Different hosts in different lakes: prevalence and population genetic structure of plerocercoids of Ligula intestinalis (Cestoda) in Czech water bodies
Language English Country Czech Republic Media electronic
Document type Journal Article
PubMed
36185031
DOI
10.14411/fp.2022.018
PII: 2022.018
Knihovny.cz E-resources
- Keywords
- Czech Republic, fish parasite, freshwater, host specificity, tapeworm,
- MeSH
- Cestoda * genetics MeSH
- Cestode Infections * epidemiology parasitology veterinary MeSH
- Cyprinidae * parasitology MeSH
- Phylogeny MeSH
- Genetic Structures MeSH
- Host-Parasite Interactions MeSH
- Lakes MeSH
- DNA, Mitochondrial MeSH
- Fish Diseases * epidemiology parasitology MeSH
- Parasites * MeSH
- Genetics, Population MeSH
- Prevalence MeSH
- Water MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Names of Substances
- DNA, Mitochondrial MeSH
- Water MeSH
Ligula intestinalis (Linnaeus, 1758) is a tapeworm parasite with a worldwide distribution that uses a wide variety of fish species as its second intermediate host. In the present study, we investigated the prevalence and population genetic structure of plerocercoids of L. intestinalis in five common cyprinoid species, roach Rutilus rutilus (Linnaeus), freshwater bream Abramis brama (Linnaeus), white bream Blicca bjoerkna (Linnaeus), bleak Alburnus alburnus (Linnaeus), and rudd Scardinius erythrophthalmus (Linnaeus), collected in six water bodies of the Czech Republic (Milada, Most, Medard, Jordán, Římov and Lipno). Of the six study sites, the highest frequency of parasitism was recorded in Lake Medard (15%). The overall prevalence rate among the species was as follows: roach > rudd ≥ freshwater bream > bleak > white bream. Two mitochondrial genes (cytb and COI) were used to compare the population genetic structure of parasite populations using selected samples from the five fish species. The results of the phylogenetic analysis indicated that all populations of L. intestinalis were placed in Clade A, previously identified as the most common in Europe. At a finer scale, haplotype network and PCoA analyses indicated the possible emergence of host specificity of several mtDNA haplotypes to the freshwater bream. Moreover, pairwise Fixation indices (FST) revealed a significant genetic structure between the parasite population in freshwater bream and other host species. Parasite populations in roach not only showed the highest rate of prevalence but also depicted a maximum number of shared haplotypes with populations from bleak and rudd. Our results suggest that recent ecological differentiation might have influenced tapeworm populations at a fine evolutionary scale. Thus, the differences in prevalence between fish host species in different lakes might be influenced not only by the parasite's ecology, but also by its genetic diversity.
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute of Hydrobiology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
See more in PubMed
Appelberg M., Berger H.-M., Hesthagen T., Kleiven E., Kurkilahti M., Raitaniemi J., Rask M. 1995: Development and intercalibration of methods in Nordic freshwater fish monitoring. Water. Air. Soil Pollut. 85: 401-406. DOI
Arme C., Owen R.W. 1968: Occurrence and pathology of Ligula intestinalis infections in British fishes. J. Parasitol. 54: 272-280. PubMed DOI
Barson M., Marshall B.E. 2003: The occurrence of the tapeworm Ligula intestinalis (L.), in Barbus paludinosus from a small dam in Zimbabwe. African J. Aquat. Sci. 28: 175-178. DOI
Baruš V., Prokeš M. 1995: Length-weight relationship of Ligula intestinalis plerocercoids in adult silver bream and discussion on estimation of the parasite age. Appl. Parasitol. 36: 192-199. PubMed
