Towards Sustainable Wastewater Treatment: Bioindication as a Technique for Supporting Treatment Efficiency Assessment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36231168
PubMed Central
PMC9565086
DOI
10.3390/ijerph191911859
PII: ijerph191911859
Knihovny.cz E-zdroje
- Klíčová slova
- bioindication, constructed wetlands, ecotoxicity, environmental depollution, micropollutants, pharmaceutical pollution, removal of emerging contaminants,
- MeSH
- antioxidancia MeSH
- čištění vody * metody MeSH
- diklofenak toxicita MeSH
- katalasa MeSH
- mokřady MeSH
- odpad tekutý - odstraňování metody MeSH
- odpadní voda * chemie MeSH
- sulfamethoxazol toxicita MeSH
- superoxiddismutasa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- diklofenak MeSH
- katalasa MeSH
- odpadní voda * MeSH
- sulfamethoxazol MeSH
- superoxiddismutasa MeSH
Constructed wetlands (CWs) are a promising alternative for conventional methods of wastewater treatment. However, the biggest challenge in wastewater treatment is the improvement of the technology used so that it is possible to remove micropollutants without additional costs. The impact of wastewater treatment in CWs on toxicity towards Aliivibrio fischeri, Daphnia magna and Lemna minor was investigated. The effects of feeding regime (wastewater fed in five batches per week at a batch volume of 1 L, or twice per week at a batch volume of 2.5 L) and the presence of pharmaceuticals (diclofenac and sulfamethoxazole), as well as the presence of Miscantus giganteus plants in CW columns (twelve of the 24 columns that were planted) were analyzed. A reduction in toxicity was observed in all experimental setups. The effluents from constructed wetlands were classified as moderately toxic (average TU for A. fischeri, D. magna and L. minor was 0.9, 2.5 and 5.5, respectively). The feeding regime of 5 days of feeding/2 days of resting resulted in a positive impact on the ecotoxicological and chemical parameters of wastewater (removal of TOC, N-NH4 and pharmaceuticals). Extended exposure of Miscantus giganteus to the wastewater containing pharmaceuticals resulted in elevated activity of antioxidant enzymes (catalase and superoxide dismutase) in leaf material.
Zobrazit více v PubMed
Tang J., Zhang C., Shi X., Sun J., Cunningham J.A. Municipal wastewater treatment plants coupled with electrochemical, biological and bio-electrochemical technologies: Opportunities and challenge toward energy self-sufficiency. J. Environ. Manag. 2019;234:396–403. doi: 10.1016/j.jenvman.2018.12.097. PubMed DOI
Wu H., Zhang J., Ngo H.H., Guo W., Hu Z., Liang S., Fan J., Liu H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015;175:594–601. doi: 10.1016/j.biortech.2014.10.068. PubMed DOI
Doble M. Treatment of waste from organic chemical industries. In: Doble M., Kumar A., editors. Biotreatment of Industrial Effluents. Butterworth-Heinemann; Oxford, UK: 2005. pp. 55–64. DOI
Liu L., Fan H., Huang X., Wei L., Liu C. Fate of antibiotics from swine wastewater in constructed wetlands with different flow configurations. Int. Biodeterior. Biodegrad. 2019;140:119–125. doi: 10.1016/j.ibiod.2019.04.002. DOI
Bakhshoodeh R., Alavi N., Oldham C., Santos R.M., Babaei A.A., Vymazal J., Paydary P. Constructed wetlands for landfill leachate treatment: A review. Ecol. Eng. 2020;146:105725. doi: 10.1016/j.ecoleng.2020.105725. DOI
De Martis G., Mulas B., Malavasi V., Marignani M. Can artificial ecosystems enhance local biodiversity? The case of a constructed wetland in a Mediterranean urban context. Environ. Manag. 2016;57:1088–1097. doi: 10.1007/s00267-016-0668-4. PubMed DOI
Vymazal J. Is removal of organics and suspended solids in horizontal sub-surface flow constructed wetlands sustainable for twenty and more years? Chem. Eng. J. 2019;378:122117. doi: 10.1016/j.cej.2019.122117. DOI
