Molecular Mechanisms of Spawning Habits for the Adaptive Radiation of Endemic East Asian Cyprinid Fishes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36204246
PubMed Central
PMC9513835
DOI
10.34133/2022/9827986
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Despite the widespread recognition of adaptive radiation as a driver of speciation, the mechanisms by which natural selection generates new species are incompletely understood. The evolutionary radiation of endemic East Asian cyprinids has been proposed as evolving through a change in spawning habits, involving a transition from semibuoyant eggs to adhesive eggs in response to crosslinked river-lake system formation. Here, we investigated the molecular mechanisms that underpin this radiation, associated with egg hydration and adhesiveness. We demonstrated that semibuoyant eggs enhance hydration by increasing the degradation of yolk protein and accumulation of Ca2+ and Mg2+ ions, while adhesive eggs improve adhesiveness and hardness of the egg envelope by producing an adhesive layer and a unique 4th layer to the egg envelope. Based on multiomics analyses and verification tests, we showed that during the process of adaptive radiation, adhesive eggs downregulated the "vitellogenin degradation pathway," "zinc metalloprotease pathway," and "ubiquitin-proteasome pathway" and the pathways of Ca2+ and Mg2+ active transport to reduce their hydration. At the same time, adhesive eggs upregulated the crosslinks of microfilament-associated proteins and adhesive-related proteins, the hardening-related proteins of the egg envelope, and the biosynthesis of glycosaminoglycan in the ovary to generate adhesiveness. These findings illustrate the novel molecular mechanisms associated with hydration and adhesiveness of freshwater fish eggs and identify critical molecular mechanisms involved in the adaptive radiation of endemic East Asian cyprinids. We propose that these key egg attributes may function as "magic traits" in this adaptive radiation.
Department of Ecology and Vertebrate Zoology University of Łódź Łódź Poland
Institute of Vertebrate Biology Academy of Sciences of the Czech Republic Brno Czech Republic
University of Chinese Academy of Sciences Beijing 100049 China
Zobrazit více v PubMed
Darwin C. On the Origin of Species . John Murray; 1859.
Marques D. A., Meier J. I., Seehausen O. A combinatorial view on speciation and adaptive radiation. Trends in Ecology & Evolution . 2019;34(6):531–544. doi: 10.1016/j.tree.2019.02.008. PubMed DOI
McGee M. D., Borstein S. R., Meier J. I., et al. The ecological and genomic basis of explosive adaptive radiation. Nature . 2020;586(7827):75–79. doi: 10.1038/s41586-020-2652-7. PubMed DOI
Schluter D. The Ecology of Adaptive Radiation . Oxford: OUP; 2000.
Zhang Y., Teng D., Lu W., et al. A widely diverged locus involved in locomotor adaptation in Heliconius butterflies. Science Advances . 2021;7(32, article eabh2340) doi: 10.1126/sciadv.abh2340. PubMed DOI PMC
Lamichhaney S., Berglund J., Almén M. S., et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature . 2015;518(7539):371–375. doi: 10.1038/nature14181. PubMed DOI
Ronco F., Matschiner M., Böhne A., et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature . 2021;589(7840):76–81. doi: 10.1038/s41586-020-2930-4. PubMed DOI
Nosil P. Ecological Speciation . Oxford: OUP; 2012. DOI
Schluter D. Evidence for ecological speciation and its alternative. Science . 2009;323(5915):737–741. doi: 10.1126/science.1160006. PubMed DOI
Hendry A. P. Ecological speciation! Or the lack thereof?This perspective is based on the author’s J.C. Stevenson Memorial Lecture delivered at the Canadian Conference for Fisheries Research in Halifax, Nova Scotia, January 2008. Canadian Journal of Fisheries and Aquatic Sciences . 2009;66(8):1383–1398. doi: 10.1139/F09-074. DOI
Maan M. E., Seehausen O. Magic cues versus magic preferences in speciation. Evolutionary Ecology Research . 2012;14(6):779–785.
Servedio M. R., Van Doorn G. S., Kopp M., Frame A. M., Nosil P. Magic traits in speciation: ‘magic’ but not rare? Trends in Ecology & Evolution . 2011;26(8):389–397. doi: 10.1016/j.tree.2011.04.005. PubMed DOI
Servedio M. R. The relationship between sexual selection and speciation. Current Zoology . 2012;58(3):413–415. doi: 10.1093/czoolo/58.3.413. DOI
Eschmeyer W. N., Fricke R., Laan R. V. D. Eschmeyer’s catalog of fishes: genera, species, references. 2021. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp .
