Sci. Rep. 2017;7:1697. doi: 10.1038/s41598-017-01848-4. PubMed DOI PMC

Šiler M, et al. Diffusing up the hill: Dynamics and equipartition in highly unstable systems. Phys. Rev. Lett. 2018;121:230601. doi: 10.1103/PhysRevLett.121.230601. PubMed DOI

Setter A, Vovrosh J, Ulbricht H. Characterization of non-linearities through mechanical squeezing in levitated optomechanics. Appl. Phys. Lett. 2019;115:153106. doi: 10.1063/1.5116121. DOI

Ahn J, et al. Optically levitated nanodumbbell torsion balance and ghz nanomechanical rotor. Phys. Rev. Lett. 2018;121:033603. doi: 10.1103/PhysRevLett.121.033603. PubMed DOI

Delić U, et al. Levitated cavity optomechanics in high vacuum. Quantum Sci. Technol. 2020;5:025006. doi: 10.1088/2058-9565/ab7989. DOI

Ciampini, M. A. et al. Experimental nonequilibrium memory erasure beyond Landauer's bound. arXiv:2107.04429 [cond-mat.stat-mech] (2021).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Stroboscopic thermally-driven mechanical motion

. 2022 Nov 22 ; 12 (1) : 20091. [epub] 20221122

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...