Dual Inoculation of Plant Growth-Promoting Bacillus endophyticus and Funneliformis mosseae Improves Plant Growth and Soil Properties in Ginger
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36211029
PubMed Central
PMC9535732
DOI
10.1021/acsomega.2c02353
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Co-inoculation with beneficial microbes has been suggested as a useful practice for the enhancement of plant growth, nutrient uptake, and soil nutrients. For the first time in Uzbekistan the role of plant-growth-promoting Bacillus endophyticus IGPEB 33 and arbuscular mycorrhizal fungi (AMF) on plant growth, the physiological properties of ginger (Zingiber officinale), and soil enzymatic activities was studied. Moreover, the coinoculation of B. endophyticus IGPEB 33 and AMF treatment significantly increased the plant height by 81%, leaf number by 70%, leaf length by 82%, and leaf width by 40% compared to the control. B. endophyticus IGPEB 33 individually increased plant height significantly by 51%, leaf number by 56%, leaf length by 67%, and leaf width by 27% as compared to the control treatment. Compared to the control, B. endophyticus IGPEB 33 and AMF individually significantly increased chlorophyll a by 81-58%, chlorophyll b by 68-37%, total chlorophyll by 74-53%, and carotenoid content by 67-55%. However, combination of B. endophyticus IGPEB 33 and AMF significantly increased chlorophyll a by 86%, chlorophyll b by 72%, total chlorophyll by 82%, and carotenoid content by 83% compared to the control. Additionally, plant-growth-promoting B. endophyticus IGPEB 33 and AMF inoculation improved soil nutrients and soil enzyme activities compared to the all treatments. Co-inoculation with plant-growth-promoting B. endophyticus and AMF could be an alternative for the production of ginger that is more beneficial to soil nutrient deficiencies. We suggest that a combination of plant-growth-promoting B. endophyticus and AMF inoculation could be a more sustainable and eco-friendly approach in a nutrient-deficient soil.
Department of Botany and Microbiology Faculty of Science Al azhar University 11884 Nasr Cairo Egypt
Department of Horticulture Agricultural Faculty Ataturk University Erzurum 252240 Turkey
Division of Microbiology ICAR Indian Agricultural Research Institute Pusa New Delhi 110012 India
Faculty of Biology National University of Uzbekistan Tashkent 100174 Uzbekistan
Institute of Microbiology of the Academy of Sciences of Uzbekistan Tashkent 100174 Uzbekistan
Zobrazit více v PubMed
Mukherjee A. K.; Das K. Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in a particular habitat. FEMS Microbiol. Ecol. 2005, 54, 479–489. 10.1016/j.femsec.2005.06.003. PubMed DOI
Jabborova D.; Davranov K. Effect of phosphorus and nitrogen concentrations on root colonization of soybean (Glycine max L.) by Bradyrhizobium japonicum and Pseudomonas putida. International Journal of Advanced Biotechnology and Research 2015, 16, 418–424.
Jabborova D.; Annapurna K.; Fayzullaeva M.; Sulaymonov K.; Kadirova D.; Jabbarov Z.; Sayyed R. Z. Isolation and characterization of endophytic bacteria from ginger (Zingiber officinale Rosc.). Annals of Phytomedicine. 2020, 9, 116–121. 10.21276/ap.2020.9.1.14. DOI
Jabborova D.; Narimanov A.; Enakiev Y.; Kakhramon D. Effect of Bacillus subtilis 1 strain on the growth and development of wheat (Triticum aestivum L.) under saline condition. Bulgarian Journal of Agricultural Science 2020, 26, 744–747.
Jabborova D.; Enakiev Y.; Sulaymanov K.; Kadirova D.; Ali A.; Annapurna K. Plant growth promoting bacteria Bacillus subtilis promote growth and physiological parameters of Zingiber officinale Roscoe. Plant Sci. Today. 2021, 8, 66–71. 10.14719/pst.2021.8.1.997. DOI
Egamberdieva D.; Jabborova D.. Improvement of cotton production in arid saline soils by beneficial microbes. In Crop Yields: Production, Management Practices and Impact of Climate Change; Huang L., Zhao Q., Eds.: Nova Publisher, 2013; pp 109–122.