Chen F., Xue G., Wang Y., et al. Origin and evolution of the Yangtze River reconstructed from the largest molecular phylogeny of Cyprinidae. 2021. DOI
Chen F., Smith C., Wang Y., et al. The evolution of alternative buoyancy mechanisms in freshwater fish eggs. Frontiers in Ecology and Evolution . 2021;9 doi: 10.3389/fevo.2021.736718. DOI
Yu L., Lin J., Chen D., Duan X., Peng Q., Liu S. Ecological flow assessment to improve the spawning habitat for the four major species of carp of the Yangtze River: a study on habitat suitability based on ultrasonic telemetry. Water . 2018;10(5):p. 600. doi: 10.3390/w10050600. DOI
Kolar C. S., Chapman D. C., Courtenay W. R., Jr., Housel C. M., Williams J. D., Jennings D. P. Bigheaded carps: a biological synopsis and environmental risk assessment. American Fisheries Society Special Publication . 2007;33:1–204.
Cerdà J., Fabra M., Raldúa D. Physiological and molecular basis of fish oocyte hydration. In: Babin P. J., Cerdà J., Lubzens E., editors. The Fish Oocyte . Dordrecht: Springer; 2007. pp. 349–396. DOI
Finn R. N., Fyhn H. J. Requirement for amino acids in ontogeny of fish. Aquaculture Research . 2010;41(5):684–716. doi: 10.1111/j.1365-2109.2009.02220.x. DOI
Li H., Zhang S. Functions of vitellogenin in eggs. Oocytes . 2017;63:389–401. doi: 10.1007/978-3-319-60855-6_17. PubMed DOI
Sullivan C. V., Yilmaz O. Encyclopedia of Reproduction . Elsevier; 2018. Vitellogenesis and yolk proteins, fish; pp. 266–277. DOI
Cerdá J. L., Petrino T. R., Wallace R. A. Functional heterologous gap junctions in Fundulus ovarian follicles maintain meiotic arrest and permit hydration during oocyte maturation. Developmental Biology . 1993;160(1):228–235. doi: 10.1006/dbio.1993.1300. PubMed DOI
LaFleur G. J., Jr., Thomas P. Evidence for a role of Na+, K+-ATPase in the hydration of Atlantic croaker and spotted seatrout oocytes during final maturation. Journal of Experimental Zoology . 1991;258(1):126–136. doi: 10.1002/jez.1402580114. PubMed DOI
Wallace R. A., Greeley M. S., McPherson R. Analytical and experimental studies on the relationship between Na+, K+, and water uptake during volume increases associated with Fundulus oocyte maturation in vitro. Journal of Comparative Physiology B . 1992;162(3):241–248. doi: 10.1007/BF00357530. PubMed DOI
Rizzo E., Sato Y., Barreto B. P., Godinho H. P. Adhesiveness and surface patterns of eggs in neotropical freshwater teleosts. Journal of Fish Biology . 2002;61(3):615–632. doi: 10.1111/j.1095-8649.2002.tb00900.x. DOI
Riehl R., Patzner R. A. Minireview: the modes of egg attachment in teleost fishes. Italian Journal of Zoology . 1998;65(Supplement 1):415–420. doi: 10.1080/11250009809386857. DOI
Mansour N., Lahnsteiner F., Patzner R. A. Physiological and biochemical investigations on egg stickiness in common carp. Animal Reproduction Science . 2009;114(1–3):256–268. doi: 10.1016/j.anireprosci.2008.09.005. PubMed DOI
Niksirat H., Andersson L., Golpour A., Chupani L., James P. Quantification of egg proteome changes during fertilization in sterlet Acipenser ruthenus. Biochemical and Biophysical Research Communications . 2017;490(2):189–193. doi: 10.1016/j.bbrc.2017.06.019. PubMed DOI
Sano K., Kawaguchi M., Katano K., et al. Comparison of egg envelope thickness in teleosts and its relationship to the sites of ZP protein synthesis. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution . 2017;328(3):240–258. doi: 10.1002/jez.b.22729. PubMed DOI
Wang Y., Chen F., He J., Xue G., Chen J., Xie P. Cellular and molecular modification of egg envelope hardening in fertilization. Biochimie . 2021;181:134–144. doi: 10.1016/j.biochi.2020.12.007. PubMed DOI
Yamagami K., Hamazaki T. S., Yasumasut S., Masuda K., luchi I. Molecular and cellular basis of formation, hardening, and breakdown of the egg envelope in fish. International Review of Cytology . 1992;136:51–92. doi: 10.1016/S0074-7696(08)62050-1. PubMed DOI
