Phenology and plasticity can prevent adaptive clines in thermal tolerance across temperate mountains: The importance of the elevation-time axis
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36225839
PubMed Central
PMC9534760
DOI
10.1002/ece3.9349
PII: ECE39349
Knihovny.cz E-zdroje
- Klíčová slova
- local adaption, microclimate, niche conservatism, phenotypic plasticity, thermal tolerance, warming tolerance,
- Publikační typ
- časopisecké články MeSH
Critical thermal limits (CTmax and CTmin) decrease with elevation, with greater change in CTmin, and the risk to suffer heat and cold stress increasing at the gradient ends. A central prediction is that populations will adapt to the prevailing climatic conditions. Yet, reliable support for such expectation is scant because of the complexity of integrating phenotypic, molecular divergence and organism exposure. We examined intraspecific variation of CTmax and CTmin, neutral variation for 11 microsatellite loci, and micro- and macro-temperatures in larvae from 11 populations of the Galician common frog (Rana parvipalmata) across an elevational gradient, to assess (1) the existence of local adaptation through a PST-FST comparison, (2) the acclimation scope in both thermal limits, and (3) the vulnerability to suffer acute heat and cold thermal stress, measured at both macro- and microclimatic scales. Our study revealed significant microgeographic variation in CTmax and CTmin, and unexpected elevation gradients in pond temperatures. However, variation in CTmax and CTmin could not be attributed to selection because critical thermal limits were not correlated to elevation or temperatures. Differences in breeding phenology among populations resulted in exposure to higher and more variable temperatures at mid and high elevations. Accordingly, mid- and high-elevation populations had higher CTmax and CTmin plasticities than lowland populations, but not more extreme CTmax and CTmin. Thus, our results support the prediction that plasticity and phenological shifts may hinder local adaptation, promoting thermal niche conservatism. This may simply be a consequence of a coupled variation of reproductive timing with elevation (the "elevation-time axis" for temperature variation). Mid and high mountain populations of R. parvipalmata are more vulnerable to heat and cool impacts than lowland populations during the aquatic phase. All of this contradicts some of the existing predictions on adaptive thermal clines and vulnerability to climate change in elevational gradients.
Biodiversity Research Institute University of Oviedo Principality of Asturias CSIC Mieres Spain
Czech Academy of Sciences Institute of Vertebrate Biology Brno Czech Republic
Department of Evolutionary Ecology Estación Biológica de Doñana CSIC Sevilla Spain
Department of Organisms and Systems Biology University of Oviedo Oviedo Spain
Zobrazit více v PubMed
Álvarez, D. , Choda, M. , Viesca, L. , Cano, J. M. , Bañuelos, M. J. , Matsuba, C. , García, S. , & Nicieza, A. G. (2012). Variación genética adaptativa en gradientes altitudinales: Efectos sobre la viabilidad de poblaciones subdivididas en escenarios de cambio climático. In Ramírez L. & Asensio B. (Eds.), Proyectos de Investigación en parques nacionales: 2008–2011. Naturaleza y Parques Nacionales. Serie investigación en la red (pp. 125–150). Organismo Autónomo Parques Nacionales.
Alveal‐Riquelme, N. , Díaz‐Páez, H. , & Ortiz, J. C. (2016). Thermal tolerance in the Andean toad Rhinella spinulosa (Anura: Bufonidae) at three sites located along a latitudinal gradient in Chile. Journal of Thermal Biology, 60, 237–245. 10.1016/j.jtherbio.2016.07.019 PubMed DOI
Angilletta, M. J. J. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press.
