Does Dominant Somatotype Differentiate Performance of Jumping and Sprinting Variables in Young Healthy Adults?
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36231174
PubMed Central
PMC9565222
DOI
10.3390/ijerph191911873
PII: ijerph191911873
Knihovny.cz E-resources
- Keywords
- anthropometry, explosive movement, peak power, somatotype,
- MeSH
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Somatotypes * MeSH
- Sports * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The relationship between an athlete's somatotype three-numeral rating and his or her athletic performance is well known. However, a direct effect of the different dominant somatotype on jumping and sprinting variables has not yet been reported. The aim of this study was to investigate the effects of dominant somatotype on sport-specific explosive variables. One hundred and twelve physically active young adults (mean ± standard deviation age: 21.82 ± 3.18 years) were somatotype-rated using the Heath-Carter method. Participants were classified as balanced ectomorph, balanced mesomorph, central, mesomorph-endomorph, and mesomorphic ectomorph. Vertical jump and linear sprint tests were performed to measure peak lower body performance and sprint variables (time, speed, and momentum), respectively. The analysis revealed that balanced mesomorph had significantly higher vertical jump (effect size (ES) = 1.10, p = 0.005) and power to body mass (ES = 1.04, p = 0.023) than mesomorph-endomorph. In addition, balanced mesomorph showed significantly superior performance in 30-m sprint time and velocity than central and mesomorph-endomorph (ES range = 0.93-1, p < 0.05). Finally, balanced ectomorph (ES = 1.12, p = 0.009) and mesomorphic ectomorph (ES = 1.10, p = 0.017) were lower in sprint momentum compared to balanced mesomorphs. In conclusion, this study has shown the importance of the interaction between subtypes and athletic performance. The knowledge gained may be important in identifying those who tend to perform well in sports with explosive power and in prescribing training programs.
Department of Coaching Education Faculty of Sport Sciences Ankara University Ankara 06830 Turkey
Department of Coaching Education Faculty of Sport Sciences Inonu University Malatya 44000 Turkey
Department of Health Sciences Jan Dlugosz University 42 200 Czestochowa Poland
Sport Centrum Faculty of Pedagogy University of West Bohemia 30100 Pilsen Czech Republic
See more in PubMed
Carter J.L., Heath B.H. Somatotyping: Development and Applications. Cambridge University Press; Cambridge, UK: 1990.
Carter J.E.L., Ackland T.R., Kerr D.A., Stapff A.B. Somatotype and size of elite female basketball players. J. Sports Sci. 2005;23:1057–1063. doi: 10.1080/02640410400023233. PubMed DOI
Heath B.H., Carter J.L. A modified somatotype method. Am. J. Phys. Anthropol. 1967;27:57–74. doi: 10.1002/ajpa.1330270108. PubMed DOI
Fidelix Y.L., Berria J., Ferrari E.P., Ortiz J.G., Cetolin T., Petroski E.L. Somatotype of competitive youth soccer players from Brazil. J. Hum. Kinet. 2014;42:259. doi: 10.2478/hukin-2014-0079. PubMed DOI PMC
Guimarães Almeida L., Numata Filho E.S., dos Santos G.A., Carneiro Cardoso J.T., Rodrigues Moreira S. Anthropometric Profile and Functional Performance of Capoeira Competitors in the World Games. Int. J. Morphol. 2021;39:969–976. doi: 10.4067/S0717-95022021000400969. DOI
Laubach L.L., McConville J.T. The relationship of strength to body size and typology. Med. Sci. Sports Exerc. 1969;1:189–194. doi: 10.1249/00005768-196912000-00004. DOI
Marta C., Marinho D.A., Costa A.M., Barbosa T.M., Marques M.C. Somatotype is more interactive with strength than fat mass and physical activity in peripubertal children. J. Hum. Kinet. 2011;29A:83–91. doi: 10.2478/v10078-011-0063-4. PubMed DOI PMC