Jabborova D.; Qodirova D.; Egamberdieva D. Improvement of seedling establishment of soybean using IAA and IAA producing bacteria under saline conditions. Soil-Water J. 2013, 2, 531–538.
Xie S.; Wu H. J.; Zang H.; Wu L.; Zhu Q.; Gao X. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol. Plant-Microbe Interact. 2014, 27, 655–663. 10.1094/MPMI-01-14-0010-R. PubMed DOI
Shi Y.; Lou K.; Li C. Growth promotion effects of the endophyte Acinetobacter johnsonii strain 3–1 on sugar beet. Symbiosis. 2011, 54, 159–166. 10.1007/s13199-011-0139-x. DOI
Matsuoka H.; Akiyama M.; Kobayashi K.; Yamaji K. Fe and P Solubilization Under Limiting Conditions by Bacteria Isolated from Carex kobomugi Roots at the Hasaki Coast. Curr. Microbiol. 2013, 66, 314–321. 10.1007/s00284-012-0276-3. PubMed DOI
Sharma S. B.; Sayyed R. Z.; Trivedi M. H.; Gobi T. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus. 2013, 2, 587.10.1186/2193-1801-2-587. PubMed DOI PMC
Kumar A.; Singh R.; Yadav A.; Giri D. D.; Singh P. K.; Pandey K. D. Isolation and characterization of bacterial endophytes of Curcuma longa L.. 3 Biotechnol. 2016, 6, 60.10.1007/s13205-016-0393-y. PubMed DOI PMC
Li Q.; Liao S.; Zhi H.; Xing D.; Xiao Y.; Yang Q. Characterization and sequence analysis of potential biofertilizer and biocontrol agent Bacillus subtilis strain SEM-9 from silkworm excrement. Can. J. Microbiol. 2019, 65, 45–58. 10.1139/cjm-2018-0350. PubMed DOI
Liu Y. H.; Guo J. W.; Salam N.; Li L.; Zhang Y. G.; Han J.; Mohamad O. S.; Li W. Culturable endophytic bacteria associated with medicinal plant Ferula songorica: Molecular phylogeny, distribution and screening for industrially important traits. 3 Biotechnol. 2016, 6, 209.10.1007/s13205-016-0522-7. PubMed DOI PMC
Liu Y.; Guo J.; Li L.; Asem M. D.; Zhang Y.; Mohamad O. A.; Salam N.; Li W. Endophytic bacteria associated with endangered plant Ferula sinkiangensis KM Shen in an arid land: Diversity and plant growth-promoting traits. J. Arid. Land. 2017, 9, 432–445. 10.1007/s40333-017-0015-5. DOI
Glick B. R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014, 169, 30–39. 10.1016/j.micres.2013.09.009. PubMed DOI
Sayyed R. Z.; Gangurde N. S.; Chincholkar S. B. Siderophore production by A. faecalis and its application for growth promotion in A. hypogaea. Indian J. Biotechnol. 2010, 9, 302–307.
