Towards Sustainable Wastewater Treatment: Bioindication as a Technique for Supporting Treatment Efficiency Assessment

. 2022 Sep 20 ; 19 (19) : . [epub] 20220920

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36231168

Constructed wetlands (CWs) are a promising alternative for conventional methods of wastewater treatment. However, the biggest challenge in wastewater treatment is the improvement of the technology used so that it is possible to remove micropollutants without additional costs. The impact of wastewater treatment in CWs on toxicity towards Aliivibrio fischeri, Daphnia magna and Lemna minor was investigated. The effects of feeding regime (wastewater fed in five batches per week at a batch volume of 1 L, or twice per week at a batch volume of 2.5 L) and the presence of pharmaceuticals (diclofenac and sulfamethoxazole), as well as the presence of Miscantus giganteus plants in CW columns (twelve of the 24 columns that were planted) were analyzed. A reduction in toxicity was observed in all experimental setups. The effluents from constructed wetlands were classified as moderately toxic (average TU for A. fischeri, D. magna and L. minor was 0.9, 2.5 and 5.5, respectively). The feeding regime of 5 days of feeding/2 days of resting resulted in a positive impact on the ecotoxicological and chemical parameters of wastewater (removal of TOC, N-NH4 and pharmaceuticals). Extended exposure of Miscantus giganteus to the wastewater containing pharmaceuticals resulted in elevated activity of antioxidant enzymes (catalase and superoxide dismutase) in leaf material.

Zobrazit více v PubMed

Tang J., Zhang C., Shi X., Sun J., Cunningham J.A. Municipal wastewater treatment plants coupled with electrochemical, biological and bio-electrochemical technologies: Opportunities and challenge toward energy self-sufficiency. J. Environ. Manag. 2019;234:396–403. doi: 10.1016/j.jenvman.2018.12.097. PubMed DOI

Wu H., Zhang J., Ngo H.H., Guo W., Hu Z., Liang S., Fan J., Liu H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015;175:594–601. doi: 10.1016/j.biortech.2014.10.068. PubMed DOI

Doble M. Treatment of waste from organic chemical industries. In: Doble M., Kumar A., editors. Biotreatment of Industrial Effluents. Butterworth-Heinemann; Oxford, UK: 2005. pp. 55–64. DOI

Liu L., Fan H., Huang X., Wei L., Liu C. Fate of antibiotics from swine wastewater in constructed wetlands with different flow configurations. Int. Biodeterior. Biodegrad. 2019;140:119–125. doi: 10.1016/j.ibiod.2019.04.002. DOI

Bakhshoodeh R., Alavi N., Oldham C., Santos R.M., Babaei A.A., Vymazal J., Paydary P. Constructed wetlands for landfill leachate treatment: A review. Ecol. Eng. 2020;146:105725. doi: 10.1016/j.ecoleng.2020.105725. DOI

De Martis G., Mulas B., Malavasi V., Marignani M. Can artificial ecosystems enhance local biodiversity? The case of a constructed wetland in a Mediterranean urban context. Environ. Manag. 2016;57:1088–1097. doi: 10.1007/s00267-016-0668-4. PubMed DOI

Vymazal J. Is removal of organics and suspended solids in horizontal sub-surface flow constructed wetlands sustainable for twenty and more years? Chem. Eng. J. 2019;378:122117. doi: 10.1016/j.cej.2019.122117. DOI

Stanković D. Constructed wetlands for wastewater treatment. Građevinar. 2017;69:639–652. doi: 10.14256/JCE.2062.2017. DOI

Zhi W., Ji G. Constructed wetlands, 1991–2011: A review of research development, current trends, and future directions. Sci. Total Environ. 2012;441:19–27. doi: 10.1016/j.scitotenv.2012.09.064. PubMed DOI

Parde D., Patwa A., Shukla A., Vijay R., Killedar D.J., Kumar R. A review of constructed wetland on type, technology and treatment of wastewater. Environ. Technol. Innov. 2021;21:101261. doi: 10.1016/j.eti.2020.101261. DOI

