Taming numerical errors in simulations of continuous variable non-Gaussian state preparation
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA22-08772S
Grantová Agentura Ceské Republiky
731473
Horizon 2020 Framework Programme
IGA-PrF-2022-005
Univerzita Palackého v Olomouci
PubMed
36195727
PubMed Central
PMC9532453
DOI
10.1038/s41598-022-19506-9
PII: 10.1038/s41598-022-19506-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Numerical simulation of continuous variable quantum state preparation is a necessary tool for optimization of existing quantum information processing protocols. A powerful instrument for such simulation is the numerical computation in the Fock state representation. It unavoidably uses an approximation of the infinite-dimensional Fock space by finite complex vector spaces implementable with classical digital computers. In this approximation we analyze the accuracy of several currently available methods for computation of the truncated coherent displacement operator. To overcome their limitations we propose an alternative with improved accuracy based on the standard matrix exponential. We then employ the method in analysis of non-Gaussian state preparation scheme based on coherent displacement of a two mode squeezed vacuum with subsequent photon counting measurement. We compare different detection mechanisms, including avalanche photodiodes, their cascades, and photon number resolving detectors in the context of engineering non-linearly squeezed cubic states and construction of qubit-like superpositions between vacuum and single photon states.
Zobrazit více v PubMed
Montanaro A. Quantum algorithms: An overview. NPJ Quant. Inf. 2016 doi: 10.1038/npjqi.2015.23. DOI
Nielsen M. Quantum computation and quantum information. Cambridge New York: Cambridge University Press; 2000.
Zhong H-S, et al. Quantum computational advantage using photons. Science. 2020;370:1460–1463. doi: 10.1126/science.abe8770. PubMed DOI
O’Brien JL. Optical quantum computing. Science. 2007;318:1567–1570. doi: 10.1126/science.1142892. PubMed DOI
Braunstein SL, van Loock P. Quantum information with continuous variables. Rev. Mod. Phys. 2005;77:513–577. doi: 10.1103/revmodphys.77.513. DOI
Weedbrook C, et al. Gaussian quantum information. Rev. Mod. Phys. 2012;84:621–669. doi: 10.1103/revmodphys.84.621. DOI
Adesso G, Ragy S, Lee AR. Continuous variable quantum information: Gaussian states and beyond. Open Syst. & Inf. Dyn. 2014;21:1440001. doi: 10.1142/s1230161214400010. DOI
Asavanant W, et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science. 2019;366:373–376. doi: 10.1126/science.aay2645. PubMed DOI
Larsen MV, Guo X, Breum CR, Neergaard-Nielsen JS, Andersen UL. Deterministic generation of a two-dimensional cluster state. Science. 2019;366:369–372. doi: 10.1126/science.aay4354. PubMed DOI
Chen M, Menicucci NC, Pfister O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 2014 doi: 10.1103/physrevlett.112.120505. PubMed DOI
Asavanant W, et al. Time-domain-multiplexed measurement-based quantum operations with 25-MHz clock frequency. Phys. Rev. Appl. 2021 doi: 10.1103/physrevapplied.16.034005. DOI
Larsen MV, Guo X, Breum CR, Neergaard-Nielsen JS, Andersen UL. Deterministic multi-mode gates on a scalable photonic quantum computing platform. Nat. Phys. 2021;17:1018–1023. doi: 10.1038/s41567-021-01296-y. DOI
Lloyd S, Braunstein SL. Quantum computation over continuous variables. Phys. Rev. Lett. 1999;82:1784–1787. doi: 10.1103/physrevlett.82.1784. DOI
Gottesman D, Kitaev A, Preskill J. Encoding a qubit in an oscillator. Phys. Rev. A. 2001 doi: 10.1103/physreva.64.012310. DOI
Lachman L, Straka I, Hloušek J, Ježek M, Filip R. Faithful hierarchy of genuine n-photon quantum non-gaussian light. Phys. Rev. Lett. 2019 doi: 10.1103/physrevlett.123.043601. PubMed DOI
Chabaud U, Markham D, Grosshans F. Stellar representation of non-gaussian quantum states. Phys. Rev. Lett. 2020 doi: 10.1103/physrevlett.124.063605. PubMed DOI