Arkhipova T. N.; Veselov S. U.; Melentiev A. I.; Martynenko E. V.; Kudoyarova G. R. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil. 2005, 272, 201–209. 10.1007/s11104-004-5047-x. DOI
Jabborova D.; Choudhary R.; Karunakaran R.; Ercisli S.; Ahlawat J.; Sulaymanov K.; Jabbarov Z. The Chemical Element Composition of Turmeric Grown in Soil-Climate Conditions of Tashkent Region, Uzbekistan. Plants 2021, 10, 1426.10.3390/plants10071426. PubMed DOI PMC
Ashraf M.; Hasnain S.; Berge O.; Mahmood T. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soils. 2004, 40, 157–162. 10.1007/s00374-004-0766-y. DOI
Barnawal D.; Maji D.; Bharti N.; Chanotiya C. S.; Kalra A. ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. J. Plant Growth Regul. 2013, 32, 809–822. 10.1007/s00344-013-9347-3. DOI
Alori E. T.; Glick B. R.; Babalola O. O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 2017, 8, 971.10.3389/fmicb.2017.00971. PubMed DOI PMC
Kang S. M.; Hamayun M.; Khan M. A.; Iqbal A.; Lee I. J. Bacillus subtilis JW1 enhances plant growth and nutrient uptake of Chinese cabbage through gibberellins secretion. J. Appl. Bot Food Qual. 2019, 92, 172–178. 10.5073/JABFQ.2019.092.023. DOI
Mena-Violante H. G.; Olalde-Portugal V. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Scientia Horticulturae. 2007, 113, 103–106. 10.1016/j.scienta.2007.01.031. DOI
Yooyongwech S.; Phaukinsang N.; Cha-Um S.; Supaibulwatana K. Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul. 2013, 69, 285–293. 10.1007/s10725-012-9771-6. DOI
Bi Y.; Xiao L.; Sun J. An arbuscular mycorrhizal fungus ameliorates plant growth and hormones after moderate root damage due to simulated coal mining subsidence: A microcosm study. Environ. Sci. Pollut. Res. 2019, 26, 11053–11061. 10.1007/s11356-019-04559-7. PubMed DOI
Pedranzani H.; RodrãGuez-Rivera M.; GutiaRrez M.; Porcel R.; Hause B.; Ruiz-Lozano J. M. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza. 2016, 26, 141–152. 10.1007/s00572-015-0653-4. PubMed DOI
Lin J.; Wang Y.; Sun S.; Mu C.; Yan X. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci. Total Environ. 2017, 576, 234–241. 10.1016/j.scitotenv.2016.10.091. PubMed DOI
Garg N.; Singh S. Arbuscular mycorrhiza Rhizophagus irregularis, and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L., Millsp. (pigeon pea) genotypes under cadmium and zinc stress. J. Plant Growth Regul. 2017, 37, 1–18. 10.1007/s00344-017. DOI
Chen W.; Meng P.; Feng H.; Wang C. Effects of arbuscular mycorrhizal fungi on growth and physiological performance of Catalpa bungei CA Mey. under drought stress. Forests. 2020, 11, 1117.10.3390/f11101117. DOI
Liu L. Z.; Gong Z. Q.; Zhang Y. L.; Li P. J. Growth, cadmium uptake and accumulation of maize Zea mays L. under the effects of arbuscular mycorrhizal fungi. Ecotoxicology. 2014, 23, 1979–1986. 10.1007/s10646-014-1331-6. PubMed DOI
Liu C.; Ravnskov S.; Liu F.; Rubæk G. H.; Andersen M. N. Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. J. Agric. Sci. 2018, 156, 46–58. 10.1017/S0021859618000023. DOI
Mathur S.; Sharma M. P.; Jajoo A. Improved photosynthetic efficacy of maize Zea mays plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J. Photochem. Photobiol. 2018, 180, 149–154. 10.1016/j.jphotobiol.2018.02.002. PubMed DOI
Calvo-Polanco M.; Sanchez-Romera B.; Aroca R.; Asins M. J.; Declerck S.; Dodd I. C. Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ. Exp. Bot. 2016, 131, 47–57. 10.1016/j.envexpbot.2016.06.015. DOI
Abdelhameed R.; Rabab A. Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. Int. J. Phytoremed. 2019, 21, 663–671. 10.1080/15226514.2018.1556584. PubMed DOI
Asrar A. A.; Abdel-Fattah G. M.; Elhindi K. M. Improving growth, flower yield, and water relations of snapdragon Antirhinum majus L. plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica. 2012, 50, 305–316. 10.1007/s11099-012-0024-8. DOI