Bachmann, J. C. , Jansen van Rensburg, A. , Cortazar‐Chinarro, M. , Laurila, A. , & Van Buskirk, J. (2020). Gene flow limits adaptation along steep environmental gradients. The American Naturalist, 195, E67–E86. 10.1086/707209 PubMed DOI
Bates, D. , Mächler, M. , Bolker, B. , & Walker, S. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67, 1–48. 10.18637/jss.v067.i01 DOI
Baudier, K. M. , Mudd, A. E. , Erickson, S. C. , & O'Donnell, S. (2015). Microhabitat and body size effects on heat tolerance: Implications for responses to climate change (army ants: Formicidae, Ecitoninae). The Journal of Animal Ecology, 84, 1322–1330. 10.1111/1365-2656.12388 PubMed DOI
Berven, K. A. , Gill, D. E. , & Smith‐Gill, S. J. (1979). Countergradient selection in the green frog, Rana clamitans . Evolution, 33, 609–623. 10.1111/j.1558-5646.1979.tb04714.x PubMed DOI
Bishop, T. R. , Robertson, M. P. , Rensburg, B. J. , & Parr, C. L. (2017). Coping with the cold: Minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecological Entomology, 42, 105–114. 10.1111/een.12364 DOI
Bogert, C. M. (1949). Thermoregulation in reptiles, a factor in evolution. Evolution, 3, 195–211. 10.1111/j.1558-5646.1949.tb00021.x PubMed DOI
Bozinovic, F. , Calosi, P. , & Spicer, J. I. (2011). Physiological correlates of geographic range in animals. Annual Review of Ecology, Evolution, and Systematics, 42, 155–179. 10.1146/annurev-ecolsys-102710-145055 DOI
Brommer, J. E. (2011). Whither Pst? The approximation of Qst by Pst in evolutionary and conservation biology. Journal of Evolutionary Biology, 24, 1160–1168. 10.1111/j.1420-9101.2011.02268.x PubMed DOI
Buckley, L. B. , Ehrenberger, J. C. , & Angilletta, M. J. (2015). Thermoregulatory behavior limits local adaptation of thermal niches and confers sensitivity to climate change. Functional Ecology, 29, 1038–1047. 10.1111/1365-2435.12406 DOI
Buckley, L. B. , & Huey, R. B. (2016). How extreme temperatures impact organisms and the evolution of their thermal tolerance. Integrative and Comparative Biology, 56, 98–109. 10.1093/icb/icw004 PubMed DOI
Buckley, L. B. , Miller, E. F. , & Kingsolver, J. G. (2013). Ectotherm thermal stress and specialization across altitude and latitude. Integrative and Comparative Biology, 53, 571–581. 10.1093/icb/ict026 PubMed DOI
Caillon, R. , Suppo, C. , Casas, J. , Arthur Woods, H. , & Pincebourde, S. (2014). Warming decreases thermal heterogeneity of leaf surfaces: Implications for behavioural thermoregulation by arthropods. Functional Ecology, 28, 1449–1458. 10.1111/1365-2435.12288 DOI
Camacho, A. , Rodrigues, M. T. , & Navas, C. (2015). Extreme operative temperatures are better descriptors of the thermal environment than mean temperatures. Journal of Thermal Biology, 49, 106–111. 10.1016/j.jtherbio.2015.02.007 PubMed DOI
Camacho‐Sánchez, M. , Velo‐Antón, G. , Hanson, J. O. , Veríssimo, A. , Martínez‐Solano, I. , Marques, A. , Moritz, C. , & Carvalho, S. B. (2020). Comparative assessment of range‐wide patterns of genetic diversity and structure with SNPs and microsatellites: A case study with Iberian amphibians. Ecology and Evolution, 19, 10353–10363. 10.1002/ece3.6670 PubMed DOI PMC
Chevin, L. M. , & Hoffmann, A. A. (2017). Evolution of phenotypic plasticity in extreme environments. Philosophical Transactions of the Royal Society B, 372, 20160138. 10.1098/rstb.2016.0138 PubMed DOI PMC
Chevin, L. M. , Lande, R. , & Mace, G. M. (2010). Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS Biology, 8, e1000357. 10.1371/journal.pbio.1000357 PubMed DOI PMC
Choda, M. (2014). Genetic variation and local adaptations of Rana parvipalmata in the Cantabrian Mountains. PhD Thesis. Universidad de Oviedo.
