Taming numerical errors in simulations of continuous variable non-Gaussian state preparation

. 2022 Oct 04 ; 12 (1) : 16574. [epub] 20221004

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36195727

Grantová podpora
GA22-08772S Grantová Agentura Ceské Republiky
731473 Horizon 2020 Framework Programme
IGA-PrF-2022-005 Univerzita Palackého v Olomouci

Odkazy

PubMed 36195727
PubMed Central PMC9532453
DOI 10.1038/s41598-022-19506-9
PII: 10.1038/s41598-022-19506-9
Knihovny.cz E-zdroje

Numerical simulation of continuous variable quantum state preparation is a necessary tool for optimization of existing quantum information processing protocols. A powerful instrument for such simulation is the numerical computation in the Fock state representation. It unavoidably uses an approximation of the infinite-dimensional Fock space by finite complex vector spaces implementable with classical digital computers. In this approximation we analyze the accuracy of several currently available methods for computation of the truncated coherent displacement operator. To overcome their limitations we propose an alternative with improved accuracy based on the standard matrix exponential. We then employ the method in analysis of non-Gaussian state preparation scheme based on coherent displacement of a two mode squeezed vacuum with subsequent photon counting measurement. We compare different detection mechanisms, including avalanche photodiodes, their cascades, and photon number resolving detectors in the context of engineering non-linearly squeezed cubic states and construction of qubit-like superpositions between vacuum and single photon states.

Zobrazit více v PubMed

Montanaro A. Quantum algorithms: An overview. NPJ Quant. Inf. 2016 doi: 10.1038/npjqi.2015.23. DOI

Nielsen M. Quantum computation and quantum information. Cambridge New York: Cambridge University Press; 2000.

Zhong H-S, et al. Quantum computational advantage using photons. Science. 2020;370:1460–1463. doi: 10.1126/science.abe8770. PubMed DOI

O’Brien JL. Optical quantum computing. Science. 2007;318:1567–1570. doi: 10.1126/science.1142892. PubMed DOI

Braunstein SL, van Loock P. Quantum information with continuous variables. Rev. Mod. Phys. 2005;77:513–577. doi: 10.1103/revmodphys.77.513. DOI

Weedbrook C, et al. Gaussian quantum information. Rev. Mod. Phys. 2012;84:621–669. doi: 10.1103/revmodphys.84.621. DOI

Adesso G, Ragy S, Lee AR. Continuous variable quantum information: Gaussian states and beyond. Open Syst. & Inf. Dyn. 2014;21:1440001. doi: 10.1142/s1230161214400010. DOI

Asavanant W, et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science. 2019;366:373–376. doi: 10.1126/science.aay2645. PubMed DOI

Larsen MV, Guo X, Breum CR, Neergaard-Nielsen JS, Andersen UL. Deterministic generation of a two-dimensional cluster state. Science. 2019;366:369–372. doi: 10.1126/science.aay4354. PubMed DOI

Chen M, Menicucci NC, Pfister O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 2014 doi: 10.1103/physrevlett.112.120505. PubMed DOI

Asavanant W, et al. Time-domain-multiplexed measurement-based quantum operations with 25-MHz clock frequency. Phys. Rev. Appl. 2021 doi: 10.1103/physrevapplied.16.034005. DOI

Larsen MV, Guo X, Breum CR, Neergaard-Nielsen JS, Andersen UL. Deterministic multi-mode gates on a scalable photonic quantum computing platform. Nat. Phys. 2021;17:1018–1023. doi: 10.1038/s41567-021-01296-y. DOI

Lloyd S, Braunstein SL. Quantum computation over continuous variables. Phys. Rev. Lett. 1999;82:1784–1787. doi: 10.1103/physrevlett.82.1784. DOI

Gottesman D, Kitaev A, Preskill J. Encoding a qubit in an oscillator. Phys. Rev. A. 2001 doi: 10.1103/physreva.64.012310. DOI

Lachman L, Straka I, Hloušek J, Ježek M, Filip R. Faithful hierarchy of genuine n-photon quantum non-gaussian light. Phys. Rev. Lett. 2019 doi: 10.1103/physrevlett.123.043601. PubMed DOI

Chabaud U, Markham D, Grosshans F. Stellar representation of non-gaussian quantum states. Phys. Rev. Lett. 2020 doi: 10.1103/physrevlett.124.063605. PubMed DOI