Prado M., Borea L., Cesaro A., Liu H., Naddeo V., Belgiorno V., Ballesteros F., Jr. Removal of emerging contaminant and fouling control in membrane bioreactors by combined ozonation and sonolysis. Int. Biodeterior. Biodegrad. 2017;119:577–586. doi: 10.1016/j.ibiod.2016.10.044. DOI

Chen W.-H., Wong Y.-T., Huang T.-H., Chen W.-H., Lin J.-G. Removals of pharmaceuticals in municipal wastewater using a staged anaerobic fluidized membrane bioreactor. Int. Biodeterior. Biodegrad. 2019;140:29–36. doi: 10.1016/j.ibiod.2019.03.008. DOI

Meffe R., de Bustamante I. Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy. Sci. Total Environ. 2014;481:280–295. doi: 10.1016/j.scitotenv.2014.02.053. PubMed DOI

Sousa J.C.G., Ribeiro A.R., Barbosa M.O., Pereira M.F.R., Silva A.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018;344:146–162. doi: 10.1016/j.jhazmat.2017.09.058. PubMed DOI

Yang Y., Ok Y.S., Kim K.-H., Kwon E.E., Tsang Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017;596–597:303–320. doi: 10.1016/j.scitotenv.2017.04.102. PubMed DOI

European Commission . Commission Implementing Decision (EU) 2015/495 of 20 March 2015 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. European Commission; Brussels, Belgium: 2015.

European Commission . The European Union Water Framework Directive—Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for the Community Action in the Field of Water Policy. European Commission; Brussels, Belgium: 2000.

Loos R., Marinov D., Sanseverino I., Napierska D., Lettieri T. Review of the 1st Watch List under the Water Framework Directive and Recommendations for the 2nd Watch List. Joint Research Centre; Brussels, Belgium: 2018. JRC Technical Reports.

Baran W., Adamek E., Ziemiańska J., Sobczak A. Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater. 2011;196:1–15. doi: 10.1016/j.jhazmat.2011.08.082. PubMed DOI

Felis E., Kalka J., Sochacki A., Kowalska K., Bajkacz S., Harnisz M., Korzeniewska E. Antimicrobial pharmaceuticals in the aquatic environment—Occurrence and environmental implications. Eur. J. Pharmacol. 2020;866:172813. doi: 10.1016/j.ejphar.2019.172813. PubMed DOI

Liu L., Chen S., Xu K., Huang X., Liu C. Influence of hydraulic loading rate on antibiotics removal and antibiotic resistance expression in soil layer of constructed wetlands. Chemosphere. 2021;265:129100. doi: 10.1016/j.chemosphere.2020.129100. PubMed DOI

Miarov O., Tal A., Avisar D. A critical evaluation of comparative regulatory strategies for monitoring pharmaceuticals in recycled wastewater. J. Environ. Manag. 2020;254:109794. doi: 10.1016/j.jenvman.2019.109794. PubMed DOI

Batt A.L., Furlong E.T., Mash H.E., Glassmeyer S.T., Kolpin D.W. The importance of quality control in validating concentrations of contaminants of emerging concern in source and treated drinking water samples. Sci. Total Environ. 2017;579:1618–1628. doi: 10.1016/j.scitotenv.2016.02.127. PubMed DOI PMC

Khan H.K., Rehman M.Y.A., Malik R.N. Fate and toxicity of pharmaceuticals in water environment: An insight on their occurrence in South Asia. J. Environ. Manag. 2020;271:111030. doi: 10.1016/j.jenvman.2020.111030. PubMed DOI

Bashir S., Peerzada O.H., Kaur N., Ali S. Reduction of pollution load in sewage water using aquatic macrophyte Lemna minor L. (duck weed) Environ. Ecol. 2017;35:2393–2395.