Claussen, D. L. (1977). Thermal acclimation in ambystomatid salamanders. Comparative Biochemistry and Physiology Part A: Physiology, 58, 333–340. 10.1016/0300-9629(77)90150-5 DOI
Corn, P. S. (2003). Amphibian breeding and climate change: Importance of snow in the mountains. Conservation Biology, 17, 622–625. 10.1046/j.1523-1739.2003.02111.x DOI
DeFaveri, J. , Viitaniemi, H. , Leder, E. , & Merilä, J. (2011). Characterizing genic and nongenic molecular markers: Comparison of microsatellites and SNPs. Molecular Ecology Resources, 13, 377–392. 10.1111/1755-0998.12071 PubMed DOI
Deutsch, C. A. , Tewksbury, J. J. , Huey, R. B. , Sheldon, K. S. , Ghalambor, C. K. , Haak, D. C. , & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105, 6668–6672. 10.1073/pnas.0709472105 PubMed DOI PMC
Diamond, S. E. , & Chick, L. D. (2018). The Janus of macrophysiology: Stronger effects of evolutionary history, but weaker effects of climate on upper thermal limits are reversed for lower thermal limits in ants. Current Zoology, 64, 223–230. 10.1093/cz/zox072 PubMed DOI PMC
Duarte, H. , Tejedo, M. , Katzenberguer, M. , Marangoni, F. , Baldo, D. , Beltrán, J. F. , Martí, D. A. , Richter‐Boix, A. , & Gonzalez‐Voyer, A. (2012). Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Global Change Biology, 18, 412–421. 10.1111/j.1365-2486.2011.02518.x DOI
Dufresnes, C. , Nicieza, A. G. , Litvinchuk, S. N. , Rodrigues, N. , Jeffries, D. L. , Vences, M. , Perrin, N. , & Martínez‐Solano, Í. (2020). Are glacial refugia hotspots of speciation and cytonuclear discordances? Answers from the genomic phylogeography of Spanish common frogs. Molecular Ecology, 29, 986–1000. 10.1111/mec.15368 PubMed DOI
Endler, J. A. (1977). Geographic variation, speciation, and clines. Princeton University Press. PubMed
Enriquez‐Urzelai, U. , Kearney, M. R. , Nicieza, A. G. , & Tingley, R. (2019). Integrating mechanistic and correlative niche models to unravel range‐limiting processes in a temperate amphibian. Global Change Biology, 25, 2633–2647. 10.1111/gcb.14673 PubMed DOI
Enriquez‐Urzelai, U. , Palacio, A. S. , Merino, N. M. , Sacco, M. , & Nicieza, A. G. (2018). Hindered and constrained: Limited potential for thermal adaptation in post‐metamorphic and adult Rana parvipalmata along elevational gradients. Journal of Evolutionary Biology, 31, 1852–1862. 10.1111/jeb.13380 PubMed DOI
Enriquez‐Urzelai, U. , Sacco, M. , Palacio, A. S. , Pintanel, P. , Tejedo, M. , & Nicieza, A. G. (2019). Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria . Oecologia, 189, 385–394. 10.1007/s00442-019-04342-y PubMed DOI
Enriquez‐Urzelai, U. , Tingley, R. , Kearney, M. R. , Sacco, M. , Palacio, A. S. , Tejedo, M. , & Nicieza, A. G. (2020). The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. Journal of Animal Ecology, 89, 1722–1734. 10.1111/1365-2656.13222 PubMed DOI
Farallo, V. R. , Muñoz, M. M. , Uyeda, J. C. , & Miles, D. B. (2020). Scaling between macro‐ to microscale climatic data reveals strong phylogenetic inertia in niche evolution in plethodontid salamanders. Evolution, 74, 799–991. 10.1111/evo.13959 PubMed DOI
Farallo, V. R. , Wier, R. , & Miles, D. B. (2018). The Bogert effect revisited: Salamander regulatory behaviors are differently constrained by time and space. Ecology and Evolution, 8, 11522–11532. 10.1002/ece3.4590 PubMed DOI PMC
Feder, M. E. , & Hofmann, G. E. (1999). Heat‐shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annual Review of Physiology, 61, 243–282. 10.1146/annurev.physiol.61.1.243 PubMed DOI
Fick, S. E. , & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. 10.1002/joc.5086 DOI
Floyd, R. B. (1983). Ontogenetic change in the temperature tolerance of larval Bufo mari‐nus (Anura: Bufonidae). Comparative Biochemistry and Physiology, 75A, 267–271. 10.1016/0300-9629(83)90081-6 DOI
Garland, T. , Adolph, S. C. , & Adolph, C. (1991). Physiological differentiation of vertebrate populations. Annual Review of Ecology and Systematics, 22, 193–228. 10.1146/annurev.es.22.110191.001205 DOI
Gilbert, A. L. , & Miles, D. B. (2019). Spatiotemporal variation in thermal niches suggests lability rather than conservatism of thermal physiology along an environmental gradient. Biological Journal of the Linnean Society, 128, 263–277. 10.1093/biolinnean/blz093 DOI
Gilchrist, G. W. (1995). Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. The American Naturalist, 146, 252–270. 10.1086/285797 DOI
Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16, 183–190. 10.2307/3890061 DOI
Goudet, J. (2002). FSTAT, a program to estimate and test gene diversities and fixation indices.
