• Je něco špatně v tomto záznamu ?

Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison

T. Vicar, J. Balvan, J. Jaros, F. Jug, R. Kolar, M. Masarik, J. Gumulec,

. 2019 ; 20 (1) : 360. [pub] 20190628

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc19034475

Grantová podpora
GACR 18-24089S Grantová Agentura České Republiky
MUNI/A/1298/2017 Masaryk University
funds to Junior Researcher (Jaromir Gumulec) Masaryk University Faculty of Medicine

BACKGROUND: Because of its non-destructive nature, label-free imaging is an important strategy for studying biological processes. However, routine microscopic techniques like phase contrast or DIC suffer from shadow-cast artifacts making automatic segmentation challenging. The aim of this study was to compare the segmentation efficacy of published steps of segmentation work-flow (image reconstruction, foreground segmentation, cell detection (seed-point extraction) and cell (instance) segmentation) on a dataset of the same cells from multiple contrast microscopic modalities. RESULTS: We built a collection of routines aimed at image segmentation of viable adherent cells grown on the culture dish acquired by phase contrast, differential interference contrast, Hoffman modulation contrast and quantitative phase imaging, and we performed a comprehensive comparison of available segmentation methods applicable for label-free data. We demonstrated that it is crucial to perform the image reconstruction step, enabling the use of segmentation methods originally not applicable on label-free images. Further we compared foreground segmentation methods (thresholding, feature-extraction, level-set, graph-cut, learning-based), seed-point extraction methods (Laplacian of Gaussians, radial symmetry and distance transform, iterative radial voting, maximally stable extremal region and learning-based) and single cell segmentation methods. We validated suitable set of methods for each microscopy modality and published them online. CONCLUSIONS: We demonstrate that image reconstruction step allows the use of segmentation methods not originally intended for label-free imaging. In addition to the comprehensive comparison of methods, raw and reconstructed annotated data and Matlab codes are provided.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034475
003      
CZ-PrNML
005      
20191010123619.0
007      
ta
008      
191007s2019 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12859-019-2880-8 $2 doi
035    __
$a (PubMed)31253078
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Vicar, Tomas $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, CZ-61600, Czech Republic. Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic.
245    10
$a Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison / $c T. Vicar, J. Balvan, J. Jaros, F. Jug, R. Kolar, M. Masarik, J. Gumulec,
520    9_
$a BACKGROUND: Because of its non-destructive nature, label-free imaging is an important strategy for studying biological processes. However, routine microscopic techniques like phase contrast or DIC suffer from shadow-cast artifacts making automatic segmentation challenging. The aim of this study was to compare the segmentation efficacy of published steps of segmentation work-flow (image reconstruction, foreground segmentation, cell detection (seed-point extraction) and cell (instance) segmentation) on a dataset of the same cells from multiple contrast microscopic modalities. RESULTS: We built a collection of routines aimed at image segmentation of viable adherent cells grown on the culture dish acquired by phase contrast, differential interference contrast, Hoffman modulation contrast and quantitative phase imaging, and we performed a comprehensive comparison of available segmentation methods applicable for label-free data. We demonstrated that it is crucial to perform the image reconstruction step, enabling the use of segmentation methods originally not applicable on label-free images. Further we compared foreground segmentation methods (thresholding, feature-extraction, level-set, graph-cut, learning-based), seed-point extraction methods (Laplacian of Gaussians, radial symmetry and distance transform, iterative radial voting, maximally stable extremal region and learning-based) and single cell segmentation methods. We validated suitable set of methods for each microscopy modality and published them online. CONCLUSIONS: We demonstrate that image reconstruction step allows the use of segmentation methods not originally intended for label-free imaging. In addition to the comprehensive comparison of methods, raw and reconstructed annotated data and Matlab codes are provided.
650    _2
$a algoritmy $7 D000465
650    _2
$a frakcionace buněk $x metody $7 D002458
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $7 D007091
650    _2
$a mikroskopie $x metody $7 D008853
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Balvan, Jan $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic. Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, Brno, CZ-612 00, Czech Republic.
700    1_
$a Jaros, Josef $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic. International Clinical Research Center, St. Anne's University Hospital, Pekarska 664/53, Brno, CZ-65691, Czech Republic.
700    1_
$a Jug, Florian $u Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, DE-01307, Germany.
700    1_
$a Kolar, Radim $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, CZ-61600, Czech Republic.
700    1_
$a Masarik, Michal $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic. Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, Brno, CZ-612 00, Czech Republic.
700    1_
$a Gumulec, Jaromir $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic. j.gumulec@med.muni.cz. Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic. j.gumulec@med.muni.cz. Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, Brno, CZ-612 00, Czech Republic. j.gumulec@med.muni.cz.
773    0_
$w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 20, č. 1 (2019), s. 360
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31253078 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191010124038 $b ABA008
999    __
$a ok $b bmc $g 1451135 $s 1073025
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 20 $c 1 $d 360 $e 20190628 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
GRA    __
$a GACR 18-24089S $p Grantová Agentura České Republiky
GRA    __
$a MUNI/A/1298/2017 $p Masaryk University
GRA    __
$a funds to Junior Researcher (Jaromir Gumulec) $p Masaryk University Faculty of Medicine
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...