Stanković D. Constructed wetlands for wastewater treatment. Građevinar. 2017;69:639–652. doi: 10.14256/JCE.2062.2017. DOI
Zhi W., Ji G. Constructed wetlands, 1991–2011: A review of research development, current trends, and future directions. Sci. Total Environ. 2012;441:19–27. doi: 10.1016/j.scitotenv.2012.09.064. PubMed DOI
Parde D., Patwa A., Shukla A., Vijay R., Killedar D.J., Kumar R. A review of constructed wetland on type, technology and treatment of wastewater. Environ. Technol. Innov. 2021;21:101261. doi: 10.1016/j.eti.2020.101261. DOI
Prado M., Borea L., Cesaro A., Liu H., Naddeo V., Belgiorno V., Ballesteros F., Jr. Removal of emerging contaminant and fouling control in membrane bioreactors by combined ozonation and sonolysis. Int. Biodeterior. Biodegrad. 2017;119:577–586. doi: 10.1016/j.ibiod.2016.10.044. DOI
Chen W.-H., Wong Y.-T., Huang T.-H., Chen W.-H., Lin J.-G. Removals of pharmaceuticals in municipal wastewater using a staged anaerobic fluidized membrane bioreactor. Int. Biodeterior. Biodegrad. 2019;140:29–36. doi: 10.1016/j.ibiod.2019.03.008. DOI
Meffe R., de Bustamante I. Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy. Sci. Total Environ. 2014;481:280–295. doi: 10.1016/j.scitotenv.2014.02.053. PubMed DOI
Sousa J.C.G., Ribeiro A.R., Barbosa M.O., Pereira M.F.R., Silva A.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018;344:146–162. doi: 10.1016/j.jhazmat.2017.09.058. PubMed DOI
Yang Y., Ok Y.S., Kim K.-H., Kwon E.E., Tsang Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017;596–597:303–320. doi: 10.1016/j.scitotenv.2017.04.102. PubMed DOI
European Commission . Commission Implementing Decision (EU) 2015/495 of 20 March 2015 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. European Commission; Brussels, Belgium: 2015.
European Commission . The European Union Water Framework Directive—Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for the Community Action in the Field of Water Policy. European Commission; Brussels, Belgium: 2000.
Loos R., Marinov D., Sanseverino I., Napierska D., Lettieri T. Review of the 1st Watch List under the Water Framework Directive and Recommendations for the 2nd Watch List. Joint Research Centre; Brussels, Belgium: 2018. JRC Technical Reports.
Baran W., Adamek E., Ziemiańska J., Sobczak A. Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater. 2011;196:1–15. doi: 10.1016/j.jhazmat.2011.08.082. PubMed DOI
Felis E., Kalka J., Sochacki A., Kowalska K., Bajkacz S., Harnisz M., Korzeniewska E. Antimicrobial pharmaceuticals in the aquatic environment—Occurrence and environmental implications. Eur. J. Pharmacol. 2020;866:172813. doi: 10.1016/j.ejphar.2019.172813. PubMed DOI
Liu L., Chen S., Xu K., Huang X., Liu C. Influence of hydraulic loading rate on antibiotics removal and antibiotic resistance expression in soil layer of constructed wetlands. Chemosphere. 2021;265:129100. doi: 10.1016/j.chemosphere.2020.129100. PubMed DOI
Miarov O., Tal A., Avisar D. A critical evaluation of comparative regulatory strategies for monitoring pharmaceuticals in recycled wastewater. J. Environ. Manag. 2020;254:109794. doi: 10.1016/j.jenvman.2019.109794. PubMed DOI
Batt A.L., Furlong E.T., Mash H.E., Glassmeyer S.T., Kolpin D.W. The importance of quality control in validating concentrations of contaminants of emerging concern in source and treated drinking water samples. Sci. Total Environ. 2017;579:1618–1628. doi: 10.1016/j.scitotenv.2016.02.127. PubMed DOI PMC
Khan H.K., Rehman M.Y.A., Malik R.N. Fate and toxicity of pharmaceuticals in water environment: An insight on their occurrence in South Asia. J. Environ. Manag. 2020;271:111030. doi: 10.1016/j.jenvman.2020.111030. PubMed DOI
Bashir S., Peerzada O.H., Kaur N., Ali S. Reduction of pollution load in sewage water using aquatic macrophyte Lemna minor L. (duck weed) Environ. Ecol. 2017;35:2393–2395.
