On the Monte Carlo weights in multiple criteria decision analysis

. 2022 ; 17 (10) : e0268950. [epub] 20221007

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36206242

In multiple-criteria decision making/aiding/analysis (MCDM/MCDA) weights of criteria constitute a crucial input for finding an optimal solution (alternative). A large number of methods were proposed for criteria weights derivation including direct ranking, point allocation, pairwise comparisons, entropy method, standard deviation method, and so on. However, the problem of correct criteria weights setting persists, especially when the number of criteria is relatively high. The aim of this paper is to approach the problem of determining criteria weights from a different perspective: we examine what weights' values have to be for a given alternative to be ranked the best. We consider a space of all feasible weights from which a large number of weights in the form of n-tuples is drawn randomly via Monte Carlo method. Then, we use predefined dominance relations for comparison and ranking of alternatives, which are based on the set of generated cases. Further on, we provide the estimates for a sample size so the results could be considered robust enough. At last, but not least, we introduce the concept of central weights and the measure of its robustness (stability) as well as the concept of alternatives' multi-dominance, and show their application to a real-world problem of the selection of the best wind turbine.

Zobrazit více v PubMed

Belton V, Stewart TJ. Multiple Criteria Decision Analysis: An Integrated Approach. Kluwer: Boston; 2002.

Greco S, Ehrgott M, Figueira JR. (Eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. Springer-Verlag; New York; 2016.

Koksalan M, Wallenius J, Zionts S. Multiple Criteria Decision Making: From Early History to the 21st Century. Singapore: World Scientific; 2011.

Mardani A, Jusoh A, Nor KMD, Khalifah Z, Zakwan N, Valipour A. Multiple criteria decision-making techniques and their applications—a review of the literature from 2000 to 2014. Ec Res—Ek Istr. (2015);28(1):516–571.

Brugha CM. Structuring and Weighting Criteria in Multi Criteria Decision Making (MCDM). In: Stewart TJ, van den Honert RC (eds.) Trends in Multicriteria Decision Making. Lec Not in Econ & Math Syst. 1998;465. Springer, Berlin, Heidelberg.

Churilov L, Flitman A. Towards fair ranking of Olympics achievements: The case of Sydney 2000. Computers and Operations Research, 2006, 33(7):2057–2082. doi: 10.1016/j.cor.2004.09.027 DOI

Ginevicius R. A new determining method for the criteria weights in multicriteria evaluation. Int J Inf Technol Decis Mak. 2011;10:1067–1095. doi: 10.1142/S0219622011004713 DOI

Kao C. Weight determination for consistently ranking alternatives in multiple criteria decision analysis. App Math Mod. 2010;34(7):1779–1787. doi: 10.1016/j.apm.2009.09.022 DOI

Keshavarz-Ghorabaee M, Amiri M, Zavadskas EK, Turskis Z, Antucheviciene J. Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symm. 2021;13:525. doi: 10.3390/sym13040525 DOI

Odu GO. Weighting methods for multi-criteria decision making technique, J App Sci & Env Man. 2019;23(8):1449–1457.

Petróczy DG An alternative quality of life ranking on the basis of remittances. Socio-Economic Planning Sciences, (2021);78:101042. doi: 10.1016/j.seps.2021.101042 DOI

Petróczy DG, Csató L. Revenue allocation in Formula One: A pairwise comparison approach. International Journal of General Systems, 2021, 50(3):243–261. doi: 10.1080/03081079.2020.1870224 DOI

Triantaphyllou E. Multi-Criteria Decision Making: A Comparative Study. Dordrecht, The Netherlands: Kluwer Academic Publishers (now Springer); 2000.

Zahir MS. Incorporating the uncertainty of decision judgements in the analytic hierarchy process European Journal of Operational Research, 1991, 53(2) 206–216. doi: 10.1016/0377-2217(91)90135-I DOI

Zardari NH, Ahmed K, Shirazi SM, Yusop ZB. Weighting Methods and their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management; New York, USA, Springer; 2014.

Zavadskas EK, Podvezko V. Integrated determination of objective criteria weights in MCDM. Int J Inf Technol Decis Mak. 2016;15:267–283. doi: 10.1142/S0219622016500036 DOI

Kaiser B. Strategy and paradoxes of Borda count in Formula 1 racing. Decyzje, 2019, 6(31):115–132.

NASA Systems Engineering Handbook. 2020. https://www.nasa.gov/connect/ebooks/nasa-systems-engineering-handbook.

Harrison RL. Introduction To Monte Carlo Simulation. AIP conference proceedings. 2010;1204:17–21. doi: 10.1063/1.3295638 PubMed DOI PMC

Kalos MH, Whitlock PA. Monte Carlo Methods. Wiley-VCH; Verlag GmbH; 2008.

Kroese DP, Brereton T, Taimre T, Botev ZI. Why the Monte Carlo method is so important today. WIREs Comput Stat. 2014;6:386–392. doi: 10.1002/wics.1314 DOI

Metropolis N, Ulam S. The Monte Carlo method. Am Stat Assoc. 1949;44:335–341. doi: 10.1080/01621459.1949.10483310 PubMed DOI

Paxton P, Curran PJ, Bollen KA, Kirby J, Chen F. Monte Carlo Experiments: Design and Implementation. Str Eq Mod: Mult J. 2001;8(2):287–312. doi: 10.1207/S15328007SEM0802_7 DOI

Eckhart R. Stan Ulam, John von Neumann, and the Monte Carlo method. Los Alamos Science (Special Issue), 1987;131–141.

