Alternative signal pathways underly fertilization and egg activation in a fish with contrasting modes of spawning
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
XDB31000000
the Strategic Priority Research Program of the Chinese Academy of Sciences
PubMed
37016278
PubMed Central
PMC10074663
DOI
10.1186/s12864-023-09244-1
PII: 10.1186/s12864-023-09244-1
Knihovny.cz E-zdroje
- Klíčová slova
- Egg activation, Fertilization, Signal pathway, Spawning mode, Teleost,
- MeSH
- fertilizace * MeSH
- ovum MeSH
- ryby MeSH
- signální transdukce MeSH
- sperma * MeSH
- spermie fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The processes of fertilization and egg activation are vital for early embryogenesis. However, while the mechanisms associated with key events during these processes differ among species and modes of spawning, the signal pathways underlying these processes are opaque for many fishes, including economically important species. RESULTS: We investigated phenotypic traits, ultrastructure and protein expression levels in the eggs of the topmouth culter (Culter alburnus), a protected and economically important freshwater fish that exhibits two spawning modes, producing semi-buoyant eggs and adhesive eggs. Unfertilized eggs of C. alburnus were examined, as well as eggs at fertilization and 30 min post fertilization. Our results showed that in semi-buoyant eggs, energy metabolism was activated at fertilization, followed by elevated protein expression of cytoskeleton and extracellular matrix (ECM)-receptor interactions that resulted in rapid egg swelling; a recognized adaptation for lotic habitats. In contrast, in adhesive eggs fertilization initiated the process of sperm-egg fusion and blocking of polyspermy, followed by enhanced protein expression of lipid metabolism and the formation of egg envelope adhesion and hardening, which are adaptive in lentic habitats. CONCLUSION: Our findings indicate that alternative signal pathways differ between modes of spawning and timing during the key processes of fertilization and egg activation, providing new insights into the molecular mechanisms involved in adaptive early embryonic development in teleost fishes.
Department of Ecology and Vertebrate Zoology University of Łódź Łódź Poland
Institute of Vertebrate Biology Academy of Sciences of the Czech Republic Brno Czech Republic
Life Sciences Institute Zhejiang University 310058 Hangzhou China
University of Chinese Academy of Sciences 100049 Beijing China
Zobrazit více v PubMed
Stricker SA. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol. 1999;211:157–76. doi: 10.1006/dbio.1999.9340. PubMed DOI
Runft LL, Jaffe LA, Mehlmann LM. Egg activation at fertilization: where it all begins. Dev Biol. 2002;245:237–54. doi: 10.1006/dbio.2002.0600. PubMed DOI
Kinsey WH, Sharma D, Kinsey SC. Fertilization and egg activation in fishes. In: Babin PJ, Cerdà J, Lubzens E, editors. The fish oocyte. Dordrecht: Springer; 2007.
Machaty Z, Miller AR, Zhang L. Egg activation at fertilization. In: Pelegri F, Danilchik M, Sutherland A, editors. Vertebrate Development. Advances in experimental medicine and biology. Cham: Springer; 2017. PubMed
Yilmaz O, Jensen AM, Harboe T, Møgster M, Jensen RM, Mjaavatten O, Birkeland E, Spriet E, Sandven L, Furmanek T, Berven FS, Wargelius A, Norberg B. Quantitative proteome profiling reveals molecular hallmarks of egg quality in Atlantic halibut: impairments of transcription and protein folding impede protein and energy homeostasis during early development. BMC Genomics. 2022;23:1–21. doi: 10.1186/s12864-022-08859-0. PubMed DOI PMC
Hart NH. Fertilization in teleost fishes: mechanisms of sperm-egg interactions. Int Rev Cytol. 1990;121:1–66. doi: 10.1016/S0074-7696(08)60658-0. PubMed DOI
Coward K, Bromage NR, Hibbitt O, Parrington J. Gamete physiology, fertilization and egg activation in teleost fish. Rev Fish Biol Fish. 2002;12:33–58. doi: 10.1023/A:1022613404123. DOI
Coward K, Parrington J. New insights into the mechanism of egg activation in fish. Aquat Living Resour. 2003;16:395–8. doi: 10.1016/S0990-7440(03)00068-8. DOI
Wootton RJ, Smith C. Reproductive biology of teleost fishes. John Wiley & Sons; 2015.
