• This record comes from PubMed

Different hosts in different lakes: prevalence and population genetic structure of plerocercoids of Ligula intestinalis (Cestoda) in Czech water bodies

. 2022 Sep 15 ; 69 () : . [epub] 20220915

Language English Country Czech Republic Media electronic

Document type Journal Article

Ligula intestinalis (Linnaeus, 1758) is a tapeworm parasite with a worldwide distribution that uses a wide variety of fish species as its second intermediate host. In the present study, we investigated the prevalence and population genetic structure of plerocercoids of L. intestinalis in five common cyprinoid species, roach Rutilus rutilus (Linnaeus), freshwater bream Abramis brama (Linnaeus), white bream Blicca bjoerkna (Linnaeus), bleak Alburnus alburnus (Linnaeus), and rudd Scardinius erythrophthalmus (Linnaeus), collected in six water bodies of the Czech Republic (Milada, Most, Medard, Jordán, Římov and Lipno). Of the six study sites, the highest frequency of parasitism was recorded in Lake Medard (15%). The overall prevalence rate among the species was as follows: roach > rudd ≥ freshwater bream > bleak > white bream. Two mitochondrial genes (cytb and COI) were used to compare the population genetic structure of parasite populations using selected samples from the five fish species. The results of the phylogenetic analysis indicated that all populations of L. intestinalis were placed in Clade A, previously identified as the most common in Europe. At a finer scale, haplotype network and PCoA analyses indicated the possible emergence of host specificity of several mtDNA haplotypes to the freshwater bream. Moreover, pairwise Fixation indices (FST) revealed a significant genetic structure between the parasite population in freshwater bream and other host species. Parasite populations in roach not only showed the highest rate of prevalence but also depicted a maximum number of shared haplotypes with populations from bleak and rudd. Our results suggest that recent ecological differentiation might have influenced tapeworm populations at a fine evolutionary scale. Thus, the differences in prevalence between fish host species in different lakes might be influenced not only by the parasite's ecology, but also by its genetic diversity.

See more in PubMed

Appelberg M., Berger H.-M., Hesthagen T., Kleiven E., Kurkilahti M., Raitaniemi J., Rask M. 1995: Development and intercalibration of methods in Nordic freshwater fish monitoring. Water. Air. Soil Pollut. 85: 401-406. DOI

Arme C., Owen R.W. 1968: Occurrence and pathology of Ligula intestinalis infections in British fishes. J. Parasitol. 54: 272-280. PubMed DOI

Barson M., Marshall B.E. 2003: The occurrence of the tapeworm Ligula intestinalis (L.), in Barbus paludinosus from a small dam in Zimbabwe. African J. Aquat. Sci. 28: 175-178. DOI

Baruš V., Prokeš M. 1995: Length-weight relationship of Ligula intestinalis plerocercoids in adult silver bream and discussion on estimation of the parasite age. Appl. Parasitol. 36: 192-199. PubMed

Bean C.W., Winfield I.J. 1991: Influences of the tapeworm Ligula intestinalis (L.) on the spatial distributions of juvenile roach Rutilus rutilus (L.) and gudgeon Gobio gobio (L.) in Lough Neagh, Northern Ireland. Netherlands J. Zool.42: 419-429. DOI

Bernard M.S., Strittmatter M., Murúa P., Heesch S., Cho G.Y., Leblanc C., Peters A.F. 2019: Diversity, biogeography and host specificity of kelp endophytes with a focus on the genera Laminarionema and Laminariocolax (Ectocarpales, Phaeophyceae). Eur. J. Phycol. 54: 39-51. DOI

Blabolil P., Boukal D.S., Ricard D., Kubečka J., Říha M., Vašek M., Prchalová M., Čech M., Frouzová J., Jůza T., Muška M., Tušer M., Draštík V., Šmejkal M., Vejřík L., Peterka J. 2017: Optimal gillnet sampling design for the estimation of fish community indicators in heterogeneous freshwater ecosystems. Ecol. Indic. 77: 368-376. DOI

