Uncertainty-induced instantaneous speed and acceleration of a levitated particle
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-17765S
Grantová Agentura České Republiky
731473
Horizon 2020 Framework Programme
PubMed
34521904
PubMed Central
PMC8440777
DOI
10.1038/s41598-021-97663-z
PII: 10.1038/s41598-021-97663-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Levitating nanoparticles trapped in optical potentials at low pressure open the experimental investigation of nonlinear ballistic phenomena. With engineered non-linear potentials and fast optical detection, the observation of autonomous transient mechanical effects, such as instantaneous speed and acceleration stimulated purely by initial position uncertainty, are now achievable. By using parameters of current low pressure experiments, we simulate and analyse such uncertainty-induced particle ballistics in a cubic optical potential demonstrating their evolution, faster than their standard deviations, justifying the feasibility of the experimental verification. We predict, the maxima of instantaneous speed and acceleration distributions shift alongside the potential force, while the maximum of position distribution moves opposite to it. We report that cryogenic cooling is not necessary in order to observe the transient effects, while a low uncertainty in initial particle speed is required, via cooling or post-selection, to not mask the effects. These results stimulate the discussion for both attractive stochastic thermodynamics, and extension of recently explored quantum regime.
Zobrazit více v PubMed
Rondin L, et al. Direct measurement of kramers turnover with a levitated nanoparticle. Nat. Nanotechnol. 2017;12:1130–1133. doi: 10.1038/nnano.2017.198. PubMed DOI
Ricci F, et al. Optically levitated nanoparticle as a model system for stochastic bistable dynamics. Nat. Commun. 2017;8:15141. doi: 10.1038/ncomms15141. PubMed DOI PMC
Li T, Kheifets S, Raizen MG. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 2011;7:527–530. doi: 10.1038/nphys1952. DOI
Jain V, et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 2016;116:243601. doi: 10.1103/PhysRevLett.116.243601. PubMed DOI
Gieseler J, Novotny L, Quidant R. Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys. 2013;9:806–810. doi: 10.1038/nphys2798. DOI
Fonseca PZG, Aranas EB, Millen J, Monteiro TS, Barker PF. Nonlinear dynamics and strong cavity cooling of levitated nanoparticles. Phys. Rev. Lett. 2016;117:173602. doi: 10.1103/PhysRevLett.117.173602. PubMed DOI
Ma J, et al. Observation of nonlinear dynamics in an optical levitation system. Commun. Phys. 2020;3:197. doi: 10.1038/s42005-020-00467-2. DOI
Kheifets S, Simha A, Melin K, Li T, Raizen MG. Observation of brownian motion in liquids at short times: Instantaneous velocity and memory loss. Science. 2014;343:1493–1496. doi: 10.1126/science.1248091. PubMed DOI
Li T, Raizen MG. Brownian motion at short time scales. Ann. Phys. 2013;525:281–295. doi: 10.1002/andp.201200232. DOI
Li T, Kheifets S, Medellin D, Raizen MG. Measurement of the instantaneous velocity of a brownian particle. Science. 2010;328:1673–1675. doi: 10.1126/science.1189403. PubMed DOI
Huang R, et al. Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid. Nat. Phys. 2011;7:576–580. doi: 10.1038/nphys1953. DOI
Flajšmanová J, et al. Using the transient trajectories of an optically levitated nanoparticle to characterize a stochastic duffing oscillator. Sci. Rep. 2020;10:14436. doi: 10.1038/s41598-020-70908-z. PubMed DOI PMC