Wang Y, Chen F, He J, Xue G, Chen J, Xie P. Cellular and molecular modification of egg envelope hardening in fertilization. Biochimie. 2021;181:134–44. doi: 10.1016/j.biochi.2020.12.007. PubMed DOI
Whitaker M, Swann K. Lighting the fuse at fertilization. Development. 1993;117:1–12. doi: 10.1242/dev.117.1.1. DOI
Swann K, Parrington J. Mechanism of Ca2+ release at fertilization in mammals. J Exp Zool. 1999;285:267–75. doi: 10.1002/(SICI)1097-010X(19991015)285:3<267::AID-JEZ10>3.0.CO;2-P. PubMed DOI
Kashir J, Nomikos M, Lai FA, Swann K. Sperm-induced Ca2+ release during egg activation in mammals. Biochem Biophys Res Commun. 2014;450:1204–11. doi: 10.1016/j.bbrc.2014.04.078. PubMed DOI
Ohta T, Iwamatsu T, Tanaka M, Yoshimoto Y. Cortical alveolus breakdown in the eggs of the freshwater teleost Rhodeus ocellatus ocellatus. Anat Rec. 1990;227:486–96. doi: 10.1002/ar.1092270412. PubMed DOI
Yamamoto K. Studies on the formation of fish eggs: VIII. The fate of the yolk vesicle in the oocyte of the smelt, Hypomesus japonicus, during vitellogenesis. Embryologia. 1956;3:131–8. doi: 10.1111/j.1440-169X.1956.tb00065.x. DOI
Bazzoli N, Godinho HP. Cortical alveoli in oocytes of freshwater neotropical teleost fish. Ital J Zool. 1994;61:301–8.
Inoue S, Kitajima K, Inoue Y, Kudo S. Localization of polysialoglycoprotein as a major glycoprotein component in cortical alveoli of the unfertilized eggs of Salmo gairdneri. Dev Biol. 1987;123:442–54. doi: 10.1016/0012-1606(87)90402-7. PubMed DOI
Motta CM, Tammaro S, Simoniello P, Prisco M, Ricchiari L, Andreuccetti P, Filosa S. Characterization of cortical alveoli content in several species of Antarctic notothenioids. J Fish Biol. 2005;66:442–53. doi: 10.1111/j.0022-1112.2005.00613.x. DOI
Krajhanzl A, Nosek J, Monsigny M, Kocourek J. Direct visualization of endogenous lectins in fish oocytes by glycosylated fluorescent cytochemical markers. Histochem J. 1984;16:426–8. doi: 10.1007/BF01002868. PubMed DOI
Ganeco LN, Franceschini-Vicentini IB, Nakaghi LSO. Structural analysis of fertilization in the fish Brycon orbignyanus. Zygote. 2009;17:93–9. doi: 10.1017/S0967199408005030. PubMed DOI
Yasumasu S, Wardrip NJ, Zenner BD, Lee YM, Smith AJ, Hedrick JL. Fertilisation in fish: a cortical alveolar lectin and its potential role in the block to polyspermy. Zygote. 1999;8:66. doi: 10.1017/S0967199400130357. PubMed DOI
Lee KW, Webb SE, Miller AL. A wave of free cytosolic calcium traverses zebrafish eggs on activation. Dev Biol. 1999;214:168–80. doi: 10.1006/dbio.1999.9396. PubMed DOI
Yoshimoto Y, Iwamatsu T, Hirano KI, Hiramoto Y. The wave pattern of free calcium release upon fertilization in medaka and sand dollar eggs. Dev Growth Differ. 1986;28:583–96. doi: 10.1111/j.1440-169X.1986.00583.x. PubMed DOI
Kunz YW. Developmental biology of teleost fishes. Dordrecht: Springer; 2004.