Blatrix R., Herbers J.M. 2003: Coevolution between slave-making ants and their hosts: host specificity and geographical variation. Mol. Ecol. 12: 2809-2816. PubMed DOI

Blouin M.S. 2002: Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int. J. Parasitol. 32: 527-531. DOI

Bouzid W., Lek S., Mace M., Ben Hassine O., Etienne R., Legal L., Loot G. 2008a: Genetic diversity of Ligula intestinalis (Cestoda: Diphyllobothriidea) based on analysis of inter-simple sequence repeat markers. J. Zool. Syst. Evol. Res. 46: 289-296. DOI

Bouzid W., Štefka J., Bahri-Sfar L., Beerli P., Loot G., Lek S., Haddaoui N., Hypša V., Scholz T., Dkhil-Abbes T. 2013: Pathways of cryptic invasion in a fish parasite traced using coalescent analysis and epidemiological survey. Biol. Invasions 15: 1907-1923. DOI

Bouzid W., Štefka J., Hypša V., Lek S., Scholz T., Legal L., Hassine O.K. Ben, Loot G. 2008b: Geography and host specificity: two forces behind the genetic structure of the freshwater fish parasite Ligula intestinalis (Cestoda: Diphyllobothriidae). Int. J. Parasitol. 38: 1465-1479. DOI

Britton J.R., Jackson M.C., Harper D.M. 2009: Ligula intestinalis (Cestoda: Diphyllobothriidae) in Kenya: a field investigation into host specificity and behavioural alterations. Parasitology 136: 1367-1373. PubMed DOI

Brown S.P., Loot G., Grenfell B.T., Guégan J.F. 2001: Host manipulation by Ligula intestinalis: accident or adaptation? Parasitology 123: 519. PubMed DOI

Bykhovskaya-Pavlovskaya I.E. 1964: Key to Parasites of Freshwater Fish of the USSR. Israel Program for Scientific Translations, Jerusalem, 919 pp.

Carter B.C., Shubeita G.T., Gross S.P. 2005: Tracking single particles: a user-friendly quantitative evaluation. Phys. Biol. 2: 60. DOI

Chapman A., Hobbs R.P., Morgan D.L., Gill H.S. 2006: Helminth parasitism of Galaxias maculatus (Jenyns, 1842) in southwestern Australia. Ecol. Freshw. Fish. 15: 559-564. DOI

Cole R., Viney M. 2019: Correction to: The population genetics of parasitic nematodes of wild animals. Parasit. Vectors. 12: 1. PubMed DOI

Dence W.A. 1958: Studies on Ligula-infected common shiners (Notropis cornutus frontalis Agassiz) in the Adirondacks. J. Parasitol 44: 334-338. PubMed DOI

Dubinina M.N. 1980: Tapeworms (Cestoda, Ligulidae) of the fauna of the USSR. Amerind Publishing Company, Delhi, 320 pp.

Ergonul M.B., Altindag A. 2005: The occurrence and dynamics of Ligula intestinalis in its cyprinid fish host, tench, Tinca tinca, in Mogan Lake (Ankara, Turkey). Vet. Med. 50: 537. DOI

Groves K.L., Shields B.A. 2001: Observations on the plerocercoid stage of the tapeworm Ligula in three species of fish from the lower Crooked River of central Oregon. J. Aquat. Anim. Health. 13: 285-289. DOI

Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. 2018: UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35: 518-522. PubMed DOI

Holmes J.C., Bethel W.M. 1972: Modification of intermediate host behavior by parasites. In: E.U. Canning and C.A. Wright (Eds.), Behavioral Aspects of Parasite Transmission, Academic Press, New York, pp. 128-149.