Gunderson, A. R. , & Stillman, J. H. (2015). Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. London B Biol. Sci., 282, 20150401. 10.1098/rspb.2015.0401 PubMed DOI PMC
Guo, S. W. , & Thompson, E. A. (1992). Performing the exact test of Hardy‐Weinberg proportion for multiple alleles. Biometrics, 48, 361–372. 10.2307/2532296 PubMed DOI
Gutiérrez‐Pesquera, L. M. , Tejedo, M. , Olalla‐Tárraga, M. Á. , Duarte, H. , Nicieza, A. , & Solé, M. (2016). Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. Journal of Biogeography, 43, 1166–1178. 10.1111/jbi.12700 DOI
Gvoždík, L. , & Castilla, A. M. (2001). A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca vivipara (Squamata: Lacertidae) along an altitudinal gradient. Journal of Herpetology, 35, 486–492. 10.2307/1565967 DOI
Habary, A. , Johansen, J. L. , Nay, T. J. , Steffensen, J. F. , & Rummer, J. L. (2017). Adapt, move or die—how will tropical coral reef fishes cope with ocean warming? Global Change Biology, 23, 566–577. 10.1111/gcb.13488 PubMed DOI
Helmuth, B. (2009). From cells to coastlines: How can we use physiology to forecast the impacts of climate change? The Journal of Experimental Biology, 212, 53–60. 10.1242/jeb.023861 PubMed DOI
Hijmans, R. J. , Cameron, S. E. , Parra, J. L. , Jones, P. G. , & Jarvis, A. (2005). Very high resolution interpolated climate surfaces of global land areas. International Journal of Climatology, 25, 1965–1978. 10.1002/joc.1276 DOI
Hijmans, R. J. & van Etten, J. (2014). Raster: Geographic data analysis and modeling. https://CRAN.R‐project.org/package=raster.
Hodkinson, I. D. (2005). Terrestrial insects along elevation gradients: Species and community responses to altitude. Biological Reviews, 80, 489–513. 10.1017/S1464793105006767 PubMed DOI
Hoffmann, A. A. , Chown, S. L. , & Clusella‐Trullas, S. (2013). Upper thermal limits in terrestrial ectotherms: How constrained are they? Functional Ecology, 27, 934–949. 10.1111/j.1365-2435.2012.02036.x DOI
Hoffmann, A. A. , & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470, 479–485. 10.1038/nature09670 PubMed DOI
Huey, R. B. , Hertz, P. E. , & Sinervo, B. (2003). Behavioral drive versus behavioral inertia in evolution: A null model approach. The American Naturalist, 161, 357–366. 10.1086/346135 PubMed DOI
Huey, R. B. , Kearney, M. R. , Krockenberger, A. , Holtum, J. A. M. , Jess, M. , & Williams, S. E. (2012). Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B, 367, 1665–1679. 10.1098/rstb.2012.0005 PubMed DOI PMC
Hutchison, V. H. (1961). Critical thermal maxima in salamanders. Physiological Zoology, 34, 92–125.
Hutchison, V. H. , & Dupré, R. K. (1992). Thermoregulation. In Feder M. E. & Burggren W. M. (Eds.), Environmental Physiology of the Amphibians (pp. 206–249). The University of Chicago Press.
IPCC . (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC.
