Evaluation of absorbent cotton for glycopeptide enrichment
Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
36181511
DOI
10.1007/s00216-022-04353-4
PII: 10.1007/s00216-022-04353-4
Knihovny.cz E-resources
- Keywords
- Absorbent cotton, Enrichment, Glycopeptide, HILIC, MAX, Mass spectrometry,
- MeSH
- Chromatography, Liquid methods MeSH
- Glycopeptides * chemistry MeSH
- Glycosylation MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Polysaccharides * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glycopeptides * MeSH
- Polysaccharides * MeSH
Selecting proper and efficient glycopeptide enrichment approaches are essential for mass spectrometry-based glycoproteomics since glycopeptides are usually with microheterogeneity and low abundance in most biological samples. Herein, we introduced a cotton hydrophilic interaction liquid chromatography (HILIC) approach for large-scale glycopeptide enrichment with 80% acetonitrile/1% trifluoroacetic acid as the optimal sample loading buffer. The comparison of cotton HILIC with Venusil HILIC and mixed anion-exchange (MAX) approaches indicated that cotton HILIC was superior in overall glycopeptide enrichment, whereas Venusil HILIC preferred in complex glycan structures and MAX performed better with high mannose glycans. Exploration of capacity and recovery rate of cotton HILIC illustrated that 5mg cotton packed in a 200μL tip achieved a reasonable glycopeptide enrichment performance (~6% recovery) from ~0.5mg peptides. In conclusion, cotton HILIC can be used as an optional glycopeptide enrichment approach in glycosylation analysis with its specific merit.
See more in PubMed
Sprovieri P, Martino G. The role of the carbohydrates in plasmatic membrane. Physiol Res. 2018;67(1):1–11. PubMed DOI
Moremen K, Tiemeyer M, Nairn A. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13:448–62. PubMed DOI PMC
Fournet M, Bonte F, Desmouliere A. Glycation damage: a possible hub for major pathophysiological disorders and aging. Aging Dis. 2018;9(5):880–900. PubMed DOI PMC
Yu A, Zhao J, Peng W, Banazadeh A, Williamson SD, Goli M, et al. Advances in mass spectrometry-based glycoproteomics. Electrophoresis. 2018;39(24):3104–22. PubMed DOI PMC
Bondt A, Rombouts Y, Selman MH, Hensbergen PJ, Reiding KR, Hazes JM, et al. Immunoglobulin G (IgG) fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol Cell Proteomics. 2014;13(11):3029–39. PubMed DOI PMC
Wieczorek M, Braicu EI, Oliveira-Ferrer L, Sehouli J, Blanchard V. Immunoglobulin G subclass-specific glycosylation changes in primary epithelial ovarian cancer. Front Immunol. 2020;11:654. PubMed DOI PMC
Li J, Zhao T, Li J, Shen J, Jia L, Zhu B, et al. Precision N-glycoproteomics reveals elevated LacdiNAc as a novel signature of intrahepatic cholangiocarcinoma. Mol Oncol. 2022;16(11):2135–52. PubMed DOI
Kratz EM, Kaluza A, Zimmer M, Ferens-Sieczkowska M. The analysis of sialylation, N-glycan branching, and expression of O-glycans in seminal plasma of infertile men. Dis Markers. 2015;2015:941871. PubMed PMC
Cao L, Qu Y, Zhang Z, Wang Z, Prytkova I, Wu S. Intact glycopeptide characterization using mass spectrometry. Expert Rev Proteomics. 2016;13(5):513–22. PubMed DOI PMC
Woo CM, Iavarone AT, Spiciarich DR, Palaniappan KK, Bertozzi CR. Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat Methods. 2015;12(6):561–7. PubMed DOI PMC
Zhu Z, Desaire H. Carbohydrates on proteins: site-specific glycosylation analysis by mass spectrometry. Annu Rev Anal Chem (Palo Alto, Calif). 2015;8:463–83. PubMed DOI
Dell A, Morris HR. Glycoprotein structure determination by mass spectrometry. Science (New York, NY). 2001;291(5512):2351–6. DOI
Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci. 2012;35(18):2341–72. PubMed DOI
Liu Y, Fu D, Yu L, Xiao Y, Peng X, Liang X. Oxidized dextran facilitated synthesis of a silica-based concanavalin a material for lectin affinity enrichment of glycoproteins/glycopeptides. J Chromatogr A. 2016;1455:147–55. PubMed DOI
Li Y, Shah P, De Marzo AM, Van Eyk JE, Li Q, Chan DW, et al. Identification of glycoproteins containing specific glycans using a lectin-chemical method. Anal Chem. 2015;87(9):4683–7. PubMed DOI PMC