Mitsou K., Koulianou A., Lambropoulou D., Pappas P., Albanis T., Lekka M. Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere. 2006;62:275–283. doi: 10.1016/j.chemosphere.2005.05.026. PubMed DOI

Olmstead A.W., LeBlanc G.A. Effects of endocrine-active chemicals on the development of sex characteristics of Daphnia magna. Environ. Toxicol. Chem. 2000;19:2107–2113. doi: 10.1002/etc.5620190821. DOI

Farré M., Barceló D. Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends. Anal. Chem. 2003;22:299–310. doi: 10.1016/S0165-9936(03)00504-1. DOI

Parvez S., Venkataraman Ch Mukherji S. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int. 2006;32:265–268. doi: 10.1016/j.envint.2005.08.022. PubMed DOI

Sochacki A., Nowrotek M., Felis E., Kalka J., Ziembińska-Buczyńska A., Bajkacz S., Ciesielski S., Miksch K. The effect of loading frequency and plants on the degradation of sulfamethoxazole and diclofenac in vertical-flow constructed wetlands. Ecol. Eng. 2018;122:187–196. doi: 10.1016/j.ecoleng.2018.08.003. DOI

Nopens I., Capalozza C., Vanrolleghem P.A. Technical Report: Stability Analysis of a Synthetic Municipal Wastewater. Ghent University; Ghent, Belgium: 2001.

Nowrotek M., Sochacki A., Felis E., Miksch K. Removal of diclofenac and sulfamethoxazole from synthetic municipal waste water in microcosm downflow constructed wetlands: Start-up results. Int. J. Phytoremediation. 2016;18:157–163. doi: 10.1080/15226514.2015.1073669. PubMed DOI

Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta. 2001;196:143–152. doi: 10.1016/0009-8981(91)90067-M. PubMed DOI

Misra H.P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972;247:3170–3175. doi: 10.1016/S0021-9258(19)45228-9. PubMed DOI

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

International Organization for Standardization; Geneva, Switzerland: 2007. Water Quality—Determination of the Inhibitory Effect of Waste Samples on the Light Emission of Vibrio fischeri (Luminescent bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria.

International Organization for Standardization; Geneva, Switzerland: 2016. Water Quality—Marine Algal Growth Inhibition Test with Skeletonema sp. and Phaeodactylum tricornutum.

Drzymała J., Kalka J. Elimination of the hormesis phenomenon by the use of synthetic sea water in a toxicity test towards Aliivibrio fischeri. Chemosphere. 2020;248:126085. doi: 10.1016/j.chemosphere.2020.126085. PubMed DOI

OECD . OECD Guidelines for the Testing of Chemicals. OECD Publishing; Paris, France: 2004. Test No. 202: Daphnia sp. Acute Immobilisation Test. Section 2.

OECD . OECD Guidelines for the Testing of Chemicals. OECD Publishing; Paris, France: 2006. Test No. 221: Lemna sp. Growth Inhibition Test. Section 2.

Persoone G., Marsalek B., Blinova I., Törökne A., Zarina D., Manusadzianas L., Nalecz-Jawecki G., Tofan L., Stepanova N., Tothova L., et al. A practical and user-friendly toxicity classification system with Microbiotests for natural waters and wastewaters. Environ. Toxicol. 2003;18:395–402. doi: 10.1002/tox.10141. PubMed DOI

Ra J.S., Lee B.C., Chang N.I., Kim S.D. Comparative whole effluent toxicity assessment of wastewater treatment plant effluents using Daphnia magna. Bull. Environ. Contam. Toxicol. 2008;80:196–200. doi: 10.1007/s00128-007-9344-y. PubMed DOI

Gizińska-Górna M., Czekała W., Jóźwiakowski K., Lewicki A., Dach J. The possibility of using plants from hybrid constructed wetland wastewater treatment plant for energy purposes. Ecol. Eng. 2016;95:534–541. doi: 10.1016/j.ecoleng.2016.06.055. DOI

Iwasaki Y., Kotani K., Kashiwada S., Masunaga S. Does the choice of NOEC or EC10 affect the hazardous concentration for 5% of the species? Environ. Sci. Technol. 2015;49:9326–9330. doi: 10.1021/acs.est.5b02069. PubMed DOI

van Vlaardingen P., Traas T.P., Wintersen A., Aldenberg T. ETX 2.0. A Program to Calculate Hazardous Concentrations and Fraction Affected, Based on Normally Distributed Toxicity Data. National Institute for Public Health and the Environment; Utrecht, The Netherlands: 2004. RIVM report 601501028/2004.