Janzen, D. H. (1967). Why mountain passes are higher in the tropics. American Naturalist, 101, 233–247. 10.1086/282487 DOI
Janzen, D. H. , & Martin, P. S. (1982). Neotropical anachronisms: The fruits the gomphotheres ate. Science, 215, 19–27. 10.1126/science.215.4528.19 PubMed DOI
Katzenberger, M. , Hammond, J. , Tejedo, M. , & Relyea, R. (2018). Source of environmental data and warming tolerance estimation in six species of North American larval anurans. Journal of Thermal Biology, 76, 171–178. 10.1016/j.jtherbio.2018.07.005 PubMed DOI
Kearney, M. , & Porter, W. P. (2017). NicheMapR – an R package for biophysical modelling: The microclimate model. Ecography, 40, 664–674. 10.1111/ecog.02360 DOI
Kearney, M. , & Porter, W. P. (2020). NicheMapR – an R package for biophysical modelling: The ectotherm and Dynamic Energy Budget models. Ecography, 43, 85–93. 10.1111/ecog.04680 DOI
Kearney, M. , Shine, R. , & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer “cold‐blooded” animals against climate warming. Proceedings of the National Academy of Sciences of the United States of America, 106, 3835–3840. 10.1073/pnas.0808913106 PubMed DOI PMC
Klok, C. J. , & Chown, S. L. (2003). Resistance to temperature extremes in sub‐Antarctic weevils: Interspecific variation, population differentiation and acclimation. Biological Journal of the Linnean Society, 78, 401–414. 10.1046/j.1095-8312.2003.00154.x DOI
Laugen, A. T. , Laurila, A. , Räsänen, K. , & Merilä, J. (2003). Latitudinal countergradient variation in the common frog (Rana temporaria) development rates – evidence for local adaptation. Journal of Evolutionary Biology, 16, 996–1005. 10.1046/j.1420-9101.2003.00560.x PubMed DOI
Leinonen, T. , Cano, J. M. , Mäkinen, H. , & Merilä, J. (2006). Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. Journal of Evolutionary Biology, 19, 1803–1812. 10.1111/j.1420-9101.2006.01182.x PubMed DOI
Leinonen, T. , O'Hara, R. B. , Cano, J. M. , & Merilä, J. (2008). Comparative studies of quantitative trait and neutral marker divergence: A meta‐analysis. Journal of Evolutionary Biology, 21, 1–17. 10.1111/j.1420-9101.2007.01445.x PubMed DOI
Lemopoulos, A. , Prokkola, J. M. , Uusi‐Heikkilä, S. , Vasemägi, A. , Huusko, A. , Hyvärinen, P. , Koljonen, M.‐L. , Koskiniemi, J. , & Vainikka, A. (2019). Comparing RADseq and microsatellites for estimating genetic diversity and relatedness — Implications for brown trout conservation. Ecology and Evolution, 9, 2106–2120. 10.1002/ece3.4905 PubMed DOI PMC
Lenhardt, P. P. , Brühl, C. A. , Leeb, C. , & Theissinger, K. (2017). Amphibian population genetics in agricultural landscapes: Does viniculture drive the population structuring of the European common frog (Rana temporaria)? PeerJ, 5, e3520. 10.7717/peerj.3520 PubMed DOI PMC
Levins, R. (1969). Thermal acclimation and heat resistance in Drosophila species. The American Naturalist, 103, 483–499. 10.1086/282616 DOI
Lind, M. I. , Ingvarsson, P. K. , Johansson, H. , Hall, D. , & Johansson, F. (2011). Gene flow and selection on phenotypic plasticity in an Island system of Rana temporaria . Evolution, 65, 684–697. 10.1111/j.1558-5646.2010.01122.x PubMed DOI
Luquet, E. , Léna, J. P. , Miaud, C. , & Plénet, S. (2015). Phenotypic divergence of the common toad (Bufo bufo) along an altitudinal gradient: Evidence for local adaptation. Heredity, 114, 69–79. 10.1038/hdy.2014.71 PubMed DOI PMC
Lutterschmidt, W. I. , & Hutchison, V. H. (1997a). The critical thermal maximum: Data to support the onset of spasms as the definitive end point. Canadian Journal of Zoology, 75, 1553–1560. 10.1139/z97-782 DOI
Lutterschmidt, W. I. , & Hutchison, V. H. (1997b). The critical thermal maximum: History and critique. Canadian Journal of Zoology, 75, 1561–1574. 10.1139/z97-783 DOI
Mallard, F. , Nolte, V. , & Schlötterer, C. (2020). The evolution of phenotypic plasticity in response to temperature stress. Genome Biology and Evolution, 12, 2429–2440. 10.1093/gbe/evaa206 PubMed DOI PMC
