Aortic stenosis and mitral regurgitation modify the effect of venoarterial extracorporeal membrane oxygenation on left ventricular function in cardiogenic shock
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36224296
PubMed Central
PMC9556561
DOI
10.1038/s41598-022-21501-z
PII: 10.1038/s41598-022-21501-z
Knihovny.cz E-zdroje
- MeSH
- aortální stenóza * MeSH
- funkce levé komory srdeční fyziologie MeSH
- hypoxie MeSH
- kardiogenní šok terapie MeSH
- mimotělní membránová oxygenace * metody MeSH
- mitrální insuficience * terapie MeSH
- prasata MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Venoarterial extracorporeal membrane oxygenation (VA-ECMO) is widely used in the treatment of patients experiencing cardiogenic shock (CS). However, increased VA-ECMO blood flow (EBF) may significantly impair left ventricular (LV) performance. The objective of the present study was to assess the effect of VA-ECMO on LV function in acute CS with concomitant severe aortic stenosis (AS) or mitral regurgitation (MR) in a porcine model. Eight female swine (45 kg) underwent VA-ECMO implantation under general anaesthesia and mechanical ventilation. Acute CS was induced by global myocardial hypoxia. Subsequently, severe AS was simulated by obstruction of the aortic valve, while severe MR was induced by mechanical destruction of the mitral valve. Haemodynamic and LV performance variables were measured at different rates of EBF rates (ranging from 1 to 4 L/min), using arterial and venous catheters, a pulmonary artery catheter, and LV pressure-volume catheter. Data are expressed as median (interquartile range). Myocardial hypoxia resulted in declines in cardiac output to 2.7 (1.9-3.1) L/min and LV ejection fraction to 15.2% (10.5-19.3%). In severe AS, increasing EBF from 1 to 4 L/min was associated with a significant elevation in mean arterial pressure (MAP), from 33.5 (24.2-34.9) to 56.0 (51.9-73.3) mmHg (P ˂ 0.01). However, LV volumes (end-diastolic, end-systolic, stroke) remained unchanged, and LV end-diastolic pressure (LVEDP) significantly decreased from 24.9 (21.2-40.0) to 19.1 (15.2-29.0) mmHg (P ˂ 0.01). In severe MR, increasing EBF resulted in a significant elevation in MAP from 49.0 (28.0-53.4) to 72.5 (51.4-77.1) mmHg (P ˂ 0.01); LV volumes remained stable and LVEDP increased from 17.1 (13.7-19.1) to 20.8 (16.3-25.6) mmHg (P ˂ 0.01). Results of this study indicate that the presence of valvular heart disease may alleviate negative effect of VA-ECMO on LV performance in CS. Severe AS fully protected against LV overload, and partial protection was also detected with severe MR, although at the cost of increased LVEDP and, thus, higher risk for pulmonary oedema.
Cardiovascular Center Na Homolce Hospital Roentgenova 2 15000 Prague Czech Republic
Department of Physiology 1st Faculty of Medicine Charles University Prague Prague Czech Republic
Zobrazit více v PubMed
Combes A, Leprince P, Luyt CE, Bonnet N, Trouillet JL, Leger P, Pavie A, Chastre J. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit. Care Med. 2008;36(5):1404–1411. doi: 10.1097/CCM.0b013e31816f7cf7. PubMed DOI
Lackermair K, Brunner S, Orban M, Peterss S, Orban M, Theiss HD, Huber BC, Juchem G, Born F, Boulesteix AL, et al. Outcome of patients treated with extracorporeal life support in cardiogenic shock complicating acute myocardial infarction: 1-year result from the ECLS-Shock study. Clin. Res. Cardiol. 2021;110(9):1412–1420. doi: 10.1007/s00392-020-01778-8. PubMed DOI