Huyse T., Poulin R., Théron A., Theron A. 2005: Speciation in parasites: a population genetics approach. Trends Parasitol. 21: 469-475. PubMed DOI

Ivankov V.N., Kaplunenko V.A., Bol'shakov S.G., Zheleznova L. V. 2020: First detections of the tapeworm Ligula intestinalis (Linnaeus, 1758) (Cestoda: Ligulidae) in the anadromous far eastern redfin Tribolodon hakonensis (Gunther, 1880) (Teleostei: Cyprinidae) in Primorye. Russ. J. Mar. Biol. 46: 230-231. DOI

Iwanowicz D.D. 2011: Overview on the effects of parasites on fish health. In: R.C. Cipriano, A.W. Bruckner and I.S. Shchelkunov (Eds.), Proceedings of the Third Bilateral Conference between Russia and the United States, Aquatic Animal Health 2009, Shepherdstown, 12-20 July 2009. Khaled bin Sultan Living Oceans Foundation, Landover, pp. 176-184.

Jombart T. 2008: adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403-1405. PubMed DOI

Kennedy C.R. 1974: A checklist of British and Irish freshwater fish parasites with notes on their distribution. J. Fish Biol. 6: 613-644. DOI

Kennedy C.R., Burrough R.J. 1981: The establishment and subsequent history of a population of Ligula intestinalis in roach Rutilis rutilis (L.). J. Fish Biol. 19: 105-126. DOI

Kennedy C.R., Shears P.C., Shears J.A. 2001: Long-term dynamics of Ligula intestinalis and roach Rutilus rutilus: a study of three epizootic cycles over thirty-one years. Parasitology 123: 257-269. PubMed DOI

Kočová P. 2018: [Population-genomic analysis of adaptation in a parasite with a wide host range - tapeworm Ligula intestinalis.] Master thesis, University of South Bohemia in České Budějovice. (In Czech.)

Lagrue C., Presswell B., Dunckley N., Poulin R. 2018: The invasive cestode parasite Ligula from salmonids and bullies on the South Island, New Zealand. Parasitol. Res. 117: 151-156. PubMed DOI

Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. 2017: Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34: 772-773. PubMed DOI

Leigh J.W., Bryant D. 2015: POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6: 1110-1116. DOI

Levron C., Sitko J., Scholz T. 2009: Spermiogenesis and spermatozoon of the tapeworm Ligula intestinalis (Diphyllobothriidea): phylogenetic implications. J. Parasitol. 95: 1-9. PubMed DOI

Li J., Liao X., Yang H. 2000: Molecular characterization of a parasitic tapeworm (Ligula) based on DNA sequences from formalin-fixed specimens. Biochem. Genet. 38: 309-322. PubMed DOI

Librado P., Rozas J. 2009: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. PubMed DOI

Longshaw M., Frear P.A., Nunn A.D., Cowx I.G., Feist S.W. 2010: The influence of parasitism on fish population success. Fish. Manag. Ecol. 17: 426-434. DOI

Loot G., Francisco P., Santoul F., Lek S., Guégan J.-F. 2001: The three hosts of the Ligula intestinalis (Cestoda) life cycle in Lavernose-Lacasse gravel pit, France. Arch. Hydrobiol. 152: 511-525. DOI

Martinů J., Hypša V., Štefka J. 2018: Host specificity driving genetic structure and diversity in ectoparasite populations: coevolutionary patterns in Apodemus mice and their lice. Ecol. Evol. 8: 10008-10022. PubMed DOI

Meinilä M., Kuusela J., Ziętara M.S., Lumme J. 2004: Initial steps of speciation by geographic isolation and host switch in salmonid pathogen Gyrodactylus salaris (Monogenea: Gyrodactylidae). Int. J. Parasitol. 34: 515-526. DOI

Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. 2020: IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37: 1530-1534. PubMed DOI

Ministry of Agriculture of the Czech Republic 2019: Report on Water Management in the Czech Republic in 2019, Accessed April 25, 2022, https://eagri.cz/Report

Moravec F., Scholz T. 2016: Helminth parasites of the lesser great cormorant Phalacrocorax carbo sinensis from two nesting regions in the Czech Republic. Folia Parasitol. 63: 022. DOI

Morgan D.L. 2003: Distribution and biology of Galaxias truttaceus (Galaxiidae) in south-western Australia, including first evidence of parasitism of fishes in Western Australia by Ligula intestinalis (Cestoda). Environ. BioL. Fishes. 66:155-167. DOI

Nazarizadeh M., Martinů J., Nováková M., Stanko M., Štefka J. 2022: Phylogeography of the parasitic mite Laelaps agilis in Western Palearctic shows lineages lacking host specificity but possessing different demographic histories. BMC Zool. 7: 15. DOI

Nezafat R.B., Khara H., Satari M. 2008: Parasite infection of bream (Abramis brama orientalis Berg, 1949) in Aras Dam lake. J. Biol. Sci. 2: 83-96.