McCann, S. M. , Kosmala, G. K. , Greenlees, M. J. , & Shine, R. (2018). Physiological plasticity in a successful invader: Rapid acclimation to cold occurs only in cool‐climate populations of cane toads (Rhinella marina). Conservation Physiology, 6, cox 072. 10.1093/conphys/cox072 PubMed DOI PMC
Miller, K. , & Packard, G. C. (1977). An altitudinal cline in critical thermal maxima of Chorus frogs (Pseudacris triseriata). The American Naturalist, 111, 267–277. 10.1086/283159 DOI
Moreira, M. O. , Qu, Y.‐F. , & Wiens, J. J. (2021). Large‐scale evolution of body temperatures in land vertebrates. Evolution Letters, 5, 484–494. 10.1002/evl3.249 PubMed DOI PMC
Muir, A. P. , Biek, R. , Thomas, R. , & Mable, B. K. (2014). Local adaptation with high gene flow: Temperature parameters drive adaptation to altitude in the common frog (Rana temporaria). Molecular Ecology, 23, 561–574. 10.1111/mec.12624 PubMed DOI PMC
Muñoz, M. M. (2022). The Bogert effect, a factor in evolution. Evolution, 76, 49–66. 10.1111/evo.14388 PubMed DOI
Muñoz, M. M. , & Losos, J. B. (2018). Thermoregulation simultaneously promotes and forestalls evolution in a tropical lizard. American Naturalist, 191, E15–E26. 10.1086/694779 PubMed DOI
Muñoz, M. M. , Stimola, M. A. , Algar, A. C. , Conover, A. , Rodriguez, A. J. , Landestoy, M. A. , Bakken, G. S. , & Losos, J. B. (2014). Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proceedings of the Royal Society, 281, 20132433. PubMed PMC
Navas, C. A. , Carvajalino‐Fernández, J. M. , Saboy‐Acosta, L. P. , Rueda‐Solano, L. A. , & Carvajalino‐Fernández, M. A. (2013). The body temperature of active amphibians along a tropical elevation gradient: Patterns of mean and variance and inference from environmental data. Functional Ecology, 27, 1145–1154. 10.1111/1365-2435.12106 DOI
Oksanen, J. , Blanchet, F. G. , Friendly, M. , Kindt, R. , Legendre, P. , McGlinn, D. , Minchin, P. R. , O’Hara, R. B. , Simpson, G. L. , Solymos, P. , Stevens, M. H. H. , Szoecs, E. , & Wagner, H. (2018). Package 'vegan': Community Ecology Package. R package Version 2.5‐2. https://CRAN.R‐project.org/package=vegan
Oosterhout, C. , Hutchinson, W. F. , Wills, D. P. M. , & Shipley, P. (2004). MICRO‐CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535–538. 10.1111/j.1471-8286.2004.00684.x DOI
Overgaard, J. , Kearney, M. R. , & Hoffmann, A. A. (2014). Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Global Change Biology, 20, 1738–1750. 10.1111/gcb.12521 PubMed DOI
Pacifici, M. , Foden, W. B. , Visconti, P. , Watson, J. E. M. , Butchart, S. H. M. , Kovacs, K. M. , Scheffers, B. R. , Hole, D. G. , Martin, T. G. , Akçakaya, H. R. , Corlett, R. T. , Huntley, B. , Bickford, D. , Carr, J. A. , Hoffmann, A. A. , Midgley, G. F. , Pearce‐Kelly, P. , Pearson, R. G. , Williams, S. E. , … Rondinini, C. (2015). Assessing species vulnerability to climate change. Nature Climate Change, 5, 215–224. 10.1038/nclimate2448 DOI
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669. 10.1146/annurev.ecolsys.37.091305.110100 DOI
Phillimore, A. B. , Hadfield, J. D. , Jones, O. R. , & Smithers, R. J. (2010). Differences in spawning date between populations of common frog reveal local adaptation. Proceedings of the National Academy of Sciences of the United States of America, 107, 8292–8297. 10.1073/pnas.0913792107 PubMed DOI PMC
Pidancier, N. , Miquel, C. , & Miaud, C. (2003). Buccal swabs as a non‐destructive tissue sampling method for DNA analysis in amphibians. Herpetological Journal, 13, 175–178. https://www.thebhs.org/publications/the‐herpetological‐journal/volume‐13‐number‐4‐october‐2003/1731‐03‐buccal‐swabs‐as‐a‐non‐destructive‐tissue‐sampling‐method‐for‐dna‐analysis‐in‐amphibians
Pincebourde, S. , Murdock, C. C. , Vickers, M. , & Sears, M. W. (2016). Fine‐scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integrative and Comparative Biology, 56, 45–61. 10.1093/icb/icw016 PubMed DOI