Shokri S.; Maadi B. Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J. Agron. 2009, 8, 79–83. 10.3923/ja.2009.79.83. DOI
Zhang L.; Xu M.; Liu Y.; Zhang F.; Hodge A.; Feng G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol. 2016, 210, 1022–1032. 10.1111/nph.13838. PubMed DOI
Li M.; Cai L. Biochar and Arbuscular Mycorrhizal Fungi Play Different Roles in Enabling Maize to Uptake Phosphorus. Sustainability. 2021, 13, 3244.10.3390/su13063244. DOI
Figueiredo C. C.; Farias W. M.; Coser T. R.; Monteiro de Paula A.; Sartori da Silva M. R.; Paz-Ferreiro J. Sewage sludge biochar alters root colonization of mycorrhizal fungi in a soil cultivated with corn. Eur. J. Soil Biol. 2019, 93, 103092.10.1016/j.ejsobi.2019.103092. DOI
Xun F.; Xie B.; Liu S.; Guo C. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ. Sci. Pollut. Res. 2015, 22, 598–608. 10.1007/s11356-014-3396-4. PubMed DOI
Yadav R.; Ror P.; Rathore P.; Kumar S.; Ramakrishna W. Bacillus subtilis CP4, isolated from native soil in combination with arbuscular mycorrhizal fungi promotes biofortification, yield and metabolite production in wheat under field conditions. J. Appl. Microbiol. 2021, 131, 339–359. 10.1111/jam.14951. PubMed DOI
El-Sawah A. M.; El-Keblawy A.; Ali D. F.; Ibrahim H. M.; El-Sheikh M. A.; Sharma A.; Alhaj Hamoud Y.; Shaghaleh H.; Brestic M.; Skalicky M.; Xiong Y. C. Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield, and qualitative attributes of guar. Agriculture. 2021, 11, 194.10.3390/agriculture11030194. DOI
Wahid F.; Sharif M.; Steinkellner S.; Khan M. A.; Marwat K. B.; Khan S. A. Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize. Pak. J. Bot. 2016, 48, 739–747.
Kavatagi P. K.; Lakshman H. C. Interaction between AMF and plant growth-promoting rhizobacteria on two varieties of Solanum lycopersicum L. World Applied Sciences Journal 2014, 32, 2054–2062. 10.5829/idosi.wasj.2014.32.10.14164. DOI
Zhang L. A.; Fan B. J.; Ding A. C. X.; He D. X.; Zhang A. F.; Feng G. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol. Biochem. 2014, 74, 177–183. 10.1016/j.soilbio.2014.03.004. DOI
Yousefi A. A.; Khavazi K.; Moezi A. A.; Rejali F.; Nadian H. A. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Appl. Sci. J. 2011, 15, 1310–1318.
Tamokou J. D. D.; Mbaveng A. T.; Kuete V. Antimicrobial activities of African medicinal spices and vegetables. In Medicinal spices and vegetables from. Africa. 2017, 207–237. 10.1016/B978-0-12-809286-6.00008-X. DOI
Akhani S. P.; Vishwakarma S. L.; Goyal R. K. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J. Pharm. Pharmacol. 2010, 56, 101–105. 10.1211/0022357022403. PubMed DOI
Jabborova D.; Sayyed R. Z.; Azimova A.; Jabbarov Z.; Matchanov A.; Baazeeme A.; Sabagh A. E.; Danish S.; Datta R. Impact of mineral fertilizers on mineral nutrients in the ginger rhizome and on soil enzymes activities and soil properties. Saudi J. Biol. Sci. 2021, 28, 5268–5274. PubMed PMC
Jabborova D.; Sulaymanov K.; Sayyed R. Z.; Alotaibi S. H.; Enakiev Y.; Azimov A.; Jabbarov Z.; Ansari M. J.; Fahad S.; Danish S.; Datta R. Effect of Different Mineral Fertilizers on Quality of Turmeric and Soil Properties. Sustainability. 2021, 13, 9437.10.3390/su13169437. DOI
Dugasani S.; Pichika M. R.; Nadarajah V. D.; Balijepalli M. K.; Tandra S.; Korlakunta J. N. Comparative antioxidant and antiinflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]- shogaol. Journal of Ethnopharmacology. 2010, 172, 525–520. 10.1016/j.jep.2009.10.004. PubMed DOI
Dehghani I.; Mostajeran A.; Asghari G. In vitro and in vivoproduction of gingerols and zingiberene in ginger plant (Zingiber officinale Roscoe). Iranian Journal of Pharmaceutical Sciences. 2011, 7, 129–133.
Niksokhan M.; Hedarieh N.; Maryam N.; Masoomeh N. Effect of hydro-alcholic extract of Pimpinella anisum seed on anxiety in male rat. Journal of Gorgan University Medical Science. 2014, 16, 28–33.