Gieseler J, Deutsch B, Quidant R, Novotny L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 2012;109:103603. doi: 10.1103/PhysRevLett.109.103603. PubMed DOI
Asenbaum P, Kuhn S, Nimmrichter S, Sezer U, Arndt M. Cavity cooling of free silicon nanoparticles in high vacuum. Nat. Commun. 2013;4:2743. doi: 10.1038/ncomms3743. PubMed DOI PMC
Tebbenjohanns F, Frimmer M, Militaru A, Jain V, Novotny L. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Phys. Rev. Lett. 2019;122:223601. doi: 10.1103/PhysRevLett.122.223601. PubMed DOI
Conangla GP, et al. Optimal feedback cooling of a charged levitated nanoparticle with adaptive control. Phys. Rev. Lett. 2019;122:223602. doi: 10.1103/PhysRevLett.122.223602. PubMed DOI
Delić U, et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science. 2020;367:892. doi: 10.1126/science.aba3993. PubMed DOI
Delić UCV, et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett. 2019;122:123602. doi: 10.1103/PhysRevLett.122.123602. PubMed DOI
Frimmer M, Gieseler J, Novotny L. Cooling mechanical oscillators by coherent control. Phys. Rev. Lett. 2016;117:163601. doi: 10.1103/PhysRevLett.117.163601. PubMed DOI
Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys.75, 126001. https://doi.org/10.1088%2F0034-4885%2F75%2F12%2F126001 (2012). PubMed
Ryabov A, Holubec V, Berestneva E. Living on the edge of instability. IOPScience. 2019;2019:084014. doi: 10.1088/1742-5468/ab333f. DOI
Rodenburg B, Neukirch LP, Vamivakas AN, Bhattacharya M. Quantum model of cooling and force sensing with an optically trapped nanoparticle. Optica. 2016;3:318. doi: 10.1364/OPTICA.3.000318. DOI
Timberlake C, Gasbarri G, Vinante A, Setter A, Ulbricht H. Acceleration sensing with magnetically levitated oscillators above a superconductor. Appl. Phys. Lett. 2019;115:224101. doi: 10.1063/1.5129145. DOI
Lecamwasam R, et al. Dynamics and stability of an optically levitated mirror. Phys. Rev. A. 2020;101:053857. doi: 10.1103/PhysRevA.101.053857. DOI
Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Artificial molecular machines. Chem. Rev. 2015;115:10081–10206. doi: 10.1021/acs.chemrev.5b00146. PubMed DOI PMC
Blickle V, Bechinger C. Realization of a micrometre-sized stochastic heat engine. Nat. Phys. 2012;8:143–146. doi: 10.1038/nphys2163. DOI
Ornigotti L, Ryabov A, Holubec V, Filip R. Brownian motion surviving in the unstable cubic potential and the role of Maxwell’s demon. Phys. Rev. E. 2018;97:032127. doi: 10.1103/PhysRevE.97.032127. PubMed DOI
Filip, R. & Zemánek, P. Noise-to-signal transition of a Brownian particle in the cubic potential: I. General theory. J. Opt.18, 065401. https://doi.org/10.1088%2F2040-8978%2F18%2F6%2F065401 (2016).
Šiler M, et al. Thermally induced micro-motion by inflection in optical potential. Sci. Rep. 2017;7:1697. doi: 10.1038/s41598-017-01848-4. PubMed DOI PMC
Šiler M, et al. Diffusing up the hill: Dynamics and equipartition in highly unstable systems. Phys. Rev. Lett. 2018;121:230601. doi: 10.1103/PhysRevLett.121.230601. PubMed DOI
Setter A, Vovrosh J, Ulbricht H. Characterization of non-linearities through mechanical squeezing in levitated optomechanics. Appl. Phys. Lett. 2019;115:153106. doi: 10.1063/1.5116121. DOI
Ahn J, et al. Optically levitated nanodumbbell torsion balance and ghz nanomechanical rotor. Phys. Rev. Lett. 2018;121:033603. doi: 10.1103/PhysRevLett.121.033603. PubMed DOI
Delić U, et al. Levitated cavity optomechanics in high vacuum. Quantum Sci. Technol. 2020;5:025006. doi: 10.1088/2058-9565/ab7989. DOI
Ciampini, M. A. et al. Experimental nonequilibrium memory erasure beyond Landauer's bound. arXiv:2107.04429 [cond-mat.stat-mech] (2021).