Pintanel, P. , Tejedo, M. , Merino‐Viteri, A. , Almeida‐Reinoso, F. , Salinas‐Ivanenko, S. , López‐Rosero, A. C. , Llorente, G. A. , & Gutiérrez‐Pesquera, L. M. (2022). Elevational and local climate variability predicts thermal breadth of mountain tropical tadpoles. Ecography, 2022, e05906. 10.1111/ecog.05906 DOI
Pintanel, P. , Tejedo, M. , Ron, S. R. , Llorente, G. A. , & Merino‐Viteri, A. (2019). Elevational and microclimatic drivers of thermal tolerance in Andean Pristimantis frogs. Journal of Biogeography, 46, 1664–1675. 10.1111/jbi.13596 DOI
Polato, N. R. , Gill, B. A. , Shah, A. A. , Gray, M. M. , Casner, K. L. , Barthelet, A. , Messer, P. W. , Simmons, M. P. , Guayasamin, J. M. , Encalada, A. C. , Kondratieff, B. C. , Flecker, A. S. , Thomas, S. A. , Ghalambor, C. K. , Poff, N. L. , Funk, W. C. , & Zamudio, K. R. (2018). Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proceedings of the National Academy of Sciences of the United States of America, 115, 12471–12476. 10.1073/pnas.1809326115 PubMed DOI PMC
Porter, W. P. , Sabo, J. L. , Tracy, C. R. , Reichman, O. J. , & Ramankutty, N. (2002). Physiology on a landscape scale: Plant‐animal interactions. Integrative and Comparative Biology, 42, 431–453. 10.1093/icb/42.3.431 PubMed DOI
Potter, K. A. , Woods, H. A. , & Pincebourde, S. (2013). Microclimatic challenges in global change biology. Global Change Biology, 19, 2932–2939. 10.1111/gcb.12257 PubMed DOI
Pujol, B. , Wilson, A. J. , Ross, R. I. C. , & Pannell, J. R. (2008). Are Q(ST)‐F(ST) comparisons for natural populations meaningful? Molecular Ecology, 17, 4782–4785. 10.1111/j.1365-294X.2008.03958.x PubMed DOI
Qu, Y.‐F. , & Wiens, J. J. (2020). Higher temperatures lower rates of physiological and niche evolution. Proceedings of the Royal Society, 287(20200823). 10.1098/rspb.2020.0823 PubMed DOI PMC
R Core Team . (2019). R: A Language and Environment for Statistical Computing.
Ragland, G. J. , & Kingsolver, J. G. (2008). Evolution of thermotolerance in seasonal environments: The effects of annual temperature variation and life‐history timing in Wyeomyia smithii . Evolution, 62, 1345–1357. 10.1111/j.1558-5646.2008.00367.x PubMed DOI
Raymond, M. , & Rousset, F. (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. The Journal of Heredity, 86, 248–249. 10.1093/oxfordjournals.jhered.a111573 DOI
Remold, S. (2012). Understanding specialism when the Jack of all trades can be the master of all. Proceedings of the Biological Sciences, 279, 4861–4869. 10.1098/rspb.2012.1990 PubMed DOI PMC
Richter‐Boix, A. , Katzenberger, M. , Duarte, H. , Quintela, M. , Tejedo, M. , & Laurila, A. (2015). Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation. Evolution, 69, 2210–2226. 10.1111/evo.12711 PubMed DOI
Ruthsatz, K. , Dausmann, K. H. , Peck, M. A. , & Glos, J. (2022). Thermal tolerance and acclimation capacity in the European common frog (Rana temporaria) change throughout ontogeny. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 337, 477–490. 10.1002/jez.2582 PubMed DOI
Saint‐Pé, K. , Leitwein, M. , Tissot, L. , Poulet, N. , Guinand, B. , Berrebi, P. , Marselli, G. , Lascaux, J.‐M. , Gagnaire, P.‐A. , & Blanchet, S. (2019). Development of a large SNPs resource and a low‐density SNP array for brown trout (Salmo trutta) population genetics. BMC Genomics, 20, 582. 10.1186/s12864-019-5958-9 PubMed DOI PMC
Schou, M. F. , Mouridsen, M. B. , Sørensen, J. G. , & Loeschcke, V. (2017). Linear reaction norms of thermal limits in Drosophila: Predictable plasticity in cold but not in heat tolerance. Functional Ecology, 31, 934–945. 10.1111/1365-2435.12782 DOI
Senior, A. F. , Atkins, Z. S. , Clemann, N. , Gardner, M. G. , Schroder, M. , While, G. M. , Wong, B. B. M. , & Chapple, D. G. (2019). Variation in thermal biology of three closely related lizard species along an elevation gradient. Biological Journal of the Linnean Society, 127, 278–291. 10.1093/biolinnean/blz046 DOI
Seppä, P. , & Laurila, A. (1999). Genetic structure of Island populations of the anurans Rana temporaria and Bufo bufo . Heredity, 82, 309–317. 10.1038/sj.hdy.6884900 PubMed DOI