Mitsou K., Koulianou A., Lambropoulou D., Pappas P., Albanis T., Lekka M. Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere. 2006;62:275–283. doi: 10.1016/j.chemosphere.2005.05.026. PubMed DOI
Olmstead A.W., LeBlanc G.A. Effects of endocrine-active chemicals on the development of sex characteristics of Daphnia magna. Environ. Toxicol. Chem. 2000;19:2107–2113. doi: 10.1002/etc.5620190821. DOI
Farré M., Barceló D. Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends. Anal. Chem. 2003;22:299–310. doi: 10.1016/S0165-9936(03)00504-1. DOI
Parvez S., Venkataraman Ch Mukherji S. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int. 2006;32:265–268. doi: 10.1016/j.envint.2005.08.022. PubMed DOI
Sochacki A., Nowrotek M., Felis E., Kalka J., Ziembińska-Buczyńska A., Bajkacz S., Ciesielski S., Miksch K. The effect of loading frequency and plants on the degradation of sulfamethoxazole and diclofenac in vertical-flow constructed wetlands. Ecol. Eng. 2018;122:187–196. doi: 10.1016/j.ecoleng.2018.08.003. DOI
Nopens I., Capalozza C., Vanrolleghem P.A. Technical Report: Stability Analysis of a Synthetic Municipal Wastewater. Ghent University; Ghent, Belgium: 2001.
Nowrotek M., Sochacki A., Felis E., Miksch K. Removal of diclofenac and sulfamethoxazole from synthetic municipal waste water in microcosm downflow constructed wetlands: Start-up results. Int. J. Phytoremediation. 2016;18:157–163. doi: 10.1080/15226514.2015.1073669. PubMed DOI
Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta. 2001;196:143–152. doi: 10.1016/0009-8981(91)90067-M. PubMed DOI
Misra H.P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972;247:3170–3175. doi: 10.1016/S0021-9258(19)45228-9. PubMed DOI
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
International Organization for Standardization; Geneva, Switzerland: 2007. Water Quality—Determination of the Inhibitory Effect of Waste Samples on the Light Emission of Vibrio fischeri (Luminescent bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria.
International Organization for Standardization; Geneva, Switzerland: 2016. Water Quality—Marine Algal Growth Inhibition Test with Skeletonema sp. and Phaeodactylum tricornutum.
Drzymała J., Kalka J. Elimination of the hormesis phenomenon by the use of synthetic sea water in a toxicity test towards Aliivibrio fischeri. Chemosphere. 2020;248:126085. doi: 10.1016/j.chemosphere.2020.126085. PubMed DOI
OECD . OECD Guidelines for the Testing of Chemicals. OECD Publishing; Paris, France: 2004. Test No. 202: Daphnia sp. Acute Immobilisation Test. Section 2.
OECD . OECD Guidelines for the Testing of Chemicals. OECD Publishing; Paris, France: 2006. Test No. 221: Lemna sp. Growth Inhibition Test. Section 2.
Persoone G., Marsalek B., Blinova I., Törökne A., Zarina D., Manusadzianas L., Nalecz-Jawecki G., Tofan L., Stepanova N., Tothova L., et al. A practical and user-friendly toxicity classification system with Microbiotests for natural waters and wastewaters. Environ. Toxicol. 2003;18:395–402. doi: 10.1002/tox.10141. PubMed DOI
Ra J.S., Lee B.C., Chang N.I., Kim S.D. Comparative whole effluent toxicity assessment of wastewater treatment plant effluents using Daphnia magna. Bull. Environ. Contam. Toxicol. 2008;80:196–200. doi: 10.1007/s00128-007-9344-y. PubMed DOI
Gizińska-Górna M., Czekała W., Jóźwiakowski K., Lewicki A., Dach J. The possibility of using plants from hybrid constructed wetland wastewater treatment plant for energy purposes. Ecol. Eng. 2016;95:534–541. doi: 10.1016/j.ecoleng.2016.06.055. DOI
Iwasaki Y., Kotani K., Kashiwada S., Masunaga S. Does the choice of NOEC or EC10 affect the hazardous concentration for 5% of the species? Environ. Sci. Technol. 2015;49:9326–9330. doi: 10.1021/acs.est.5b02069. PubMed DOI
van Vlaardingen P., Traas T.P., Wintersen A., Aldenberg T. ETX 2.0. A Program to Calculate Hazardous Concentrations and Fraction Affected, Based on Normally Distributed Toxicity Data. National Institute for Public Health and the Environment; Utrecht, The Netherlands: 2004. RIVM report 601501028/2004.