Hedrick J. L. Anuran and pig egg zona pellucida glycoproteins in fertilization and early development. International Journal of Developmental Biology . 2008;52(5–6):683–701. doi: 10.1387/ijdb.082580jh. PubMed DOI
Foster C. S., Thompson M. B., Van Dyke J. U., Brandley M. C., Whittington C. M. Emergence of an evolutionary innovation: gene expression differences associated with the transition between oviparity and viviparity. Molecular Ecology . 2020;29(7):1315–1327. doi: 10.1111/mec.15409. PubMed DOI
Gao W., Sun Y. B., Zhou W. W., et al. Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity. Proceedings of the National Academy of Sciences of the United States of America . 2019;116(9):3646–3655. doi: 10.1073/pnas.1816086116. PubMed DOI PMC
Qi P., Guo B., Xie C., et al. Assessing the genetic diversity and population structure of Culter alburnus in China based on mitochondrial 16S rRNA and COI gene sequences. Biochemical Systematics and Ecology . 2013;50:390–396. doi: 10.1016/j.bse.2013.04.010. DOI
Finn R. N., Østby G. C., Norberg B., Fyhn H. J. In vivo oocyte hydration in Atlantic halibut (Hippoglossus hippoglossus); proteolytic liberation of free amino acids, and ion transport, are driving forces for osmotic water influx. Journal of Experimental Biology . 2002;205(2):211–224. doi: 10.1242/jeb.205.2.211. PubMed DOI
Sørensen S. R., Butts I. A. E., Munk P., Tomkiewicz J. Effects of salinity and sea salt type on egg activation, fertilization, buoyancy and early embryology of European eel, Anguilla anguilla. Zygote . 2016;24(1):121–138. doi: 10.1017/S0967199414000811. PubMed DOI
Wootton R. J., Smith C. Reproductive Biology of Teleost Fishes . John Wiley & Sons; 2015.
Craik J. C. A., Harvey S. M. The causes of buoyancy in eggs of marine teleosts. Journal of the Marine Biological Association of the United Kingdom . 1987;67(1):169–182. doi: 10.1017/S0025315400026436. DOI
Thorsen A., Kjesbu O. S., Fyhndr H. J., Solemdal P. Physiological mechanisms of buoyancy in eggs from brackish water cod. Journal of Fish Biology . 1996;48(3):457–477. doi: 10.1111/j.1095-8649.1996.tb01440.x. DOI
Skoblina M. N. Hydration of oocytes in teleost fishes. Russian Journal of Developmental Biology . 2010;41(1):1–12. doi: 10.1134/S1062360410010017. DOI
Jia Y. D., Niu H. X., Meng Z., Liu X. F., Lei J. L. Biochemical composition of the ovarian fluid and its effects on the fertilization capacity of turbot Scophthalmus maximus during the spawning season. Journal of Fish Biology . 2015;86(5):1612–1620. doi: 10.1111/jfb.12676. PubMed DOI
Shoshan-Barmatz V., Gincel D. The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochemistry and Biophysics . 2003;39(3):279–292. doi: 10.1385/CBB:39:3:279. PubMed DOI
Kwong J. Q., Molkentin J. D. Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metabolism . 2015;21(2):206–214. doi: 10.1016/j.cmet.2014.12.001. PubMed DOI PMC
Bernardi P., Rasola A., Forte M., Lippe G. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiological Reviews . 2015;95(4):1111–1155. doi: 10.1152/physrev.00001.2015. PubMed DOI PMC
Fabra M., Raldúa D., Power D. M., Deen P. M., Cerda J. Marine fish egg hydration is aquaporin-mediated. Science . 2005;307(5709):545–545. doi: 10.1126/science.1106305. PubMed DOI
Chang Y. S., Wang Y. W., Huang F. L. Cross-linking of ZP2 and ZP3 by transglutaminase is required for the formation of the outer layer of fertilization envelope of carp egg. Molecular Reproduction and Development: Incorporating Gamete Research . 2002;63(2):237–244. doi: 10.1002/mrd.10174. PubMed DOI
Iuchi I., Ha C. R., Sugiyama H., Nomura K. Analysis of chorion hardening of eggs of rainbow trout, Oncorhynchus mykiss. Development, Growth & Differentiation . 1996;38(3):299–306. doi: 10.1046/j.1440-169X.1996.t01-2-00009.x. PubMed DOI
Welch M. D., Mullins R. D. Cellular control of actin nucleation. Annual Review of Cell and Developmental Biology . 2002;18(1):247–288. doi: 10.1146/annurev.cellbio.18.040202.112133. PubMed DOI