Saeed T., Sun G. A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater. Bioresour. Technol. 2013;128:438–447. doi: 10.1016/j.biortech.2012.10.052. PubMed DOI

Bulc T.G., Ojstršek A. The use of constructed wetland for dye-rich textile wastewater treatment. J. Hazard. Mater. 2008;155:76–82. doi: 10.1016/j.jhazmat.2007.11.068. PubMed DOI

Davies L.C., Carias C.C., Novais J.M., Martins-Dias S. Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland. Ecol. Eng. 2005;25:594–605. doi: 10.1016/j.ecoleng.2005.07.003. DOI

Zhang D.Q., Tan S.K., Gersberg R.M., Zhu J., Sadreddini S., Li Y. Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions. J. Environ. Manag. 2012;96:1–6. doi: 10.1016/j.jenvman.2011.10.009. PubMed DOI

Ávila C., Matamoros V., Reyes-Contreras C., Piña B., Casado M., Mita L., Rivetti C., Barata C., García J., Bayona J.M. Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater. Sci. Total Environ. 2014;470–471:1272–1280. doi: 10.1016/j.scitotenv.2013.10.065. PubMed DOI

Vymazal J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007;380:48–65. doi: 10.1016/j.scitotenv.2006.09.014. PubMed DOI

Carranza-Diaz O., Schultze-Nobre L., Moeder M., Nivala J., Kuschk P., Koeser H. Removal of selected organic micropollutants in planted and unplanted pilot-scale horizontal flow constructed wetlands under conditions of high organic load. Ecol. Eng. 2014;71:234–245. doi: 10.1016/j.ecoleng.2014.07.048. DOI

de la Paz A., Salinas N., Matamoros V. Unravelling the role of vegetation in the attenuation of contaminants of emerging concern from wetland systems: Preliminary results from column studies. Water Res. 2019;166:115031. doi: 10.1016/j.watres.2019.115031. PubMed DOI

Miller E.L., Nason S.L., Karthikeyan K.G., Pedersen J.A. Root uptake of pharmaceutical and personal care product ingredients. Environ. Sci. Technol. 2016;50:525–541. doi: 10.1021/acs.est.5b01546. PubMed DOI

Li Y., Zhu G., Ng W.J., Tan S.K. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Sci. Total Environ. 2014;468–469:908–932. doi: 10.1016/j.scitotenv.2013.09.018. PubMed DOI

Dordio A.V., Carvalho A.J.P. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. J. Hazard. Mater. 2013;252–253:272–292. doi: 10.1016/j.jhazmat.2013.03.008. PubMed DOI

Hu X., Xie H., Zhuang L., Zhang J., Hu Z., Liang S., Feng K. A review on the role of plant in pharmaceuticals and personal care products (PPCPs) removal in constructed wetlands. Sci. Total Environ. 2021;780:146637. doi: 10.1016/j.scitotenv.2021.146637. PubMed DOI

Shukla A., Parde D., Gupta V., Vijay R., Kumar R. A review on effective design processes of constructed wetlands. Int. J. Environ. Sci. Technol. 2021 doi: 10.1007/s13762-021-03549-y. DOI

Gorgoglione A., Torretta V. Sustainable management and successful application of constructed wetlands: A critical review. Sustainability. 2018;10:3910. doi: 10.3390/su10113910. DOI

Fernandez R., Colás-Ruiz N.R., Bolívar-Anillo H.J., Anfuso G., Hampel M. Occurrence and Effects of antimicrobials drugs in aquatic ecosystems. Sustainability. 2021;13:13428. doi: 10.3390/su132313428. DOI

Gonzalez-Gonzalez R.B., Flores-Contreras E.A., Parra-Saldívar R., Iqbal H.N.M. Bio-removal of emerging pollutants by advanced bioremediation techniques. Environ. Res. 2022;214:113936. doi: 10.1016/j.envres.2022.113936. PubMed DOI

Sági G., Bezsenyi A., Kovács K., Klátyik S., Darvas B., Székács A., Wojnárovits L., Takács E. The impact of H2O2 and the role of mineralization in biodegradation or ecotoxicity assessment of advanced oxidation processes. Radiat. Phys. Chem. 2018;144:361–366. doi: 10.1016/j.radphyschem.2017.09.023. DOI