Saeed T., Sun G. A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater. Bioresour. Technol. 2013;128:438–447. doi: 10.1016/j.biortech.2012.10.052. PubMed DOI
Bulc T.G., Ojstršek A. The use of constructed wetland for dye-rich textile wastewater treatment. J. Hazard. Mater. 2008;155:76–82. doi: 10.1016/j.jhazmat.2007.11.068. PubMed DOI
Davies L.C., Carias C.C., Novais J.M., Martins-Dias S. Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland. Ecol. Eng. 2005;25:594–605. doi: 10.1016/j.ecoleng.2005.07.003. DOI
Zhang D.Q., Tan S.K., Gersberg R.M., Zhu J., Sadreddini S., Li Y. Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions. J. Environ. Manag. 2012;96:1–6. doi: 10.1016/j.jenvman.2011.10.009. PubMed DOI
Ávila C., Matamoros V., Reyes-Contreras C., Piña B., Casado M., Mita L., Rivetti C., Barata C., García J., Bayona J.M. Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater. Sci. Total Environ. 2014;470–471:1272–1280. doi: 10.1016/j.scitotenv.2013.10.065. PubMed DOI
Vymazal J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007;380:48–65. doi: 10.1016/j.scitotenv.2006.09.014. PubMed DOI
Carranza-Diaz O., Schultze-Nobre L., Moeder M., Nivala J., Kuschk P., Koeser H. Removal of selected organic micropollutants in planted and unplanted pilot-scale horizontal flow constructed wetlands under conditions of high organic load. Ecol. Eng. 2014;71:234–245. doi: 10.1016/j.ecoleng.2014.07.048. DOI
de la Paz A., Salinas N., Matamoros V. Unravelling the role of vegetation in the attenuation of contaminants of emerging concern from wetland systems: Preliminary results from column studies. Water Res. 2019;166:115031. doi: 10.1016/j.watres.2019.115031. PubMed DOI
Miller E.L., Nason S.L., Karthikeyan K.G., Pedersen J.A. Root uptake of pharmaceutical and personal care product ingredients. Environ. Sci. Technol. 2016;50:525–541. doi: 10.1021/acs.est.5b01546. PubMed DOI
Li Y., Zhu G., Ng W.J., Tan S.K. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Sci. Total Environ. 2014;468–469:908–932. doi: 10.1016/j.scitotenv.2013.09.018. PubMed DOI
Dordio A.V., Carvalho A.J.P. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. J. Hazard. Mater. 2013;252–253:272–292. doi: 10.1016/j.jhazmat.2013.03.008. PubMed DOI
Hu X., Xie H., Zhuang L., Zhang J., Hu Z., Liang S., Feng K. A review on the role of plant in pharmaceuticals and personal care products (PPCPs) removal in constructed wetlands. Sci. Total Environ. 2021;780:146637. doi: 10.1016/j.scitotenv.2021.146637. PubMed DOI
Shukla A., Parde D., Gupta V., Vijay R., Kumar R. A review on effective design processes of constructed wetlands. Int. J. Environ. Sci. Technol. 2021 doi: 10.1007/s13762-021-03549-y. DOI
Gorgoglione A., Torretta V. Sustainable management and successful application of constructed wetlands: A critical review. Sustainability. 2018;10:3910. doi: 10.3390/su10113910. DOI
Fernandez R., Colás-Ruiz N.R., Bolívar-Anillo H.J., Anfuso G., Hampel M. Occurrence and Effects of antimicrobials drugs in aquatic ecosystems. Sustainability. 2021;13:13428. doi: 10.3390/su132313428. DOI
Gonzalez-Gonzalez R.B., Flores-Contreras E.A., Parra-Saldívar R., Iqbal H.N.M. Bio-removal of emerging pollutants by advanced bioremediation techniques. Environ. Res. 2022;214:113936. doi: 10.1016/j.envres.2022.113936. PubMed DOI
Sági G., Bezsenyi A., Kovács K., Klátyik S., Darvas B., Székács A., Wojnárovits L., Takács E. The impact of H2O2 and the role of mineralization in biodegradation or ecotoxicity assessment of advanced oxidation processes. Radiat. Phys. Chem. 2018;144:361–366. doi: 10.1016/j.radphyschem.2017.09.023. DOI