Ghayur M. N.; Gilani A. H.; Afridi M. B. Cardiovascular effects of ginger aqueous extract and its phenolic constituents are medicated through multiple pathways. Vascular Pharmacology. 2005, 43, 234–241. 10.1016/j.vph.2005.07.003. PubMed DOI
Pikovskaya R. I. Mobilization of phosphorous in the soil in connection with the vital activity of some microbial species. Microbiology 1948, 17, 362–370.
Bric J. M.; Bostock R. M.; Silverstone S. E. Rapid in-situ assay for indoleacetic acid production by bacteria immobilised on a nitrocellulose membrane. Appl. Environ. Microbiol. 1991, 57, 535–38. 10.1128/aem.57.2.535-538.1991. PubMed DOI PMC
Malleswari D.; Bagyanarayan G. In vitro screening of rhizobacteria isolated from the rhizosphere of medicinal and aromatic plants for multiple plant growth-promoting activities. J. Microbial. Biotechnol. Rev. 2013, 3, 84–91.
Ghodsalavi B.; Ahmadzadeh M.; Soleimani M.; Madloo P. B.; Taghizad-Farid R. Isolation and characterization of rhizobacteria and their effects on root extracts of Valeriana officinalis. Australian Journal of Crop Science. 2013, 7, 338–344.
Mintoo M. N.; Mishra S.; Dantu P. K. Isolation and characterization of endophytic bacteria from Piper longum. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2019, 89, 1447–1454. 10.1007/s40011-018-01064-8. DOI
Clarke P. H.; Cowan S. T. Biochemical methods for bacteriology. Microbiology. 1952, 6, 187–197. PubMed
Hiscox J. D.; Israelstam G. F. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany. 1979, 57, 1332–1334. 10.1139/b79-163. DOI
Barrs H. D.; Weatherley P. E. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aus J. BiolSci. 1962, 15, 413–428. 10.1071/BI9620413. DOI
GOST of Commonwealth of Independent States. Determination of organic matter by the method Tyurin modified by CINAO. Methods for Determination of the Organic Matter; GOST 26213-91, M.; Publishing House of Standards: Minsk, Belarus, 2003; pp 11.
GOST of Commonwealth of Independent States. Methods for Determination of Total Nitrogen; GOST 26107-84, M.; Publishing House of Standards: Minsk, Belarus, 2002; pp 9.
GOST 26261-84; Soils. Methods for Determining Total Phosphorus and Total Potassium; Publishing House of Standards: Minsk, Belarus, 2005.
Pancu M.; Gautheyrou J.. Handbook of Soil Analysis Mineralogical, Organic and Inorganic Methods; Springer: Berlin, 2006; p 800.
Xaziev F. X.Methods of Soil Enzymology; Publishing Nauka: Moscow, Russia, 2005; pp1–252.
El-Sawah A. M.; Hauka F. I. A.; Afify A. H. Dual inoculation with Azotobacter chroococcum MF135558 and Klebsiella oxytoca MF135559 enhance the growth and yield of wheat plant and reduce N-fertilizers usage. J.Food Dairy Sci. 2018, 67–76. 10.21608/jfds.2018.77756. DOI
Otieno N.; Lally R. D.; Kiwanuka S.; Lloyd A.; Ryan D.; Germaine K. J.; Dowling D. N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in microbiology. 2015, 6, 745.10.3389/fmicb.2015.00745. PubMed DOI PMC
Kuan K. B.; Othman R.; Rahim K. A.; Shamsuddin Z. H. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 2016, 11, 0152478.10.1371/journal.pone.0152478. PubMed DOI PMC
Mohamad O. A. A.; Li L.; Ma J. B.; Hatab S.; Xu L.; Guo J. W.; Rasulov B. A.; Liu Y.; Hedlund B. P.; Li W. Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Front. Microbiol. 2018, 9, 924.10.3389/fmicb.2018.00924. PubMed DOI PMC
Mohamad O. A. A.; Ma J.; Liu Y.; Zhang D.; Hua S.; Bhute S.; Hedlund B.; Li W.; Li L. Beneficial endophytic bacterial populations associated with medicinal plant Thymus vulgaris alleviate salt stress and confer resistance to Fusarium oxysporum. Front. Plant Sci. 2020, 11, 1–17. 10.3389/fpls.2020.00047. PubMed DOI PMC
Arun K. D.; Sabarinathan K. G.; Gomathy M.; Kannan R.; Balachandar D. Mitigation of drought stress in rice crop with plant growth-promoting abiotic stress-tolerant rice phyllosphere bacteria. Journal of Basic Microbiology. 2020, 60, 768–786. 10.1002/jobm.202000011. PubMed DOI
Park Y. G.; Mun B. G.; Kang S. M.; Hussain A.; Shahzad R.; Seo C. W.; Lee I. J. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 2017, 12, e017320310.1371/journal.pone.0173203. PubMed DOI PMC
Verma P.; Yadav A. N.; Kazy S. K.; Saxena A. K.; Suman A. Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 432–447.