Chabaud U, et al. Certification of non-gaussian states with operational measurements. PRX Quant. 2021 doi: 10.1103/prxquantum.2.020333. DOI
Mari A, Eisert J. Positive wigner functions render classical simulation of quantum computation efficient. Phys. Rev. Lett. 2012 doi: 10.1103/physrevlett.109.230503. PubMed DOI
Pan J-W, et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 2012;84:777–838. doi: 10.1103/revmodphys.84.777. DOI
Lita AE, Miller AJ, Nam SW. Counting near-infrared single-photons with 95% efficiency. Opt. Express. 2008;16:3032. doi: 10.1364/oe.16.003032. PubMed DOI
Calkins, B. et al. High quantum efficiency photon-number-resolving detector for photonic on-chip information processing. In CLEO: 2013. 10.1364/cleo_qels.2013.qm4l.1 (OSA, 2013). PubMed
Marsili F, et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon. 2013;7:210–214. doi: 10.1038/nphoton.2013.13. DOI
Harder G, et al. Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics. Phys. Rev. Lett. 2016 doi: 10.1103/physrevlett.116.143601. PubMed DOI
Burenkov IA, et al. Full statistical mode reconstruction of a light field via a photon-number-resolved measurement. Phys. Rev. A. 2017 doi: 10.1103/physreva.95.053806. DOI
Sperling J, et al. Detector-independent verification of quantum light. Phys. Rev. Lett. 2017 doi: 10.1103/physrevlett.118.163602. PubMed DOI PMC
Endo M, et al. Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Opt. Express. 2021;29:11728. doi: 10.1364/oe.423142. PubMed DOI
Korzh B, et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics. 2020;14:250–255. doi: 10.1038/s41566-020-0589-x. DOI
Höpker JP, et al. Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides. APL Photonics. 2019;4:056103. doi: 10.1063/1.5086276. DOI
Hloušek J, Dudka M, Straka I, Ježek M. Accurate detection of arbitrary photon statistics. Phys. Rev. Lett. 2019 doi: 10.1103/physrevlett.123.153604. PubMed DOI
Dakna M, Clausen J, Knöll L, Welsch D-G. Generation of arbitrary quantum states of traveling fields. Phys. Rev. A. 1999;59:1658–1661. doi: 10.1103/physreva.59.1658. DOI
Zavatta A. Quantum-to-classical transition with single-photon-added coherent states of light. Science. 2004;306:660–662. doi: 10.1126/science.1103190. PubMed DOI
Marek P, Filip R, Furusawa A. Deterministic implementation of weak quantum cubic nonlinearity. Phys. Rev. A. 2011 doi: 10.1103/physreva.84.053802. DOI
Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P. Generating optical schrodinger kittens for quantum information processing. Science. 2006;312:83–86. doi: 10.1126/science.1122858. PubMed DOI
Tipsmark A, et al. Experimental demonstration of a hadamard gate for coherent state qubits. Phys. Rev. A. 2011 doi: 10.1103/physreva.84.050301. DOI
Usuga MA, et al. Noise-powered probabilistic concentration of phase information. Nat. Phys. 2010;6:767–771. doi: 10.1038/nphys1743. DOI
Fiurášek J, García-Patrón R, Cerf NJ. Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions. Phys. Rev. A. 2005 doi: 10.1103/physreva.72.033822. DOI
Marek P, et al. General implementation of arbitrary nonlinear quadrature phase gates. Phys. Rev. A. 2018 doi: 10.1103/physreva.97.022329. DOI
Ghose S, Sanders BC. Non-gaussian ancilla states for continuous variable quantum computation via gaussian maps. J. Mod. Opt. 2007;54:855–869. doi: 10.1080/09500340601101575. DOI
Yukawa M, et al. Generating superposition of up-to three photons for continuous variable quantum information processing. Opt. Express. 2013;21:5529. doi: 10.1364/oe.21.005529. PubMed DOI
Konno S, et al. Nonlinear squeezing for measurement-based non-gaussian operations in time domain. Phys. Rev. Appl. 2021 doi: 10.1103/physrevapplied.15.024024. DOI
Tiedau J, et al. Scalability of parametric down-conversion for generating higher-order fock states. Phys. Rev. A. 2019 doi: 10.1103/physreva.100.041802. DOI
Yoshikawa, J. et al. Heralded creation of photonic qudits from parametric down-conversion using linear optics. Phys. Rev. A. 10.1103/physreva.97.053814 (2018).