Wang Y., Li J., Lei Y., Li X., Nagarajan D., Lee D.-J., Chang J.-S. Analysis of pollutants removal efficiency, cellular composition, and bacterial community. Bioresour. Technol. 2022;351:126964. doi: 10.1016/j.biortech.2022.126964. PubMed DOI
Xiong Q., Liu Y.S., Hu L.X., Shi Z.Q., Cai W.W., He L.Y., Ying G.G. Cometabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa. Water Res. 2020;175:115656. doi: 10.1016/j.watres.2020.115656. PubMed DOI
Lushchak V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011;101:13–30. doi: 10.1016/j.aquatox.2010.10.006. PubMed DOI
Lushchak V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014;224:164–175. doi: 10.1016/j.cbi.2014.10.016. PubMed DOI
Ahmad R., Jaleel C.A., Salem M.A., Nabi G., Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010;30:161–175. doi: 10.3109/07388550903524243. PubMed DOI
Alscher R.G., Erturk N., Heath L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002;53:1331–1341. doi: 10.1093/jexbot/53.372.1331. PubMed DOI
Zhang X.B., Liu P., Yang Y.S., Chen W.R. Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. J. Environ. Sci. 2007;19:902–909. doi: 10.1016/S1001-0742(07)60150-8. PubMed DOI
Yan Q., Feng G., Gao X., Sun Ch Guo J.-S., Zhu Z. Removal of pharmaceutically active compounds (PhACs) and toxicological response of Cyperus alternifolius exposed to PhACs in microcosm constructed wetlands. J. Hazard. Mater. 2016;301:566–575. doi: 10.1016/j.jhazmat.2015.08.057. PubMed DOI
Pradhan A., Sahu S.K., Dash A.K. Changes in pigment content (chlorophyll and carotenoid), enzyme activities (catalase and peroxidase), biomass and yield of rice plant (Oriza sativa.L) following irrigation of rice mill wastewater under pot culture conditions. Int. J. Sci. Eng. Res. 2013;4:6.
Lyubenova L., Schröder P. Plants for waste water treatment—Effects of heavy metals on the detoxification system of Typha latifolia. Bioresour. Technol. 2011;102:996–1004. doi: 10.1016/j.biortech.2010.09.072. PubMed DOI
Rizzo L., Meric S., Guida M., Kassinos D., Belgiorno V. Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res. 2009;43:4070–4078. doi: 10.1016/j.watres.2009.06.046. PubMed DOI
Majewsky M., Wagner D., Delay M., Bräse S., Yargeau V., Horn H. Antibacterial activity of sulfamethoxazole transformation products (TPs): General relevance for sulfonamide TPs modified at the para position. Chem. Res. Toxicol. 2014;27:1821–1828. doi: 10.1021/tx500267x. PubMed DOI
Punzi M., Nilsson F., Anbalagan A., Svensson B.-M., Jönsson K., Mattiasson B., Jonstrup M. Combined anaerobic-ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity. J. Hazard. Mater. 2015;292:52–60. doi: 10.1016/j.jhazmat.2015.03.018. PubMed DOI
Vymazal J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia. 2011;674:133–156. doi: 10.1007/s10750-011-0738-9. DOI
Drzymała J., Kalka J. Ecotoxic interactions between pharmaceuticals in mixtures: Diclofenac and sulfamethoxazole. Chemosphere. 2020;259:127407. doi: 10.1016/j.chemosphere.2020.127407. PubMed DOI
Pascual-Benito M., Nadal-Sala D., Tobella M., Ballesté E., García-Aljaro C., Sabaté S., Sabater F., Martí E., Gracia C.A., Blanch A.R., et al. Modelling the seasonal impacts of a wastewater treatment plant on water quality in a Mediterranean stream using microbial indicators. J. Environ. Manag. 2020;261:110220. doi: 10.1016/j.jenvman.2020.110220. PubMed DOI
Rice J., Wutich A., Westerhoff P. Assessment of de facto wastewater reuse across the U.S.: Trends between 1980 and 2008. Environ. Sci. Technol. 2013;47:11099–11105. doi: 10.1021/es402792s. PubMed DOI
Fortney L., Podein R., Hernke M. Detoxification. In: Rakel D., editor. Integrative Medicine. Elsevier; Amsterdam, The Netherlands: 2018. pp. 996–1002.