Doucet A, Wang X. Monte Carlo methods for signal processing: a review in the statistical signal processing context. IEEE Sig Proc Mag. 2005;22(6):152–170. doi: 10.1109/MSP.2005.1550195 DOI

Kalos MH. Monte Carlo methods in the physical sciences. Proceedings of the 39th conference on Winter simulation: 40 years! The best is yet to come (WSC’07). IEEE Press. 2007;266–271.

Mazurek J, Perzina R, Ramík J, Bartl D. A Numerical Comparison of the Sensitivity of the Geometric Mean Method, Eigenvalue Method, and Best–Worst Method, Math. 2021;9:554. doi: 10.3390/math9050554 DOI

Seco J, Verhaegen F. Monte Carlo Techniques in Radiation Therapy (1st ed.). CRC Press; 2013.

Zhu C, Liu Q. Review of Monte Carlo modeling of light transport in tissues. J Bio Opt. 2013;18(5):1–13. doi: 10.1117/1.JBO.18.5.050902 PubMed DOI

Ágoston KCs, Csató L. Inconsistency thresholds for incomplete pairwise comparison matrices. Omega, 2022;108:102576. doi: 10.1016/j.omega.2021.102576 DOI

Aguarón J, Moreno-Jimenez JM. The geometric consistency index: Approximated thresholds. European Journal of Operational Research, 2003, 147(1):137–145. doi: 10.1016/S0377-2217(02)00255-2 DOI

Alonso JA, Lamata MT. Consistency in the analytic hierarchy process: a new approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2006, 14(4): 445–459. doi: 10.1142/S0218488506004114 DOI

Bozóki S, Rapcsák T. On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices. Journal of Global Optimization, 2008, 42(2):157–175. doi: 10.1007/s10898-007-9236-z DOI

Cavallo B. Functional relations and Spearman correlation between consistency indices. Journal of the Operational Research Society, 2020, 71(2):301–311. doi: 10.1080/01605682.2018.1516178 DOI

Csató L. A comparative study of scoring systems by simulations. 2021, ArXiv: 2101.05744.

Csató L, Petróczy DG. On the monotonicity of the eigenvector method. European Journal of Operational Research, 2021, 292(1):230–237. doi: 10.1016/j.ejor.2020.10.020 DOI

Kulakowski K, Talaga D. Inconsistency indices for incomplete pairwise comparisons matrices. International Journal of General Systems, 2020, 49(2):174–200. doi: 10.1080/03081079.2020.1713116 DOI

Mazurek J, Kulakowski K. Satisfaction of the condition of order preservation. A simulation study. Operations Research and Decisions, 2020, 2: 77–89.

Saaty TL. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill, New York.

James F, Moneta L. Review of High-Quality Random Number Generators. Computing and Software for Big Science volume. 4, 2, 2020;.

Altman DG, Bland JM. Standard deviations and standard errors British Medical Journal, 331 (7521): 903. doi: 10.1136/bmj.331.7521.903 PubMed DOI PMC

Burmaster DE, Anderson PD. Principles of good practice for the use of Monte Carlo techniques in human health and ecological risk assessments. Risk Analysis, 1994, 14:477–481. doi: 10.1111/j.1539-6924.1994.tb00265.x PubMed DOI

Heijungs R. On the number of Monte Carlo runs in comparative probabilistic LCA Int J Life Cycle Assess, 2020, 25: 394–402. doi: 10.1007/s11367-019-01698-4 DOI

Xin L. Uncertainty and sensitivity analysis of a simplified ORWARE model for Jakarta. Stockholm, 2006. https://www.diva-portal.org/smash/get/diva2:411539/FULLTEXT01.pdf.

Kulakowski K. Understanding the Analytic Hierarchy Process (1st ed.) Chapman and Hall/CRC, 2020.

Ramík J. Pairwise Comparisons Method Lecture Notes in Economics and Mathematical Systems, Springer, 2020. doi: 10.1007/978-3-030-39891-0 DOI

Kulakowski K, Mazurek J, Strada M. On the similarity between ranking vectors in the pairwise comparison method. J Op Res Soc. 2021.

Rehman S, Khan SA. Multi-Criteria Wind Turbine Selection using Weighted Sum Approach Int J Adv Comp Sci & App. (2017);8(6):128–132.

Gärtner B, Matoušek, J. Understanding and Using Linear Programming. Berlin: Springer. ISBN 3-540-30697-8; 81–104.

Jing RJ, Maza MM, Talaashrafi D Complexity Estimates for Fourier-Motzkin Elimination 2019, arXiv:1811.01510v2.

Lavrov M Math 482: Linear Programming, Lecture 19: Fourier–Motzkin Elimination 2019, University of Illinois at Urbana-Champaign.

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.19525087.v1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...