Wang Y., Li J., Lei Y., Li X., Nagarajan D., Lee D.-J., Chang J.-S. Analysis of pollutants removal efficiency, cellular composition, and bacterial community. Bioresour. Technol. 2022;351:126964. doi: 10.1016/j.biortech.2022.126964. PubMed DOI

Xiong Q., Liu Y.S., Hu L.X., Shi Z.Q., Cai W.W., He L.Y., Ying G.G. Cometabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa. Water Res. 2020;175:115656. doi: 10.1016/j.watres.2020.115656. PubMed DOI

Lushchak V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011;101:13–30. doi: 10.1016/j.aquatox.2010.10.006. PubMed DOI

Lushchak V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014;224:164–175. doi: 10.1016/j.cbi.2014.10.016. PubMed DOI

Ahmad R., Jaleel C.A., Salem M.A., Nabi G., Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010;30:161–175. doi: 10.3109/07388550903524243. PubMed DOI

Alscher R.G., Erturk N., Heath L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002;53:1331–1341. doi: 10.1093/jexbot/53.372.1331. PubMed DOI

Zhang X.B., Liu P., Yang Y.S., Chen W.R. Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. J. Environ. Sci. 2007;19:902–909. doi: 10.1016/S1001-0742(07)60150-8. PubMed DOI

Yan Q., Feng G., Gao X., Sun Ch Guo J.-S., Zhu Z. Removal of pharmaceutically active compounds (PhACs) and toxicological response of Cyperus alternifolius exposed to PhACs in microcosm constructed wetlands. J. Hazard. Mater. 2016;301:566–575. doi: 10.1016/j.jhazmat.2015.08.057. PubMed DOI

Pradhan A., Sahu S.K., Dash A.K. Changes in pigment content (chlorophyll and carotenoid), enzyme activities (catalase and peroxidase), biomass and yield of rice plant (Oriza sativa.L) following irrigation of rice mill wastewater under pot culture conditions. Int. J. Sci. Eng. Res. 2013;4:6.

Lyubenova L., Schröder P. Plants for waste water treatment—Effects of heavy metals on the detoxification system of Typha latifolia. Bioresour. Technol. 2011;102:996–1004. doi: 10.1016/j.biortech.2010.09.072. PubMed DOI

Rizzo L., Meric S., Guida M., Kassinos D., Belgiorno V. Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res. 2009;43:4070–4078. doi: 10.1016/j.watres.2009.06.046. PubMed DOI

Majewsky M., Wagner D., Delay M., Bräse S., Yargeau V., Horn H. Antibacterial activity of sulfamethoxazole transformation products (TPs): General relevance for sulfonamide TPs modified at the para position. Chem. Res. Toxicol. 2014;27:1821–1828. doi: 10.1021/tx500267x. PubMed DOI

Punzi M., Nilsson F., Anbalagan A., Svensson B.-M., Jönsson K., Mattiasson B., Jonstrup M. Combined anaerobic-ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity. J. Hazard. Mater. 2015;292:52–60. doi: 10.1016/j.jhazmat.2015.03.018. PubMed DOI

Vymazal J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia. 2011;674:133–156. doi: 10.1007/s10750-011-0738-9. DOI

Drzymała J., Kalka J. Ecotoxic interactions between pharmaceuticals in mixtures: Diclofenac and sulfamethoxazole. Chemosphere. 2020;259:127407. doi: 10.1016/j.chemosphere.2020.127407. PubMed DOI

Pascual-Benito M., Nadal-Sala D., Tobella M., Ballesté E., García-Aljaro C., Sabaté S., Sabater F., Martí E., Gracia C.A., Blanch A.R., et al. Modelling the seasonal impacts of a wastewater treatment plant on water quality in a Mediterranean stream using microbial indicators. J. Environ. Manag. 2020;261:110220. doi: 10.1016/j.jenvman.2020.110220. PubMed DOI

Rice J., Wutich A., Westerhoff P. Assessment of de facto wastewater reuse across the U.S.: Trends between 1980 and 2008. Environ. Sci. Technol. 2013;47:11099–11105. doi: 10.1021/es402792s. PubMed DOI

Fortney L., Podein R., Hernke M. Detoxification. In: Rakel D., editor. Integrative Medicine. Elsevier; Amsterdam, The Netherlands: 2018. pp. 996–1002.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...