Platania SP, Altenbach CS. Reproductive strategies and egg types of seven Rio Grande basin cyprinids. Copeia. 1998;1998:559–69. doi: 10.2307/1447786. DOI
Chen F, Wang Y, He J, Chen L, Xue G, Zhao Y, Peng Y, Smith C, Zhang J, Chen J, Xie P. Molecular mechanisms of spawning habits for the adaptive radiation of endemic east asian cyprinid fishes. Research. 2022;2022:9827986. doi: 10.34133/2022/9827986. PubMed DOI PMC
Foster CS, Thompson MB, Van Dyke JU, Brandley MC, Whittington CM. Emergence of an evolutionary innovation: gene expression differences associated with the transition between oviparity and viviparity. Mol Ecol. 2020;29:1315–27. doi: 10.1111/mec.15409. PubMed DOI
Gao W, Sun YB, Zhou WW, Xiong ZJ, Chen L, Li H, Fu TT, Xu K, Xu W, Ma L, Chen YJ, Xiang XY, Zhou L, Zeng T, Zhang S, Jin JQ, Chen HM, Zhang GJ, Hillis DM, Ji X, Zhang YP, Che J. Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity. P Natl Acad Sci USA. 2019;116:3646–55. doi: 10.1073/pnas.1816086116. PubMed DOI PMC
Qi PZ, Xie CX, Guo BY, Wu CW, Lu SM, Duan YJ. Development of new polymorphic microsatellite markers in topmouth culter (Culter alburnus) and determination of their applicability in Culter mongolicus. Genet Mol Res. 2013;12:1761–5. doi: 10.4238/2013.May.21.7. PubMed DOI
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dynam. 1995;203:253–310. doi: 10.1002/aja.1002030302. PubMed DOI
Kleppe L, Edvardsen RB, Kuhl H, Malde K, Furmanek T, Drivenes Ø, Reinhardt R, Taranger G, Wargelius A. Maternal 3’UTRs: from egg to onset of zygotic transcription in Atlantic cod. BMC Genomics. 2012;13:1–14. doi: 10.1186/1471-2164-13-443. PubMed DOI PMC
Zhao BS, Wang X, Beadell AV, Lu Z, Shi H, Kuuspalu A, Ho RK, He C. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature. 2017;542:475–8. doi: 10.1038/nature21355. PubMed DOI PMC
Ma H, Martin K, Dixon D, Hernandez AG, Weber GM. Transcriptome analysis of egg viability in rainbow trout, Oncorhynchus mykiss. BMC Genomics. 2019;20:1–15. doi: 10.1186/s12864-019-5690-5. PubMed DOI PMC
Lanes CFC, Bizuayehu TT, de Oliveira Fernandes JM, Kiron V, Babiak I. Transcriptome of Atlantic cod (Gadus morhua L.) early embryos from farmed and wild broodstocks. Mar Biotechnol. 2013;15:677–94. doi: 10.1007/s10126-013-9527-y. PubMed DOI
Rich P. Chemiosmotic coupling: the cost of living. Nature. 2003;421:583. doi: 10.1038/421583a. PubMed DOI
Elbassiouny AA, Lovejoy NR, Chang BS. Convergent patterns of evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes in electric fishes. Philos T R Soc B. 2020;375:20190179. doi: 10.1098/rstb.2019.0179. PubMed DOI PMC
Finn RN, Fyhn HJ. Requirement for amino acids in ontogeny of fish. Aquac Res. 2010;41:684–716. doi: 10.1111/j.1365-2109.2009.02220.x. DOI
Kamler E. Early life history of fish. London: Chapman & Hall; 1992.