Chabaud U, et al. Certification of non-gaussian states with operational measurements. PRX Quant. 2021 doi: 10.1103/prxquantum.2.020333. DOI

Mari A, Eisert J. Positive wigner functions render classical simulation of quantum computation efficient. Phys. Rev. Lett. 2012 doi: 10.1103/physrevlett.109.230503. PubMed DOI

Pan J-W, et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 2012;84:777–838. doi: 10.1103/revmodphys.84.777. DOI

Lita AE, Miller AJ, Nam SW. Counting near-infrared single-photons with 95% efficiency. Opt. Express. 2008;16:3032. doi: 10.1364/oe.16.003032. PubMed DOI

Calkins, B. et al. High quantum efficiency photon-number-resolving detector for photonic on-chip information processing. In CLEO: 2013. 10.1364/cleo_qels.2013.qm4l.1 (OSA, 2013). PubMed

Marsili F, et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon. 2013;7:210–214. doi: 10.1038/nphoton.2013.13. DOI

Harder G, et al. Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics. Phys. Rev. Lett. 2016 doi: 10.1103/physrevlett.116.143601. PubMed DOI

Burenkov IA, et al. Full statistical mode reconstruction of a light field via a photon-number-resolved measurement. Phys. Rev. A. 2017 doi: 10.1103/physreva.95.053806. DOI

Sperling J, et al. Detector-independent verification of quantum light. Phys. Rev. Lett. 2017 doi: 10.1103/physrevlett.118.163602. PubMed DOI PMC

Endo M, et al. Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector. Opt. Express. 2021;29:11728. doi: 10.1364/oe.423142. PubMed DOI

Korzh B, et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics. 2020;14:250–255. doi: 10.1038/s41566-020-0589-x. DOI

Höpker JP, et al. Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides. APL Photonics. 2019;4:056103. doi: 10.1063/1.5086276. DOI

Hloušek J, Dudka M, Straka I, Ježek M. Accurate detection of arbitrary photon statistics. Phys. Rev. Lett. 2019 doi: 10.1103/physrevlett.123.153604. PubMed DOI

Dakna M, Clausen J, Knöll L, Welsch D-G. Generation of arbitrary quantum states of traveling fields. Phys. Rev. A. 1999;59:1658–1661. doi: 10.1103/physreva.59.1658. DOI

Zavatta A. Quantum-to-classical transition with single-photon-added coherent states of light. Science. 2004;306:660–662. doi: 10.1126/science.1103190. PubMed DOI

Marek P, Filip R, Furusawa A. Deterministic implementation of weak quantum cubic nonlinearity. Phys. Rev. A. 2011 doi: 10.1103/physreva.84.053802. DOI

Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P. Generating optical schrodinger kittens for quantum information processing. Science. 2006;312:83–86. doi: 10.1126/science.1122858. PubMed DOI

Tipsmark A, et al. Experimental demonstration of a hadamard gate for coherent state qubits. Phys. Rev. A. 2011 doi: 10.1103/physreva.84.050301. DOI

Usuga MA, et al. Noise-powered probabilistic concentration of phase information. Nat. Phys. 2010;6:767–771. doi: 10.1038/nphys1743. DOI

Fiurášek J, García-Patrón R, Cerf NJ. Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions. Phys. Rev. A. 2005 doi: 10.1103/physreva.72.033822. DOI

Marek P, et al. General implementation of arbitrary nonlinear quadrature phase gates. Phys. Rev. A. 2018 doi: 10.1103/physreva.97.022329. DOI

Ghose S, Sanders BC. Non-gaussian ancilla states for continuous variable quantum computation via gaussian maps. J. Mod. Opt. 2007;54:855–869. doi: 10.1080/09500340601101575. DOI

Yukawa M, et al. Generating superposition of up-to three photons for continuous variable quantum information processing. Opt. Express. 2013;21:5529. doi: 10.1364/oe.21.005529. PubMed DOI

Konno S, et al. Nonlinear squeezing for measurement-based non-gaussian operations in time domain. Phys. Rev. Appl. 2021 doi: 10.1103/physrevapplied.15.024024. DOI

Tiedau J, et al. Scalability of parametric down-conversion for generating higher-order fock states. Phys. Rev. A. 2019 doi: 10.1103/physreva.100.041802. DOI

Yoshikawa, J. et al. Heralded creation of photonic qudits from parametric down-conversion using linear optics. Phys. Rev. A. 10.1103/physreva.97.053814 (2018).