Lewandowska J., Buśko K., Pastuszak A., Boguszewska K. Somatotype variables related to muscle torque and power in judoists. J. Hum. Kinet. 2011;30:21. doi: 10.2478/v10078-011-0069-y. PubMed DOI PMC
Kandel M., Baeyens J.P., Clarys P. Somatotype, training and performance in Ironman athletes. Eur. J. Sport Sci. 2014;14:301–308. doi: 10.1080/17461391.2013.813971. PubMed DOI
Allen S.V., Hopkins W.G. Age of peak competitive performance of elite athletes: A systematic review. Sports Med. 2015;45:1431–1441. doi: 10.1007/s40279-015-0354-3. PubMed DOI
Ryan-Stewart H., Faulkner J., Jobson S. The influence of somatotype on anaerobic performance. PLoS ONE. 2018;13:e0197761. doi: 10.1371/journal.pone.0197761. PubMed DOI PMC
Cinarli F.S., Kafkas M.E. The effect of somatotype characters on selected physical performance parameters. J. Phys. Educ. Stud. 2019;23:279–287. doi: 10.15561/20755279.2019.0602. DOI
Marta C.C., Marinho D.A., Barbosa T.M., Carneiro A.L., Izquierdo M., Marques M.C. Effects of body fat and dominant somatotype on explosive strength and aerobic capacity trainability in prepubescent children. J. Strength Cond. Res. 2013;27:3233–3244. doi: 10.1519/JSC.0000000000000252. PubMed DOI
Kutseryb T., Vovkanych L., Hrynkiv M., Majevska S., Muzyka F. Peculiarities of the somatotype of athletes with different directions of the training process. J. Phys. Educ. Sport. 2017;17:431.
Keogh J.W., Hume P.A., Pearson S.N., Mellow P. Anthropometric dimensions of male powerlifters of varying body mass. J. Sports Sci. 2007;25:1365–1376. doi: 10.1080/02640410601059630. PubMed DOI
Perez-Gomez J., Rodriguez G.V., Ara I., Olmedillas H., Chavarren J., González-Henriquez J.J., Calbet J.A. Role of muscle mass on sprint performance: Gender differences? Eur. J. Appl. Physiol. 2008;102:685–694. doi: 10.1007/s00421-007-0648-8. PubMed DOI
Moncef C., Said M., Olfa N., Dagbaji G. Influence of morphological characteristics on physical and physiological performances of tunisian elite male handball players. Asian J. Sports Med. 2012;3:74. doi: 10.5812/asjsm.34700. PubMed DOI PMC
Barbieri D., Zaccagni L., Babić V., Rakovac M., Mišigoj-Duraković M., Gualdi-Russo E. Body composition and size in sprint athletes. J. Sports Med. Phys. Fit. 2017;57:1142–1146. doi: 10.23736/S0022-4707.17.06925-0. PubMed DOI
Stewart A., Marfell-Jones M., Olds T., de Ridder H. International Standards for Anthropometric Assessment. International Society for the Advancement of Kinanthropometry; Melbourne, Australia: 2011.
Wilczyński B., Hinca J., Ślęzak D., Zorena K. The relationship between dynamic balance and jumping tests among adolescent amateur rugby players: A preliminary study. Int. J. Environ. Res. Public. Health. 2021;18:312. doi: 10.3390/ijerph18010312. PubMed DOI PMC
Sayers S.P., Harackiewicz D.V., Harman E.A., Frykman P.N., Rosenstein M.T. Cross-validation of three jump power equations. Med. Sci. Sports. Exerc. 1999;31:572–577. doi: 10.1097/00005768-199904000-00013. PubMed DOI
Jalilvand F., Banoocy N.K., Rumpf M.C., Lockie R.G. Relationship between body mass, peak power, and power-to-body mass ratio on sprint velocity and momentum in high-school football players. J. Strength Cond. Res. 2019;33:1871–1877. doi: 10.1519/JSC.0000000000002808. PubMed DOI
Gabbett T.J., Kelly J.N., Sheppard J.M. Speed, change of direction speed, and reactive agility of rugby league players. J. Strength Cond. Res. 2008;22:174–181. doi: 10.1519/JSC.0b013e31815ef700. PubMed DOI
Mann J.B., Mayhew J.L., Dos Santos M.L., Dawes J.J., Signorile J.F. Momentum, Rather Than Velocity, Is a More Effective Measure of Improvements in Division IA Football Player Performance. J. Strength Cond. Res. 2022;36:551–557. doi: 10.1519/JSC.0000000000004206. PubMed DOI
Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Earlbaum Associates; Hillsdale, NJ, USA: 1988.