Panda B.; Rahman H.; Panda J. Phosphate solubilizing bacteria from the acidic soils of Eastern Himalayan region and their antagonistic effect on fungal pathogens. Rhizosphere. 2016, 2, 62–71. 10.1016/j.rhisph.2016.08.001. DOI
Qiao J.; Yu X.; Liang X.; Liu Y.; Borriss R.; Liu Y. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC microbiology. 2017, 17, 1–2. 10.1186/s12866-017-1039-x. PubMed DOI PMC
Karnwal A.; Guleria M.. Plant growth promoting activity of Bacillus sp. on turmeric; The Annals of “VALAHIA” University of Targoviste, 2011; pp 34–37.
Dinesh R.; Anandaraj M.; Kumar A.; Bini Y. K.; Subila K. P.; Aravind R. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol. Res. 2015, 173, 34–43. 10.1016/j.micres.2015.01.014. PubMed DOI
Chauhan A. K.; Maheshwari D. K.; Kim K.; Bajpai V. K. Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Canadian journal of microbiology. 2016, 62, 880–892. 10.1139/cjm-2016-0249. PubMed DOI
Kaya C.; Ashraf M.; Sonmez O.; Aydemir S.; Tuna A. L.; Cullu M. A. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci. Hortic. 2009, 121, 1–6. 10.1016/j.scienta.2009.01.001. DOI
Jabborova D.; Kannepalli A.; Ravish Ch.; Subrata N. B.; Said E. D.; Samy S.; Islam H.; Maha M. A.; Nihal E. N.; Amr E. Interactive Impact of Biochar and Arbuscular Mycorrhizal on Root Morphology, Physiological Properties of Fenugreek (Trigonella foenum-graecum L.) and Soil Enzymatic Activities. Agronomy. 2021, 11, 2341.10.3390/agronomy11112341. DOI
Kumar A.; Sharma S.; Mishra S. Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas. L. J. Plant Growth Regul. 2010, 29, 297–306. 10.1007/s00344-009-9136-1. DOI
Yamawaki K.; Matsumura A.; Hattori R.; Tarui A.; Hossain M. A.; Ohashi Y.; Daimon H. Effect of inoculation with arbuscular mycorrhizal fungi on growth, nutrient uptake and curcumin production of turmeric (Curcuma longa L.). Agricultural sciences. 2013, 2, 66–71. 10.4236/as.2013.42011. DOI
Navarro J. M.; Pérez-Tornero O.; Morte A. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology. 2014, 171, 76–85. 10.1016/j.jplph.2013.06.006. PubMed DOI
Yang Y.; Tang M.; Sulpice R.; Chen H.; Tian S.; Ban Y. Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. Journal of Plant Growth Regulation. 2014, 33, 612–625. 10.1007/s00344-013-9410-0. DOI
Ordookhani K. K.; Khavazi A. M.; Rejali F. Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. African Journal of Agricultural Res. 2010, 5, 1108–1116.