Sangouard N, et al. Quantum repeaters with entangled coherent states. J. Opt. Soc. Am. B. 2010;27:A137. doi: 10.1364/josab.27.00a137. DOI

Huang K, et al. Experimental quantum state engineering with time-separated heraldings from a continuous-wave light source: A temporal-mode analysis. Phys. Rev. A. 2016 doi: 10.1103/physreva.93.013838. DOI

Takase, K., ichi Yoshikawa, J., Asavanant, W., Endo, M. & Furusawa, A. Generation of optical schrödinger cat states by generalized photon subtraction. Phys. Rev. A. 10.1103/physreva.103.013710 (2021).

Ra Y-S, et al. Non-gaussian quantum states of a multimode light field. Nat. Phys. 2019;16:144–147. doi: 10.1038/s41567-019-0726-y. DOI

Su D, Myers CR, Sabapathy KK. Conversion of gaussian states to non-gaussian states using photon-number-resolving detectors. Phys. Rev. A. 2019 doi: 10.1103/physreva.100.052301. DOI

Pizzimenti AJ, et al. Non-gaussian photonic state engineering with the quantum frequency processor. Phys. Rev. A. 2021 doi: 10.1103/physreva.104.062437. DOI

Gagatsos CN, Guha S. Efficient representation of gaussian states for multimode non-gaussian quantum state engineering via subtraction of arbitrary number of photons. Phys. Rev. A. 2019 doi: 10.1103/physreva.99.053816. DOI

Gagatsos CN, Guha S. Impossibility to produce arbitrary non-gaussian states using zero-mean gaussian states and partial photon number resolving detection. Phys. Rev. Res. 2021 doi: 10.1103/physrevresearch.3.043182. DOI

Miyata K, et al. Implementation of a quantum cubic gate by an adaptive non-gaussian measurement. Phys. Rev. A. 2016 doi: 10.1103/physreva.93.022301. DOI

Provazník J, Lachman L, Filip R, Marek P. Benchmarking photon number resolving detectors. Opt. Express. 2020;28:14839. doi: 10.1364/oe.389619. PubMed DOI

Miatto, F. M. & Quesada, N. Fast optimization of parametrized quantum optical circuits. Quantum4, 366. 10.22331/q-2020-11-30-366 (2020)

Killoran, N. et al. Strawberry fields: A software platform for photonic quantum computing. Quantum3, 129. 10.22331/q-2019-03-11-129 (2019).

Quesada N, et al. Simulating realistic non-gaussian state preparation. Phys. Rev. A. 2019 doi: 10.1103/physreva.100.022341. DOI

Gupt, B., Izaac, J. & Quesada, N. The walrus: A library for the calculation of hafnians, hermite polynomials and gaussian boson sampling. J. Open Sour. Softw.4, 1705. 10.21105/joss.01705 (2019).

Bromley TR, et al. Applications of near-term photonic quantum computers: Software and algorithms. Quant. Sci. Technol. 2020;5:034010. doi: 10.1088/2058-9565/ab8504. DOI

Fox L. How to get meaningless answers in scientific computation (and what to do about it) Inst. Math. its Appl. Bull. 1971;7:296–302.

Goldberg D. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 1991;23:5–48. doi: 10.1145/103162.103163. DOI

Higham N. Accuracy and stability of numerical algorithms. Philadelphia: Society for Industrial and Applied Mathematics; 2002.

Dahlquist G. Numerical methods. Mineola, N.Y.: Dover Publications; 2003.

Heath M. Scientific computing : An introductory survey. Pennsylvania: Society for Industrial and Applied Mathematics (SIAM), Philadelphia; 2018.

Yukawa M, et al. Emulating quantum cubic nonlinearity. Phys. Rev. A. 2013 doi: 10.1103/physreva.88.053816. DOI

Bohmann M, et al. Incomplete detection of nonclassical phase-space distributions. Phys. Rev. Lett. 2018 doi: 10.1103/physrevlett.120.063607. PubMed DOI

Ivan JS, Sabapathy KK, Simon R. Operator-sum representation for bosonic gaussian channels. Phys. Rev. A. 2011 doi: 10.1103/physreva.84.042311. DOI

Cahill KE, Glauber RJ. Density operators and quasiprobability distributions. Phys. Rev. 1969;177:1882–1902. doi: 10.1103/physrev.177.1882. DOI

Kala V, Marek P, Filip R. Cubic nonlinear squeezing and its decoherence. Optics Express. 1969;30:31456–31471. doi: 10.1364/OE.464759. PubMed DOI

Turing, A. M. On computable numbers, with an application to the entscheidungsproblem. Proc. London Math. Soc.s2-42, 230–265. 10.1112/plms/s2-42.1.230 (1937).