Shah, A. A. , Gill, B. A. , Encalada, A. C. , Flecker, A. S. , Funk, W. C. , Guayasamin, J. M. , Kondratieff, B. C. , Poff, N. L. R. , Thomas, S. A. , Zamudio, K. R. , & Ghalambor, C. K. (2017). Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology, 31, 2118–2127. 10.1111/1365-2435.12906 DOI
Slatkin, M. (1973). Gene flow and selection in a cline. Genetics, 75, 733–356. 10.1093/genetics/75.4.733 PubMed DOI PMC
Slatyer, R. A. , Nash, M. A. , & Hoffmann, A. A. (2016). Scale‐dependent thermal tolerance variation in Australian mountain grasshoppers. Ecography, 39, 572–582. 10.1111/ecog.01616 DOI
Slatyer, R. A. , & Schoville, S. D. (2016). Physiological limits along an elevational gradient in a radiation of montane ground beetles. PLoS One, 11, e0151959. 10.1371/journal.pone.0151959 PubMed DOI PMC
Slatyer, R. A. , Schoville, S. D. , Nufio, C. R. , & Buckley, L. B. (2019). Do different rates of gene flow underlie variation in phenotypic and phenological clines in a montane grasshopper community? Ecology and Evolution, 10, 980–997. 10.1002/ece3.5961 PubMed DOI PMC
Socolar, J. B. , Epanchin, P. N. , Beissinger, S. R. , & Tingley, M. W. (2017). Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate‐driven range shifts. Proceedings of the National Academy of Sciences of the United States of America, 114, 12976–12981. 10.1073/pnas.1705897114 PubMed DOI PMC
Somero, G. N. (2010). The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers.’. The Journal of Experimental Biology, 213, 912–920. 10.1242/jeb.037473 PubMed DOI
Sørensen, J. G. , Norry, F. M. , Scannapieco, A. C. , & Loeschcke, V. (2005). Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatii from the New World. Journal of Evolutionary Biology, 18, 829–837. 10.1111/j.1420-9101.2004.00876.x PubMed DOI
Stevens, G. C. (1989). The latitudinal gradient in geographical range—how so many species coexist in the tropics. The American Naturalist, 133, 240–256. 10.1086/284913 DOI
Stillman, J. H. (2003). Acclimation capacity underlies susceptibility to climate change. Science, 301, 65. 10.1126/science.1083073 PubMed DOI
Suggitt, A. J. , Gillingham, P. K. , Hill, J. K. , Huntley, B. , Kunin, W. E. , Roy, D. B. , & Thomas, C. D. (2011). Habitat microclimates drive fine‐scale variation in extreme temperatures. Oikos, 120, 1–8. 10.1111/j.1600-0706.2010.18270.x DOI
Sunday, J. , Bennett, J. M. , Calosi, P. , Clusella‐Trullas, S. , Gravel, S. , Hargreaves, A. L. , Leiva, F. P. , Verberk, W. C. E. P. , Olalla‐Tárraga, M. Á. , & Morales‐Castilla, I. (2019). Thermal tolerance patterns across latitude and elevation. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, 20190036. 10.1098/rstb.2019.0036 PubMed DOI PMC
Sunday, J. M. , Bates, A. E. , Kearney, M. R. , Colwell, R. K. , Dulvy, N. K. , Longino, J. T. , & Huey, R. B. (2014). Thermal‐safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 111, 5610–5615. 10.1073/pnas.1316145111 PubMed DOI PMC
Tonione, M. A. , Cho, S. M. , Richmond, G. , Irian, C. , & Tsutsui, N. D. (2020). Intraspecific variation in thermal acclimation and tolerance between populations of the Winter ant, Prenolepis imparis. Ecology and Evolution, 10, 749–4761. 10.1002/ece3.6229 PubMed DOI PMC
Walther, G.‐R. , Post, E. , Convey, P. , Menzel, A. , Parmesan, C. , Beebee, T. J. C. , Fromentin, J. M. , Hoegh‐Guldberg, O. , & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416, 389–395. 10.1038/416389a PubMed DOI
Weir, B. S. , & Cockerham, C. C. (1984). Estimating F‐statistics for the analysis of population structure. Evolution, 38, 1358–1370. 10.2307/2408641 PubMed DOI
Wilczek, A. M. , Burghardt, L. T. , Cobb, A. R. , Cooper, M. D. , Welch, S. M. , & Schmitt, J. (2010). Genetic and physiological bases for phenological responses to current and predicted climates. Philosophical Transactions of the Royal Society B, 365, 3129–3147. 10.1098/rstb.2010.0128 PubMed DOI PMC
figshare
10.6084/m9.figshare.21187024.v1