Sangouard N, et al. Quantum repeaters with entangled coherent states. J. Opt. Soc. Am. B. 2010;27:A137. doi: 10.1364/josab.27.00a137. DOI
Huang K, et al. Experimental quantum state engineering with time-separated heraldings from a continuous-wave light source: A temporal-mode analysis. Phys. Rev. A. 2016 doi: 10.1103/physreva.93.013838. DOI
Takase, K., ichi Yoshikawa, J., Asavanant, W., Endo, M. & Furusawa, A. Generation of optical schrödinger cat states by generalized photon subtraction. Phys. Rev. A. 10.1103/physreva.103.013710 (2021).
Ra Y-S, et al. Non-gaussian quantum states of a multimode light field. Nat. Phys. 2019;16:144–147. doi: 10.1038/s41567-019-0726-y. DOI
Su D, Myers CR, Sabapathy KK. Conversion of gaussian states to non-gaussian states using photon-number-resolving detectors. Phys. Rev. A. 2019 doi: 10.1103/physreva.100.052301. DOI
Pizzimenti AJ, et al. Non-gaussian photonic state engineering with the quantum frequency processor. Phys. Rev. A. 2021 doi: 10.1103/physreva.104.062437. DOI
Gagatsos CN, Guha S. Efficient representation of gaussian states for multimode non-gaussian quantum state engineering via subtraction of arbitrary number of photons. Phys. Rev. A. 2019 doi: 10.1103/physreva.99.053816. DOI
Gagatsos CN, Guha S. Impossibility to produce arbitrary non-gaussian states using zero-mean gaussian states and partial photon number resolving detection. Phys. Rev. Res. 2021 doi: 10.1103/physrevresearch.3.043182. DOI
Miyata K, et al. Implementation of a quantum cubic gate by an adaptive non-gaussian measurement. Phys. Rev. A. 2016 doi: 10.1103/physreva.93.022301. DOI
Provazník J, Lachman L, Filip R, Marek P. Benchmarking photon number resolving detectors. Opt. Express. 2020;28:14839. doi: 10.1364/oe.389619. PubMed DOI
Miatto, F. M. & Quesada, N. Fast optimization of parametrized quantum optical circuits. Quantum4, 366. 10.22331/q-2020-11-30-366 (2020)
Killoran, N. et al. Strawberry fields: A software platform for photonic quantum computing. Quantum3, 129. 10.22331/q-2019-03-11-129 (2019).
Quesada N, et al. Simulating realistic non-gaussian state preparation. Phys. Rev. A. 2019 doi: 10.1103/physreva.100.022341. DOI
Gupt, B., Izaac, J. & Quesada, N. The walrus: A library for the calculation of hafnians, hermite polynomials and gaussian boson sampling. J. Open Sour. Softw.4, 1705. 10.21105/joss.01705 (2019).
Bromley TR, et al. Applications of near-term photonic quantum computers: Software and algorithms. Quant. Sci. Technol. 2020;5:034010. doi: 10.1088/2058-9565/ab8504. DOI
Fox L. How to get meaningless answers in scientific computation (and what to do about it) Inst. Math. its Appl. Bull. 1971;7:296–302.
Goldberg D. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 1991;23:5–48. doi: 10.1145/103162.103163. DOI
Higham N. Accuracy and stability of numerical algorithms. Philadelphia: Society for Industrial and Applied Mathematics; 2002.
Dahlquist G. Numerical methods. Mineola, N.Y.: Dover Publications; 2003.
Heath M. Scientific computing : An introductory survey. Pennsylvania: Society for Industrial and Applied Mathematics (SIAM), Philadelphia; 2018.
Yukawa M, et al. Emulating quantum cubic nonlinearity. Phys. Rev. A. 2013 doi: 10.1103/physreva.88.053816. DOI
Bohmann M, et al. Incomplete detection of nonclassical phase-space distributions. Phys. Rev. Lett. 2018 doi: 10.1103/physrevlett.120.063607. PubMed DOI
Ivan JS, Sabapathy KK, Simon R. Operator-sum representation for bosonic gaussian channels. Phys. Rev. A. 2011 doi: 10.1103/physreva.84.042311. DOI
Cahill KE, Glauber RJ. Density operators and quasiprobability distributions. Phys. Rev. 1969;177:1882–1902. doi: 10.1103/physrev.177.1882. DOI
Kala V, Marek P, Filip R. Cubic nonlinear squeezing and its decoherence. Optics Express. 1969;30:31456–31471. doi: 10.1364/OE.464759. PubMed DOI
Turing, A. M. On computable numbers, with an application to the entscheidungsproblem. Proc. London Math. Soc.s2-42, 230–265. 10.1112/plms/s2-42.1.230 (1937).