Bean C.W., Winfield I.J. 1991: Influences of the tapeworm Ligula intestinalis (L.) on the spatial distributions of juvenile roach Rutilus rutilus (L.) and gudgeon Gobio gobio (L.) in Lough Neagh, Northern Ireland. Netherlands J. Zool.42: 419-429. DOI
Bernard M.S., Strittmatter M., Murúa P., Heesch S., Cho G.Y., Leblanc C., Peters A.F. 2019: Diversity, biogeography and host specificity of kelp endophytes with a focus on the genera Laminarionema and Laminariocolax (Ectocarpales, Phaeophyceae). Eur. J. Phycol. 54: 39-51. DOI
Blabolil P., Boukal D.S., Ricard D., Kubečka J., Říha M., Vašek M., Prchalová M., Čech M., Frouzová J., Jůza T., Muška M., Tušer M., Draštík V., Šmejkal M., Vejřík L., Peterka J. 2017: Optimal gillnet sampling design for the estimation of fish community indicators in heterogeneous freshwater ecosystems. Ecol. Indic. 77: 368-376. DOI
Blatrix R., Herbers J.M. 2003: Coevolution between slave-making ants and their hosts: host specificity and geographical variation. Mol. Ecol. 12: 2809-2816. PubMed DOI
Blouin M.S. 2002: Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int. J. Parasitol. 32: 527-531. DOI
Bouzid W., Lek S., Mace M., Ben Hassine O., Etienne R., Legal L., Loot G. 2008a: Genetic diversity of Ligula intestinalis (Cestoda: Diphyllobothriidea) based on analysis of inter-simple sequence repeat markers. J. Zool. Syst. Evol. Res. 46: 289-296. DOI
Bouzid W., Štefka J., Bahri-Sfar L., Beerli P., Loot G., Lek S., Haddaoui N., Hypša V., Scholz T., Dkhil-Abbes T. 2013: Pathways of cryptic invasion in a fish parasite traced using coalescent analysis and epidemiological survey. Biol. Invasions 15: 1907-1923. DOI
Bouzid W., Štefka J., Hypša V., Lek S., Scholz T., Legal L., Hassine O.K. Ben, Loot G. 2008b: Geography and host specificity: two forces behind the genetic structure of the freshwater fish parasite Ligula intestinalis (Cestoda: Diphyllobothriidae). Int. J. Parasitol. 38: 1465-1479. DOI
Britton J.R., Jackson M.C., Harper D.M. 2009: Ligula intestinalis (Cestoda: Diphyllobothriidae) in Kenya: a field investigation into host specificity and behavioural alterations. Parasitology 136: 1367-1373. PubMed DOI
Brown S.P., Loot G., Grenfell B.T., Guégan J.F. 2001: Host manipulation by Ligula intestinalis: accident or adaptation? Parasitology 123: 519. PubMed DOI
Bykhovskaya-Pavlovskaya I.E. 1964: Key to Parasites of Freshwater Fish of the USSR. Israel Program for Scientific Translations, Jerusalem, 919 pp.
Carter B.C., Shubeita G.T., Gross S.P. 2005: Tracking single particles: a user-friendly quantitative evaluation. Phys. Biol. 2: 60. DOI
Chapman A., Hobbs R.P., Morgan D.L., Gill H.S. 2006: Helminth parasitism of Galaxias maculatus (Jenyns, 1842) in southwestern Australia. Ecol. Freshw. Fish. 15: 559-564. DOI
Cole R., Viney M. 2019: Correction to: The population genetics of parasitic nematodes of wild animals. Parasit. Vectors. 12: 1. PubMed DOI
Dence W.A. 1958: Studies on Ligula-infected common shiners (Notropis cornutus frontalis Agassiz) in the Adirondacks. J. Parasitol 44: 334-338. PubMed DOI
Dubinina M.N. 1980: Tapeworms (Cestoda, Ligulidae) of the fauna of the USSR. Amerind Publishing Company, Delhi, 320 pp.
Ergonul M.B., Altindag A. 2005: The occurrence and dynamics of Ligula intestinalis in its cyprinid fish host, tench, Tinca tinca, in Mogan Lake (Ankara, Turkey). Vet. Med. 50: 537. DOI
Groves K.L., Shields B.A. 2001: Observations on the plerocercoid stage of the tapeworm Ligula in three species of fish from the lower Crooked River of central Oregon. J. Aquat. Anim. Health. 13: 285-289. DOI
Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. 2018: UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35: 518-522. PubMed DOI
Holmes J.C., Bethel W.M. 1972: Modification of intermediate host behavior by parasites. In: E.U. Canning and C.A. Wright (Eds.), Behavioral Aspects of Parasite Transmission, Academic Press, New York, pp. 128-149.