Ostadal P, Rokyta R, Kruger A, Vondrakova D, Janotka M, Smid O, Smalcova J, Hromadka M, Linhart A, Belohlavek J. Extra corporeal membrane oxygenation in the therapy of cardiogenic shock (ECMO-CS): Rationale and design of the multicenter randomized trial. Eur. J. Heart Fail. 2017;19(Suppl 2):124–127. doi: 10.1002/ejhf.857. PubMed DOI
Thiele H, Freund A, Gimenez MR, de Waha-Thiele S, Akin I, Poss J, Feistritzer HJ, Fuernau G, Graf T, Nef H, et al. Extracorporeal life support in patients with acute myocardial infarction complicated by cardiogenic shock—Design and rationale of the ECLS-SHOCK trial. Am. Heart J. 2021;234:1–11. doi: 10.1016/j.ahj.2021.01.002. PubMed DOI
Banning AS, Adriaenssens T, Berry C, Bogaerts K, Erglis A, Distelmaier K, Guagliumi G, Haine S, Kastrati A, Massberg S, et al. Veno-arterial extracorporeal membrane oxygenation (ECMO) in patients with cardiogenic shock: Rationale and design of the randomised, multicentre, open-label EURO SHOCK trial. EuroIntervention. 2021;16(15):e1227–e1236. doi: 10.4244/EIJ-D-20-01076. PubMed DOI PMC
Fuhrman BP, Hernan LJ, Rotta AT, Heard CM, Rosenkranz ER. Pathophysiology of cardiac extracorporeal membrane oxygenation. Artif. Organs. 1999;23(11):966–969. doi: 10.1046/j.1525-1594.1999.06484.x. PubMed DOI
Ostadal P, Mlcek M, Kruger A, Hala P, Lacko S, Mates M, Vondrakova D, Svoboda T, Hrachovina M, Janotka M, et al. Increasing venoarterial extracorporeal membrane oxygenation flow negatively affects left ventricular performance in a porcine model of cardiogenic shock. J. Transl. Med. 2015;13:266. doi: 10.1186/s12967-015-0634-6. PubMed DOI PMC
Hirschl RB, Heiss KF, Bartlett RH. Severe myocardial dysfunction during extracorporeal membrane oxygenation. J. Pediatr. Surg. 1992;27(1):48–53. doi: 10.1016/0022-3468(92)90103-E. PubMed DOI
Kimball TR, Daniels SR, Weiss RG, Meyer RA, Hannon DW, Ryckman FC, Tian J, Shukla R, Schwartz DC. Changes in cardiac function during extracorporeal membrane oxygenation for persistent pulmonary hypertension in the newborn infant. J. Pediatr. 1991;118(3):431–436. doi: 10.1016/S0022-3476(05)82163-8. PubMed DOI
Berdjis F, Takahashi M, Lewis AB. Left ventricular performance in neonates on extracorporeal membrane oxygenation. Pediatr. Cardiol. 1992;13(3):141–145. doi: 10.1007/BF00793945. PubMed DOI
Pyles LA, Gustafson RA, Fortney J, Einzig S. Extracorporeal membrane oxygenation induced cardiac dysfunction in newborn lambs. J. Cardiovasc. Transl. Res. 2010;3(6):625–634. doi: 10.1007/s12265-010-9215-5. PubMed DOI
Shen I, Levy FH, Vocelka CR, O'Rourke PP, Duncan BW, Thomas R, Verrier ED. Effect of extracorporeal membrane oxygenation on left ventricular function of swine. Ann. Thorac. Surg. 2001;71(3):862–867. doi: 10.1016/S0003-4975(00)02280-3. PubMed DOI
Shen I, Levy FH, Benak AM, Rothnie CL, O'Rourke PP, Duncan BW, Verrier ED. Left ventricular dysfunction during extracorporeal membrane oxygenation in a hypoxemic swine model. Ann. Thorac. Surg. 2001;71(3):868–871. doi: 10.1016/S0003-4975(00)02281-5. PubMed DOI
Aissaoui N, Guerot E, Combes A, Delouche A, Chastre J, Leprince P, Leger P, Diehl JL, Fagon JY, Diebold B. Two-dimensional strain rate and Doppler tissue myocardial velocities: analysis by echocardiography of hemodynamic and functional changes of the failed left ventricle during different degrees of extracorporeal life support. J. Am. Soc. Echocardiogr. 2012;25(6):632–640. doi: 10.1016/j.echo.2012.02.009. PubMed DOI
Hala P, Mlcek M, Ostadal P, Popkova M, Janak D, Boucek T, Lacko S, Kudlicka J, Neuzil P, Kittnar O. Increasing venoarterial extracorporeal membrane oxygenation flow puts higher demands on left ventricular work in a porcine model of chronic heart failure. J. Transl. Med. 2020;18(1):75. doi: 10.1186/s12967-020-02250-x. PubMed DOI PMC