Zhang L, Jiang H, Yao J, Wang Y, Fang C, Yang P, et al. Highly specific enrichment of N-linked glycopeptides based on hydrazide functionalized soluble nanopolymers. Chem Commun (Camb). 2014;50(8):1027–9. PubMed DOI
Liu Y, Ren L, Liu Z. A unique boronic acid functionalized monolithic capillary for specific capture, separation and immobilization of cis-diol biomolecules. Chem Commun (Camb). 2011;47(17):5067–9. PubMed DOI
Wang Y, Liu M, Xie L, Fang C, Xiong H, Lu H. Highly efficient enrichment method for glycopeptide analyses: using specific and nonspecific nanoparticles synergistically. Anal Chem. 2014;86(4):2057–64. PubMed DOI
Yang W, Shah P, Hu Y, Toghi Eshghi S, Sun S, Liu Y, et al. Comparison of enrichment methods for intact N- and O-linked glycopeptides using strong anion exchange and hydrophilic interaction liquid chromatography. Anal Chem. 2017;89(21):11193–7. PubMed DOI PMC
Shen J, Jia L, Dang L, Su Y, Zhang J, Xu Y, et al. StrucGP: de novo structural sequencing of site-specific N-glycan on glycoproteins using a modularization strategy. Nat Methods. 2021;18(8):921–9. PubMed DOI
Dong X, Qin H, Mao J, Yu D, Li X, Shen A, et al. In-depth analysis of glycoprotein sialylation in serum using a dual-functional material with superior hydrophilicity and switchable surface charge. Anal Chem. 2017;89(7):3966–72. PubMed DOI
Li J, Liu J, Liu Z, Tan Y, Liu X, Wang F. Detecting proteins glycosylation by a homogeneous reaction system with zwitterionic gold nanoclusters. Anal Chem. 2017;89(8):4339–43. PubMed DOI
Pan Y, Ma C, Tong W, Fan C, Zhang Q, Zhang W, et al. Preparation of sequence-controlled triblock copolymer-grafted silica microparticles by sequential-ATRP for highly efficient glycopeptides enrichment. Anal Chem. 2015;87(1):656–62. PubMed DOI
Wang Y, Wang J, Gao M, Zhang X. An ultra hydrophilic dendrimer-modified magnetic graphene with a polydopamine coating for the selective enrichment of glycopeptides. J Mater Chem B. 2015;3(44):8711–6. PubMed DOI
Taraji M, Haddad PR, Amos RIJ, Talebi M, Szucs R, Dolan JW, et al. Chemometric-assisted method development in hydrophilic interaction liquid chromatography: a review. Anal Chim Acta. 2018;1000:20–40. PubMed DOI
Selman MH, Hemayatkar M, Deelder AM, Wuhrer M. Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal Chem. 2011;83(7):2492–9. PubMed DOI
Liu L, Jin S, Mei P, Zhou P. Preparation of cotton wool modified with boric acid functionalized titania for selective enrichment of glycopeptides. Talanta. 2019;203:58–64. PubMed DOI
Han J, Chen Q, Jin W, Zou M, Lu Y, Liu Y, et al. Purification of N- and O-glycans and their derivatives from biological samples by the absorbent cotton hydrophilic chromatographic column. J Chromatogr A. 2020;1620:461001. PubMed DOI
Xin M, Xu Y, You S, Li C, Zhu B, Shen J, et al. Precision structural interpretation of site-specific N-glycans in seminal plasma. J Proteome Res. 2022;21(7):1664–74. PubMed DOI
Xin M, You S, Xu Y, We S, Zhu B, Shen J, Wu J, Li C, Chen Z, Su Y, Shi J, Sun S. Precision mapping of glycosite-specific glycans reveals distinctive N-glycosylation on human spermatozoa. Mol Cell Proteomics. 2021;21(4):100214. DOI
Sun S, Shah P, Eshghi ST, Yang W, Trikannad N, Yang S, et al. Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides. Nat Biotechnol. 2016;34(1):84–8. PubMed DOI
Deutsch EW, Mendoza L, Shteynberg D, Slagel J, Sun Z, Moritz RL. Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl. 2015;9(7-8):745–54. PubMed DOI PMC
Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics. 2012;40(1):13.20.1–13.20.14. DOI
Zhu J, Wang F, Chen R, Cheng K, Xu B, Guo Z, et al. Centrifugation assisted microreactor enables facile integration of trypsin digestion, hydrophilic interaction chromatography enrichment, and on-column deglycosylation for rapid and sensitive N-glycoproteome analysis. Anal Chem. 2012;84(11):5146–53. PubMed DOI
Sha Q, Wu Y, Wang C, Sun B, Zhang Z, Zhang L, et al. Cellulose microspheres-filled pipet tips for purification and enrichment of glycans and glycopeptides. J Chromatogr A. 2018;1569:8–16. PubMed DOI
Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013;41(Database issue):D1063–9. PubMed