Standard for floating-point arithmetic IEEE. Institute of electrical and electronics engineers. IEEE Std. 2008;754–2008:1–70. doi: 10.1109/IEEESTD.2008.4610935. DOI

Barlow R. Statistics: A guide to the use of statistical methods in the physical sciences. Chichester, England New York: Wiley; 1989.

Bevington P. Data reduction and error analysis for the physical sciences. Boston: McGraw-Hill; 2003.

Bateman H. Higher transcendental functions. Malabar, Florida: R.E. Krieger Pub. Co; 1981.

Higham NJ. The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 2005;26:1179–1193. doi: 10.1137/04061101x. DOI

Al-Mohy AH, Higham NJ. A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl. 2010;31:970–989. doi: 10.1137/09074721x. DOI

Golub G. Matrix computations. Baltimore: The Johns Hopkins University Press; 2013.

Strassen V. Gaussian elimination is not optimal. Numer. Math. 1969;13:354–356. doi: 10.1007/bf02165411. DOI

Harris CR, et al. Array programming with NumPy. Nature. 2020;585:357–362. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC

fundamental algorithms for scientific computing in python Virtanen, P. et al. SciPy 1.0. Nat. Methods. 2020;17:261–272. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC

Johansson J, Nation P, Nori F. QuTiP 2: A python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2013;184:1234–1240. doi: 10.1016/j.cpc.2012.11.019. DOI

Dalcin L, Fang Y-LL. mpi4py: Status update after 12 years of development. Comput. Sci. & Eng. 2021;23:47–54. doi: 10.1109/mcse.2021.3083216. PubMed DOI

Hunter JD. Matplotlib: A 2d graphics environment. Comput. Sci. & Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI

Kluyver, T. et al. Jupyter notebooks - a publishing format for reproducible computational workflows. In Loizides, F. & Scmidt, B. (eds.) Positioning and Power in Academic Publishing: Players, Agents and Agendas, 87–90 (IOS Press, Netherlands, 2016).

Meurer A, et al. Sympy: symbolic computing in python. PeerJ Comput. Sci. 2017;3:e103. doi: 10.7717/peerj-cs.103. DOI

Kok, P. & Lovett, B. W. Introduction to Optical Quantum Information Processing (Cambridge University Press, 2010).

Davidson O, Finkelstein R, Poem E, Firstenberg O. Bright multiplexed source of indistinguishable single photons with tunable ghz-bandwidth at room temperature. New J. Phys. 2021;23:073050. doi: 10.1088/1367-2630/ac14ab. DOI

Higginbottom DB, et al. Pure single photons from a trapped atom source. New J. Phys. 2016;18:093038. doi: 10.1088/1367-2630/18/9/093038. DOI

Podhora L, Obšil P, Straka I, Ježek M, Slodička L. Nonclassical photon pairs from warm atomic vapor using a single driving laser. Opt. Express. 2017;25:31230. doi: 10.1364/oe.25.031230. PubMed DOI

Filip R, Mišta L. Detecting quantum states with a positive wigner function beyond mixtures of gaussian states. Phys. Rev. Lett. 2011 doi: 10.1103/physrevlett.106.200401. PubMed DOI

Ježek M, et al. Experimental test of the quantum non-gaussian character of a heralded single-photon state. Phys. Rev. Lett. 2011 doi: 10.1103/physrevlett.107.213602. PubMed DOI

Straka I, et al. Quantum non-gaussian depth of single-photon states. Phys. Rev. Lett. 2014 doi: 10.1103/physrevlett.113.223603. PubMed DOI

Mika, J., Lachman, L., Lamich, T., Filip, R. & Slodička, L. Single-mode quantum non-gaussian light from warm atoms. 10.48550/ARXIV.2201.05366 (2022).

Le Jeannic H, Cavaillès A, Raskop J, Huang K, Laurat J. Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light. Optica. 2018;5:1012. doi: 10.1364/optica.5.001012. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...