Huyse T., Poulin R., Théron A., Theron A. 2005: Speciation in parasites: a population genetics approach. Trends Parasitol. 21: 469-475. PubMed DOI
Ivankov V.N., Kaplunenko V.A., Bol'shakov S.G., Zheleznova L. V. 2020: First detections of the tapeworm Ligula intestinalis (Linnaeus, 1758) (Cestoda: Ligulidae) in the anadromous far eastern redfin Tribolodon hakonensis (Gunther, 1880) (Teleostei: Cyprinidae) in Primorye. Russ. J. Mar. Biol. 46: 230-231. DOI
Iwanowicz D.D. 2011: Overview on the effects of parasites on fish health. In: R.C. Cipriano, A.W. Bruckner and I.S. Shchelkunov (Eds.), Proceedings of the Third Bilateral Conference between Russia and the United States, Aquatic Animal Health 2009, Shepherdstown, 12-20 July 2009. Khaled bin Sultan Living Oceans Foundation, Landover, pp. 176-184.
Jombart T. 2008: adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403-1405. PubMed DOI
Kennedy C.R. 1974: A checklist of British and Irish freshwater fish parasites with notes on their distribution. J. Fish Biol. 6: 613-644. DOI
Kennedy C.R., Burrough R.J. 1981: The establishment and subsequent history of a population of Ligula intestinalis in roach Rutilis rutilis (L.). J. Fish Biol. 19: 105-126. DOI
Kennedy C.R., Shears P.C., Shears J.A. 2001: Long-term dynamics of Ligula intestinalis and roach Rutilus rutilus: a study of three epizootic cycles over thirty-one years. Parasitology 123: 257-269. PubMed DOI
Kočová P. 2018: [Population-genomic analysis of adaptation in a parasite with a wide host range - tapeworm Ligula intestinalis.] Master thesis, University of South Bohemia in České Budějovice. (In Czech.)
Lagrue C., Presswell B., Dunckley N., Poulin R. 2018: The invasive cestode parasite Ligula from salmonids and bullies on the South Island, New Zealand. Parasitol. Res. 117: 151-156. PubMed DOI
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. 2017: Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34: 772-773. PubMed DOI
Leigh J.W., Bryant D. 2015: POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6: 1110-1116. DOI
Levron C., Sitko J., Scholz T. 2009: Spermiogenesis and spermatozoon of the tapeworm Ligula intestinalis (Diphyllobothriidea): phylogenetic implications. J. Parasitol. 95: 1-9. PubMed DOI
Li J., Liao X., Yang H. 2000: Molecular characterization of a parasitic tapeworm (Ligula) based on DNA sequences from formalin-fixed specimens. Biochem. Genet. 38: 309-322. PubMed DOI
Librado P., Rozas J. 2009: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. PubMed DOI
Longshaw M., Frear P.A., Nunn A.D., Cowx I.G., Feist S.W. 2010: The influence of parasitism on fish population success. Fish. Manag. Ecol. 17: 426-434. DOI
Loot G., Francisco P., Santoul F., Lek S., Guégan J.-F. 2001: The three hosts of the Ligula intestinalis (Cestoda) life cycle in Lavernose-Lacasse gravel pit, France. Arch. Hydrobiol. 152: 511-525. DOI
Martinů J., Hypša V., Štefka J. 2018: Host specificity driving genetic structure and diversity in ectoparasite populations: coevolutionary patterns in Apodemus mice and their lice. Ecol. Evol. 8: 10008-10022. PubMed DOI
Meinilä M., Kuusela J., Ziętara M.S., Lumme J. 2004: Initial steps of speciation by geographic isolation and host switch in salmonid pathogen Gyrodactylus salaris (Monogenea: Gyrodactylidae). Int. J. Parasitol. 34: 515-526. DOI
Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. 2020: IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37: 1530-1534. PubMed DOI
Ministry of Agriculture of the Czech Republic 2019: Report on Water Management in the Czech Republic in 2019, Accessed April 25, 2022, https://eagri.cz/Report
Moravec F., Scholz T. 2016: Helminth parasites of the lesser great cormorant Phalacrocorax carbo sinensis from two nesting regions in the Czech Republic. Folia Parasitol. 63: 022. DOI
Morgan D.L. 2003: Distribution and biology of Galaxias truttaceus (Galaxiidae) in south-western Australia, including first evidence of parasitism of fishes in Western Australia by Ligula intestinalis (Cestoda). Environ. BioL. Fishes. 66:155-167. DOI
Nazarizadeh M., Martinů J., Nováková M., Stanko M., Štefka J. 2022: Phylogeography of the parasitic mite Laelaps agilis in Western Palearctic shows lineages lacking host specificity but possessing different demographic histories. BMC Zool. 7: 15. DOI
Nezafat R.B., Khara H., Satari M. 2008: Parasite infection of bream (Abramis brama orientalis Berg, 1949) in Aras Dam lake. J. Biol. Sci. 2: 83-96.