Herráez MP, Ausió J, Devaux A, González-Rojo S, Fernández-Díez C, Bony S, Saperas N, Robles V. Paternal contribution to development: sperm genetic damage and repair in fish. Aquaculture. 2017;472:45–59. doi: 10.1016/j.aquaculture.2016.03.007. DOI
Iwao Y. Mechanisms of egg activation and polyspermy block in amphibians and comparative aspects with fertilization in other vertebrates. Zool Sci. 2000;17:699–709. doi: 10.2108/zsj.17.699. DOI
Yu S, Kojima N, Hakomori SI, Kudo S, Inoue S, Inoue Y. Binding of rainbow trout sperm to egg is mediated by strong carbohydrate-to-carbohydrate interaction between (KDN) GM3 (deaminated neuraminyl ganglioside) and Gg3-like epitope. Proc Natl Acad Sci USA. 2002;99:2854–9. doi: 10.1073/pnas.052707599. PubMed DOI PMC
Clift D, Schuh M. Restarting life: fertilization and the transition from meiosis to mitosis. Nat Rev Mol Cell Biol. 2013;14:549–62. doi: 10.1038/nrm3643. PubMed DOI PMC
Donovan MJ, Hart NH. Cortical granule exocytosis is coupled with membrane retrieval in the egg of Brachydanio. J Exp Zool. 1986;237:391–405. doi: 10.1002/jez.1402370312. PubMed DOI
Iwamatsu T, Yoshizaki N, Shibata Y. Changes in the chorion and sperm entry into the micropyle during fertilization in the teleostean fish, Oryzias latipes. Dev Growth Differ. 1997;39:33–41. doi: 10.1046/j.1440-169X.1997.00005.x. PubMed DOI
Kholodnyy V, Gadêlha H, Cosson J, Boryshpolets S. How do freshwater fish sperm find the egg? The physicochemical factors guiding the gamete encounters of externally fertilizing freshwater fish. Rev Aquacult. 2020;12:1165–92. doi: 10.1111/raq.12378. DOI
Li S, Wang Q, Huang L, Fan S, Li T, Shu Y, Zhang C, Zhou Y, Liu Q, Luo K, Tao M, Liu S. Mir-199-5p regulates spermiogenesis at the posttranscriptional level via targeting Tekt1 in allotriploid crucian carp. J Anim Sci Biotechnol. 2022;13:1–13. doi: 10.1186/s40104-022-00693-4. PubMed DOI PMC
Laale HW. The perivitelline space and egg envelopes of bony fishes: a review. Copeia. 1980;1980:210–26. doi: 10.2307/1443999. DOI
Chen F, Smith C, Wang Y, He J, Xia W, Xue G, Chen J, Xie P. The evolution of alternative buoyancy mechanisms in freshwater fish eggs. Front Ecol Evol. 2021;9:736718. doi: 10.3389/fevo.2021.736718. DOI
Tang L, Chen J, Ye Z, Zhao M, Meng Z, Lin H, Li S, Zhang Y. Transcriptomic analysis revealed the regulatory mechanisms of oocyte maturation and hydration in orange-spotted grouper (Epinephelus coioides) Mar Biotechnol. 2019;21:537–49. doi: 10.1007/s10126-019-09902-0. PubMed DOI
Kleppe L, Edvardsen RB, Furmanek T, Taranger GL, Wargelius A. Global transcriptome analysis identifies regulated transcripts and pathways activated during oogenesis and early embryogenesis in Atlantic cod. Mol Reprod Dev. 2014;81:619–35. doi: 10.1002/mrd.22328. PubMed DOI PMC
Ding S, Shi Y, Hao C, Liu G, Zhao M, Zhu L. Molecular mechanisms of growth and disease resistance in hybrid mandarin (Siniperca chuatsi♀ × Siniperca scherzeri♂) revealed by combined miRNA-mRNA transcriptome analysis. Aquac Res. 2022;53:2146–58. doi: 10.1111/are.15734. DOI
Ding L, Sun W, Balaz M, He A, Klug M, Wieland S, Caiazzo R, Raverdy V, Pattou F, Lefebvre P, Lodhi IJ, Staels B, Heim M, Wolfrum C. Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis. Nat Metab. 2021;3:1648–61. doi: 10.1038/s42255-021-00489-2. PubMed DOI PMC
Sugiura A, Mattie S, Prudent J, McBride HM. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature. 2017;542:251–4. doi: 10.1038/nature21375. PubMed DOI
Duve CD. The peroxisome: a new cytoplasmic organelle. P Roy Soc B-Biol Sci. 1969;173:71–83. PubMed
Wiegand MD. Composition, accumulation and utilization of yolk lipids in teleost fish. Rev Fish Biol Fish. 1996;6:259–86. doi: 10.1007/BF00122583. DOI
Babin PJ, Carnevali O, Lubzens E, Schneider WJ. Molecular aspects of oocyte vitellogenesis in fish. In: Babin PJ, Cerdà J, Lubzens E, editors. The fish oocyte. Dordrecht: Springer; 2007.
Wang Y, Chen F, He J, Chen J, Xue G, Zhao Y, Peng Y, Xie P. Comparative ultrastructure and proteomics of two economic species (common carp and grass carp) egg envelope. Aquaculture. 2022;546:737276. doi: 10.1016/j.aquaculture.2021.737276. DOI
Yang H. Studies on the biological characteristics and artificial propagation of topmouth culter in Xingkai Lake. Heilongjiang: Northeast Agricultural University; 2009.
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(Database issue):D605–12. doi: 10.1093/nar/gkaa1074. PubMed DOI PMC