Nosil P. 2012: Ecological Speciation. Oxford University Press, Oxford, 280 pp. DOI

Olson P.D., Littlewood D.T.J., Griffiths D., Kennedy C.R., Arme C. 2002: Evidence for the co-existence of separate strains or species of Ligula in Lough Neagh, Northern Ireland. J. Helminthol. 76: 171. PubMed DOI

Palm H.W., Theisen S., Pikalov E., Kleinertz S. 2018: An update: manipulation of fish phenotype by parasites. Ref. Mod. Life Sci. 2018: 1-9. DOI

R Core Team 2021: R: a language and environment for statistical computing.

Ristau K., Steinfartz S., Traunspurger W. 2013: First evidence of cryptic species diversity and significant population structure in a widespread freshwater nematode morphospecies (Tobrilus gracilis). Mol. Ecol. 22: 4562-4575. PubMed DOI

Ronquist F., Huelsenbeck J.P. 2003: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. PubMed DOI

Rundle H.D., Nosil P. 2005: Ecological speciation. Ecol. Lett. 8: 336-352. DOI

Ryšavý B., Sitko J. 1995: New findings of tapeworms (Cestoda) of birds from Moravia and synopsis of bird Cestodes from Czech Republic. Acta Sci. Nat. Brno 29: 1-66.

Schirrmann M.K., Leuchtmann A. 2015: The role of host-specificity in the reproductive isolation of Epichloë endophytes revealed by reciprocal infections. Fungal Ecol. 15: 29-38. DOI

Štefka J., Hypša V., Scholz T. 2009: Interplay of host specificity and biogeography in the population structure of a cosmopolitan endoparasite: microsatellite study of Ligula intestinalis (Cestoda). Mol. Ecol. 18: 1187-1206. PubMed DOI

Stork N.E., Lyal C.H.C. 1993: Extinction or 'co-extinction' rates? Nature 366: 307. DOI

Sweeting R.A. 1977: Studies on Ligula intestinalis. Some aspects of the pathology in the second intermediate host. J. Fish Biol. 10: 43-50. DOI

Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011: MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. DOI

Van Dobben W.H. 1952: The food of the cormorant in the Netherlands. Ardea 55: 1-63. DOI

Waeschenbach A., Brabec J., Scholz T., Littlewood D.T.J., Kuchta R. 2017: The catholic taste of broad tapeworms - multiple routes to human infection. Int. J. Parasitol. 47: 831-843. DOI

Wells K., Clark N.J. 2019: Host specificity in variable environments. Trends Parasitol. 35: 452-465. PubMed DOI

Windsor D.A. 1998: Controversies in parasitology. Most of the species on Earth are parasites. Int. J. Parasitol. 28: 1939-1941. DOI

Wyatt R.J., Kennedy C.R. 1989: Host-constrained epidemiology of the fish tapeworm Ligula intestinalis (L.). J. Fish Biol. 35: 215-227. DOI

Xia X., Lemey P. 2009: Assessing substitution saturation with DAMBE. In: P. Lemey, M. Salemi, A.-M. Vandamme (Eds.), The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny. Second Edition. Cambridge University Press, Cambridge, pp. 615-630. DOI

Xia X., Xie Z. 2001: DAMBE: software package for data analysis in molecular biology and evolution. J. Hered. 92: 371-373. DOI

ZAR J.H. 1999: Biostatistical Analysis. Prentice Hall, New Jersey, 663 pp.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...