Patil G. B.; Lakshman H. C.; Mirdhe R. M.; Agadi B. S. Effect of co-inoculation of AM fungi and two beneficial microorganisms on growth and nutrient uptake of Eleusine coracana Gaertn. (Finger millet). As. J. Plant Sci. Res. 2013, 3, 26–30. 10.18052/www.scipress.com/ILNS.13.59. DOI
Hidri R.; Mahmoud O.M.-B.; Farhat N.; Cordero I.; Pueyo J. J.; Debez A.; Barea J.-M.; Abdelly C.; Azcon R. Arbuscular mycorrhizal fungus and rhizobacteria affect the physiology and performance of Sulla coronaria plants subjected to salt stress by mitigation of ionic imbalance. J. Plant Nutr. Soil Sci. 2019, 182, 451–462. 10.1002/jpln.201800262. DOI
Gao C.; El-Sawah A. M.; Ali D. F.; Alhaj Hamoud Y.; Shaghaleh H.; Sheteiwy M. S. The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy. 2020, 10, 319.10.3390/agronomy10030319. DOI
Sheteiwy M. S.; Abd Elgawad H.; Xiong Y. C.; Macovei A.; Brestic M.; Skalicky M.; Shaghaleh H.; Alhaj Hamoud Y.; El-Sawah A. M. Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant. Physiologia Plantarum. 2021, 172, 2153–2169. 10.1111/ppl.13454. PubMed DOI
Nacoon S.; Jogloy S.; Riddech N.; Mongkolthanaruk W.; Kuyper T. W.; Boonlue S. Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L.. Scientific reports. 2020, 10, 1–10. 10.1038/s41598-020-61846-x. PubMed DOI PMC
Dhawi F.; Datta R.; Ramakrishna W. Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil. Chemosphere. 2016, 157, 33–41. 10.1016/j.chemosphere.2016.04.112. PubMed DOI
Zhang Y.; Kang X.; Liu H.; Liu Y.; Li Y.; Yu X.; Zhao K.; Gu Y.; Xu K.; Chen C.; Chen Q. Endophytes isolated from ginger rhizome exhibit growth promoting potential for Zea mays. Archives of Agronomy and Soil Science. 2018, 64, 1302–1314. 10.1080/03650340.2018.1430892. DOI
Kang S. M.; Radhakrishnan R.; You Y. H.; Joo G. J.; Lee I. J.; Lee K. E.; Kim J. H. Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian J. Microbiol. 2014, 54, 427–433. 10.1007/s12088-014-0476-6. PubMed DOI PMC
Xie L.; Lehvävirta S.; Timonen S.; Kasurinen J.; Niemikapee J.; Valkonen J. P. Species-specific synergistic effects of two plant growth—promoting microbes on green roof plant biomass and photosynthetic efficiency. PloS one. 2018, 13, e020943210.1371/journal.pone.0209432. PubMed DOI PMC
Costa-Santos M.; Mariz-Ponte N.; Dias M. C.; Moura L.; Marques G.; Santos C. Effect of Bacillus spp. and Brevibacillus sp. on the Photosynthesis and Redox Status of Solanum lycopersicum. Horticulturae. 2021, 7, 1–24. 10.3390/horticulturae7020024. DOI
Shi Y.; Lou K.; Li C. Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria. Photosynth. Res. 2010, 105, 5–13. 10.1007/s11120-010-9547-7. PubMed DOI
Stefan M.; Munteanu N.; Stoleru V.; Mihasan M.; Hritcu L. Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Sci. Hortic. 2013, 151, 22–29. 10.1016/j.scienta.2012.12.006. DOI
Akram W.; Aslam H.; Ahmad S. R.; Anjum T.; Yasin N. A.; Khan W. U.; Ahmad A.; Guo J.; Wu T.; Luo W.; et al. Bacillus megaterium strain A12 ameliorates salinity stress in tomato plants through multiple mechanisms. J. Plant Interact. 2019, 14, 506–518. 10.1080/17429145.2019.1662497. DOI
Zhu X. Q.; Wang C. Y.; Chen H.; Tang M. Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica. 2014, 52, 247–252. 10.1007/s11099-014-0031-z. DOI
Shi-Chu L.; Yong J.; Ma-Bo L.; Wen-Xu Z.; Nan X.; Hui-Hui Z. Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings. J. Plant Interact. 2019, 14, 482–491. 10.1080/17429145.2019.1662101. DOI