Hopkins W.G. How to interpret changes in an athletic performance test. Sport Sci. 2004;8:1–7.
Vila H., Manchado C., Rodriguez N., Abraldes J.A., Alcaraz P.E., Ferragut C. Anthropometric profile, vertical jump, and throwing velocity in elite female handball players by playing positions. J. Strength Cond. Res. 2012;26:2146–2155. doi: 10.1519/JSC.0b013e31823b0a46. PubMed DOI
Saha S. Somatotype, body composition and explosive power of athlete and non-athlete. J. Sports Med. Doping Stud. 2014;4:2. doi: 10.4172/2161-0673.1000137. DOI
Esco M.R., Fedewa M.V., Cicone Z.S., Sinelnikov O.A., Sekulic D., Holmes C.J. Field-based performance tests are related to body fat percentage and fat-free mass, but not body mass index, in youth soccer players. Sports. 2018;6:105. doi: 10.3390/sports6040105. PubMed DOI PMC
Nikolaidis P.T. Body mass index and body fat percentage are associated with decreased physical fitness in adolescent and adult female volleyball players. J. Res. Med. Sci. 2013;18:22. PubMed PMC
Zary J.C., Reis V.M., Rouboa A., Silva A.J., Fernandes P.R. The somatotype and dermatoglyphic profiles of adult, junior and juvenile male Brazilian top-level volleyball players. Sci. Sports. 2010;25:146–152. doi: 10.1016/j.scispo.2009.09.002. DOI
Martín-Matillas M., Valadés D., Hernández-Hernández E., Olea-Serrano F., Sjöström M., Delgado-Fernández M., Ortega F.B. Anthropometric, body composition and somatotype characteristics of elite female volleyball players from the highest Spanish league. J. Sports Sci. 2014;32:137–148. doi: 10.1080/02640414.2013.809472. PubMed DOI
Gualdi-Russo E., Zaccagni L. Somatotype, role and performance in elite volleyball players. J Sports Med. Phys. Fit. 2001;41:256. PubMed
Aerenhouts D., Delecluse C., Hagman F., Taeymans J., Debaere S., Van Gheluwe B., Clarys P. Comparison of anthropometric characteristics and sprint start performance between elite adolescent and adult sprint athletes. Eur. J. Sport Sci. 2012;12:9–15. doi: 10.1080/17461391.2010.536580. DOI
Rahmawati N.T., Budiharjo S., Ashizawa K. Somatotypes of young male athletes and non-athlete students in Yogyakarta, Indonesia. Anthropol. Sci. 2007;115:1–7. doi: 10.1537/ase.051008. DOI
Abe T., Kawamoto K., Dankel S.J., Bell Z.W., Spitz R.W., Wong V., Loenneke J.P. Longitudinal associations between changes in body composition and changes in sprint performance in elite female sprinters. Eur. J. Sport Sci. 2020;20:100–105. doi: 10.1080/17461391.2019.1612950. PubMed DOI
Hansen K.T., Cronin J.B., Pickering S.L., Douglas L. Do force–time and power–time measures in a loaded jump squat differentiate between speed performance and playing level in elite and elite junior rugby union players? J. Strength Cond. Res. 2011;25:2382–2391. doi: 10.1519/JSC.0b013e318201bf48. PubMed DOI
Barr M.J., Sheppard J.M., Gabbett T.J., Newton R.U. Long-term training-induced changes in sprinting speed and sprint momentum in elite rugby union players. J. Strength Cond. Res. 2014;28:2724–2731. doi: 10.1519/JSC.0000000000000364. PubMed DOI
Baker D.G., Newton R.U. Comparison of lower body strength, power, acceleration, speed, agility, and sprint momentum to describe and compare playing rank among professional rugby league players. J. Strength Cond. Res. 2008;22:153–158. doi: 10.1519/JSC.0b013e31815f9519. PubMed DOI