Standard for floating-point arithmetic IEEE. Institute of electrical and electronics engineers. IEEE Std. 2008;754–2008:1–70. doi: 10.1109/IEEESTD.2008.4610935. DOI
Barlow R. Statistics: A guide to the use of statistical methods in the physical sciences. Chichester, England New York: Wiley; 1989.
Bevington P. Data reduction and error analysis for the physical sciences. Boston: McGraw-Hill; 2003.
Bateman H. Higher transcendental functions. Malabar, Florida: R.E. Krieger Pub. Co; 1981.
Higham NJ. The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 2005;26:1179–1193. doi: 10.1137/04061101x. DOI
Al-Mohy AH, Higham NJ. A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl. 2010;31:970–989. doi: 10.1137/09074721x. DOI
Golub G. Matrix computations. Baltimore: The Johns Hopkins University Press; 2013.
Strassen V. Gaussian elimination is not optimal. Numer. Math. 1969;13:354–356. doi: 10.1007/bf02165411. DOI
Harris CR, et al. Array programming with NumPy. Nature. 2020;585:357–362. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC
fundamental algorithms for scientific computing in python Virtanen, P. et al. SciPy 1.0. Nat. Methods. 2020;17:261–272. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC
Johansson J, Nation P, Nori F. QuTiP 2: A python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2013;184:1234–1240. doi: 10.1016/j.cpc.2012.11.019. DOI
Dalcin L, Fang Y-LL. mpi4py: Status update after 12 years of development. Comput. Sci. & Eng. 2021;23:47–54. doi: 10.1109/mcse.2021.3083216. PubMed DOI
Hunter JD. Matplotlib: A 2d graphics environment. Comput. Sci. & Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI
Kluyver, T. et al. Jupyter notebooks - a publishing format for reproducible computational workflows. In Loizides, F. & Scmidt, B. (eds.) Positioning and Power in Academic Publishing: Players, Agents and Agendas, 87–90 (IOS Press, Netherlands, 2016).
Meurer A, et al. Sympy: symbolic computing in python. PeerJ Comput. Sci. 2017;3:e103. doi: 10.7717/peerj-cs.103. DOI
Kok, P. & Lovett, B. W. Introduction to Optical Quantum Information Processing (Cambridge University Press, 2010).
Davidson O, Finkelstein R, Poem E, Firstenberg O. Bright multiplexed source of indistinguishable single photons with tunable ghz-bandwidth at room temperature. New J. Phys. 2021;23:073050. doi: 10.1088/1367-2630/ac14ab. DOI
Higginbottom DB, et al. Pure single photons from a trapped atom source. New J. Phys. 2016;18:093038. doi: 10.1088/1367-2630/18/9/093038. DOI
Podhora L, Obšil P, Straka I, Ježek M, Slodička L. Nonclassical photon pairs from warm atomic vapor using a single driving laser. Opt. Express. 2017;25:31230. doi: 10.1364/oe.25.031230. PubMed DOI
Filip R, Mišta L. Detecting quantum states with a positive wigner function beyond mixtures of gaussian states. Phys. Rev. Lett. 2011 doi: 10.1103/physrevlett.106.200401. PubMed DOI
Ježek M, et al. Experimental test of the quantum non-gaussian character of a heralded single-photon state. Phys. Rev. Lett. 2011 doi: 10.1103/physrevlett.107.213602. PubMed DOI
Straka I, et al. Quantum non-gaussian depth of single-photon states. Phys. Rev. Lett. 2014 doi: 10.1103/physrevlett.113.223603. PubMed DOI
Mika, J., Lachman, L., Lamich, T., Filip, R. & Slodička, L. Single-mode quantum non-gaussian light from warm atoms. 10.48550/ARXIV.2201.05366 (2022).
Le Jeannic H, Cavaillès A, Raskop J, Huang K, Laurat J. Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light. Optica. 2018;5:1012. doi: 10.1364/optica.5.001012. DOI