Nosil P. 2012: Ecological Speciation. Oxford University Press, Oxford, 280 pp. DOI
Olson P.D., Littlewood D.T.J., Griffiths D., Kennedy C.R., Arme C. 2002: Evidence for the co-existence of separate strains or species of Ligula in Lough Neagh, Northern Ireland. J. Helminthol. 76: 171. PubMed DOI
Palm H.W., Theisen S., Pikalov E., Kleinertz S. 2018: An update: manipulation of fish phenotype by parasites. Ref. Mod. Life Sci. 2018: 1-9. DOI
R Core Team 2021: R: a language and environment for statistical computing.
Ristau K., Steinfartz S., Traunspurger W. 2013: First evidence of cryptic species diversity and significant population structure in a widespread freshwater nematode morphospecies (Tobrilus gracilis). Mol. Ecol. 22: 4562-4575. PubMed DOI
Ronquist F., Huelsenbeck J.P. 2003: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. PubMed DOI
Rundle H.D., Nosil P. 2005: Ecological speciation. Ecol. Lett. 8: 336-352. DOI
Ryšavý B., Sitko J. 1995: New findings of tapeworms (Cestoda) of birds from Moravia and synopsis of bird Cestodes from Czech Republic. Acta Sci. Nat. Brno 29: 1-66.
Schirrmann M.K., Leuchtmann A. 2015: The role of host-specificity in the reproductive isolation of Epichloë endophytes revealed by reciprocal infections. Fungal Ecol. 15: 29-38. DOI
Štefka J., Hypša V., Scholz T. 2009: Interplay of host specificity and biogeography in the population structure of a cosmopolitan endoparasite: microsatellite study of Ligula intestinalis (Cestoda). Mol. Ecol. 18: 1187-1206. PubMed DOI
Stork N.E., Lyal C.H.C. 1993: Extinction or 'co-extinction' rates? Nature 366: 307. DOI
Sweeting R.A. 1977: Studies on Ligula intestinalis. Some aspects of the pathology in the second intermediate host. J. Fish Biol. 10: 43-50. DOI
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011: MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. DOI
Van Dobben W.H. 1952: The food of the cormorant in the Netherlands. Ardea 55: 1-63. DOI
Waeschenbach A., Brabec J., Scholz T., Littlewood D.T.J., Kuchta R. 2017: The catholic taste of broad tapeworms - multiple routes to human infection. Int. J. Parasitol. 47: 831-843. DOI
Wells K., Clark N.J. 2019: Host specificity in variable environments. Trends Parasitol. 35: 452-465. PubMed DOI
Windsor D.A. 1998: Controversies in parasitology. Most of the species on Earth are parasites. Int. J. Parasitol. 28: 1939-1941. DOI
Wyatt R.J., Kennedy C.R. 1989: Host-constrained epidemiology of the fish tapeworm Ligula intestinalis (L.). J. Fish Biol. 35: 215-227. DOI
Xia X., Lemey P. 2009: Assessing substitution saturation with DAMBE. In: P. Lemey, M. Salemi, A.-M. Vandamme (Eds.), The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny. Second Edition. Cambridge University Press, Cambridge, pp. 615-630. DOI
Xia X., Xie Z. 2001: DAMBE: software package for data analysis in molecular biology and evolution. J. Hered. 92: 371-373. DOI
ZAR J.H. 1999: Biostatistical Analysis. Prentice Hall, New Jersey, 663 pp.