Hashem A.; Kumar A.; Al-Dbass A. M.; Alqarawi A. A.; Al-Arjani A.-B. F.; Singh G.; Farooq M.; Allah E. F. Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J. Biol. Sci. 2019, 26, 614–624. 10.1016/j.sjbs.2018.11.005. PubMed DOI PMC
Sheteiwy M. S.; Ali D. F.; Xiong Y. C.; Brestic M.; Skalicky M.; Hamoud Y. A.; Ulhassan Z.; Shaghaleh H.; AbdElgawad H.; Farooq M.; Sharma A. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC plant biology. 2021, 1, 1–21. 10.1186/s12870-021-02949-z. PubMed DOI PMC
Wu O. S.; Xia R. X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 2006, 163, 417–425. 10.1016/j.jplph.2005.04.024. PubMed DOI
Diagne N.; Ndour M.; Djighaly P. I.; Ngom D.; Ngom M. C.; Ndong G.; Svistoonoff S.; Cherif-Silini H. Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.). Frontiers in Sustainable Food Systems. 2020, 15, 266.10.3389/fsufs.2020.601004. DOI
Mathimaran N.; Jegan S.; Thimmegowda M. N.; Prabavathy V. R.; Yuvaraj P.; Kathiravan R.; Sivakumar M. N.; Manjunatha B. N.; Bhavitha N. C.; Sathish A.; Shashidhar G. C.; Bagyaraj D. J.; Ashok E. G.; Singh D.; Kahmen A.; Boller T.; Mader P.; et al. Intercropping transplanted pigeon pea with finger millet: Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input. Front. Sustain. Food Syst. 2020, 4, 88.10.3389/fsufs.2020.00088. DOI
Ma Y.; Látr A.; Rocha I.; Freitas H.; Vosátka M.; Oliveira R. S. Delivery of inoculum of Rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy. 2019, 9, 33.10.3390/agronomy9010033. DOI
Vafadar F.; Amooaghaie R.; Otroshy M. Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions. 2014, 9, 128–136. 10.1080/17429145.2013.779035. DOI
Lopez-Arredondo D. L.; Leyva-González M. A.; González-Morales S. I.; López-Bucio J.; Herrera-Estrella L. Phosphate nutrition: improving low-phosphate tolerance in crops. Annu. Rev. Plant Biol. 2014, 65, 95–123. 10.1146/annurev-arplant-050213-035949. PubMed DOI
Akhtar K.; Wang W.; Ren G.; Khan A.; Feng Y.; Yang G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong. China. Soil and Tillage Research. 2018, 182, 94–102. 10.1016/j.still.2018.05.007. DOI
Ibarra-Galeana J. A.; Castro-Martınez C.; Fierro-Coronado R. A.; Armenta-Bojorquez A. D.; Maldonado-Mendoza I. E. Characterization of phosphate-solubilizing bacteria exhibiting the potential for growth promotion and phosphorus nutrition improvement in maize (Zea mays L.) in calcareous soils of Sinaloa, Mexico. Ann. Microbiol. 2017, 67, 801–811. 10.1007/s13213-017-1308-9. DOI
Qaiser J.; Yong Seong L.; Hyeon Deok J.; Kil Young K. Effect of plant growth-promoting bacteria Bacillus amylliquefaciens Y1 on soil properties, pepper seedling growth, rhizosphere bacterial flora and soil enzymes. Plant Protection Science. 2018, 54, 129–137. 10.17221/154/2016-PPS. DOI
Gao C.; El-Sawah A. M.; Ali D. F. I.; Hamoud Y. A.; Shaghaleh H.; Sheteiwy M. S. The Integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy. 2020, 10, 319.10.3390/agronomy10030319. DOI
Ziheng S.; Yinli B.; Zhang J.; Yunli G.; Yang H. Arbuscular mycorrhizal fungi promote the growth of plants in the mining associated clay. Scientific Reports 2020, 10, 1–9. 10.11707/j.1001-7488.20140107. PubMed DOI PMC
Zai X. M.; Hao Z. P.; Zhao H.; Qin P. Rhizospheric niche of beach plum seedlings colonized by arbuscular mycorrhizal fungi. Sci. Silvae Sin. 2014, 50, 41–48. 10.11707/j.1001-7488.20140107. DOI