Pollard T. D., Borisy G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell . 2003;112(4):453–465. doi: 10.1016/S0092-8674(03)00120-X. PubMed DOI
Nuckolls G. H., Romer L. H., Burridge K. Microinjection of antibodies against talin inhibits the spreading and migration of fibroblasts. Journal of Cell Science . 1992;102(4):753–762. doi: 10.1242/jcs.102.4.753. PubMed DOI
Dos Remedios C. G., Chhabra D., Kekic M., et al. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiological Reviews . 2003;83(2):433–473. doi: 10.1152/physrev.00026.2002. PubMed DOI
Cohen I., Young-Bandala L., Blankenberg T. A., Siefring G. E., Jr., Bruner-Lorand J. Fibrinoligase-catalyzed cross-linking of myosin from platelet and skeletal muscle. Archives of Biochemistry and Biophysics . 1979;192(1):100–111. doi: 10.1016/0003-9861(79)90075-4. PubMed DOI
Cohen I., Blankenberg T. A., Borden D., Kahn D. R., Veis A. Factor XIIIa-catalyzed cross-linking of platelet and muscle actin regulation by nucleotides. Biochimica et Biophysica Acta (BBA)-General Subjects . 1980;628(3):365–375. doi: 10.1016/0304-4165(80)90386-4. PubMed DOI
Mosher D. F., Schad P. E., Vann J. M. Cross-linking of collagen and fibronectin by factor XIIIa. Localization of participating glutaminyl residues to a tryptic fragment of fibronectin. Journal of Biological Chemistry . 1980;255(3):1181–1188. doi: 10.1016/S0021-9258(19)86160-4. PubMed DOI
Chang Y. S., Huang F. L. Fibroin-like substance is a major component of the outer layer of fertilization envelope via which carp egg adheres to the substratum. Molecular Reproduction and Development: Incorporating Gamete Research . 2002;62(3):397–406. doi: 10.1002/mrd.10125. PubMed DOI
Bravo Portela I., Martinez-Zorzano V. S., Molist-Perez I., Molist Garcia P. Ultrastructure and glycoconjugate pattern of the foot epithelium of the abalone Haliotis tuberculata (Linnaeus, 1758) (Gastropoda, Haliotidae) The Scientific World Journal . 2012;2012:12. doi: 10.1100/2012/960159.960159 PubMed DOI PMC
Högfors-Rönnholm E., Norrgård J., Wiklund T. Adhesion of smooth and rough phenotypes of Flavobacterium psychrophilum to polystyrene surfaces. Journal of Fish Diseases . 2015;38(5):429–437. doi: 10.1111/jfd.12250. PubMed DOI
Akimov S. S., Krylov D., Fleischman L. F., Belkin A. M. Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. The Journal of Cell Biology . 2000;148(4):825–838. doi: 10.1083/jcb.148.4.825. PubMed DOI PMC
Akimov S. S., Belkin A. M. Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood . 2001;98(5):1567–1576. doi: 10.1182/blood.V98.5.1567. PubMed DOI
Peramo A., Meads M. B., Dalton W. S., Matthews W. G. Static adhesion of cancer cells to glass surfaces coated with glycosaminoglycans. Colloids and Surfaces B: Biointerfaces . 2008;67(1):140–144. doi: 10.1016/j.colsurfb.2008.07.019. PubMed DOI
Selman K., Wallace R. A., Cerdà J. Bafilomycin A1 inhibits proteolytic cleavage and hydration but not yolk crystal disassembly or meiosis during maturation of sea bass oocytes. Journal of Experimental Zoology . 2001;290(3):265–278. doi: 10.1002/jez.1057. PubMed DOI
Zhang T., Rawson D. M., Tosti L., Carnevali O. Cathepsin activities and membrane integrity of zebrafish (Danio rerio) oocytes after freezing to −196°C using controlled slow cooling. Cryobiology . 2008;56(2):138–143. doi: 10.1016/j.cryobiol.2008.01.002. PubMed DOI
Robinson B. L., Dumas M., Ali S. F., Paule M. G., Gu Q., Kanungo J. Cyclosporine exacerbates ketamine toxicity in zebrafish: mechanistic studies on drug–drug interaction. Journal of Applied Toxicology . 2017;37(12):1438–1447. doi: 10.1002/jat.3488. PubMed DOI PMC
Lin Y. H., Hung G. Y., Wu L. C., Chen S. W., Lin L. Y., Horng J. L. Anion exchanger 1b in stereocilia is required for the functioning of mechanotransducer channels in lateral-line hair cells of zebrafish. PLoS One . 2015;10(2, article e0117041) doi: 10.1371/journal.pone.0117041. PubMed DOI PMC