Ricarte Bratti, J.P., Cavayas, Y.A., Noly, P.E., Serri, K., Lamarche, Y. Modalities of left ventricle decompression during VA-ECMO therapy. Membranes (Basel). 2021, 11(3). PubMed PMC
Lusebrink E, Orban M, Kupka D, Scherer C, Hagl C, Zimmer S, Luedike P, Thiele H, Westermann D, Massberg S, et al. Prevention and treatment of pulmonary congestion in patients undergoing venoarterial extracorporeal membrane oxygenation for cardiogenic shock. Eur. Heart J. 2020;41(38):3753–3761. doi: 10.1093/eurheartj/ehaa547. PubMed DOI
Villablanca P, Nona P, Lemor A, Qintar M, O'Neill B, Lee J, Frisoli T, Wang DD, Eng MH, O'Neill WW. Mechanical circulatory support in cardiogenic shock due to structural heart disease. Interv. Cardiol. Clin. 2021;10(2):221–234. PubMed
Harjola VP, Lassus J, Sionis A, Kober L, Tarvasmaki T, Spinar J, Parissis J, Banaszewski M, Silva-Cardoso J, Carubelli V, et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur. J. Heart Fail. 2015;17(5):501–509. doi: 10.1002/ejhf.260. PubMed DOI
Bonello L, Laine M, Puymirat E, Ceccaldi V, Gaubert M, Paganelli F, Thuny PF, Dabry T, Schurtz G, Delmas C, et al. Etiology and prognosis of cardiogenic shock in a secondary center without surgical back-up. Cardiol. Res. Pract. 2019;2019:3869603. doi: 10.1155/2019/3869603. PubMed DOI PMC
Ostadal P, Mlcek M, Strunina S, Hrachovina M, Kruger A, Vondrakova D, Janotka M, Hala P, Kittnar O, Neuzil P. Novel porcine model of acute severe cardiogenic shock developed by upper-body hypoxia. Physiol. Res. 2016;65(4):711–715. doi: 10.33549/physiolres.933294. PubMed DOI
Ostadal P, Mlcek M, Gorhan H, Simundic I, Strunina S, Hrachovina M, Kruger A, Vondrakova D, Janotka M, Hala P, et al. Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock. PLoS ONE. 2018;13(4):e0196321. doi: 10.1371/journal.pone.0196321. PubMed DOI PMC
Raffa GM, Kowalewski M, Meani P, Follis F, Martucci G, Arcadipane A, Pilato M, Maessen J, Lorusso R. Group EiTI: In-hospital outcomes after emergency or prophylactic veno-arterial extracorporeal membrane oxygenation during transcatheter aortic valve implantation: A comprehensive review of the literature. Perfusion. 2019;34(5):354–363. doi: 10.1177/0267659118816555. PubMed DOI
Uehara K, Minakata K, Saito N, Imai M, Daijo H, Nakatsu T, Sakamoto K, Yamazaki K, Kimura T, Sakata R. Use of extracorporeal membrane oxygenation in complicated transcatheter aortic valve replacement. Gen. Thorac. Cardiovasc. Surg. 2017;65(6):329–336. doi: 10.1007/s11748-017-0757-1. PubMed DOI
Makdisi G, Makdisi PB, Wang IW. Use of extracorporeal membranous oxygenator in transcatheter aortic valve replacement. Ann. Transl. Med. 2016;4(16):306. doi: 10.21037/atm.2016.08.14. PubMed DOI PMC
Husser O, Holzamer A, Philipp A, Nunez J, Bodi V, Muller T, Lubnow M, Luchner A, Lunz D, Riegger GA, et al. Emergency and prophylactic use of miniaturized veno-arterial extracorporeal membrane oxygenation in transcatheter aortic valve implantation. Catheter. Cardiovasc. Interv. 2013;82(4):E542–551. PubMed
Banjac I, Petrovic M, Akay MH, Janowiak LM, Radovancevic R, Nathan S, Patel M, Loyalka P, Kar B, Gregoric ID. Extracorporeal membrane oxygenation as a procedural rescue strategy for transcatheter aortic valve replacement cardiac complications. ASAIO J. 2016;62(1):e1–4. doi: 10.1097/MAT.0000000000000275. PubMed DOI
Mlcek M, Meani P, Cotza M, Kowalewski M, Raffa GM, Kuriscak E, Popkova M, Pilato M, Arcadipane A, Ranucci M, et al. Atrial septostomy for left ventricular unloading during extracorporeal membrane oxygenation for cardiogenic shock: Animal model. JACC Cardiovasc. Interv. 2021;14(24):2698–2707. doi: 10.1016/j.jcin.2021.09.011. PubMed DOI