• This record comes from PubMed

Does Dominant Somatotype Differentiate Performance of Jumping and Sprinting Variables in Young Healthy Adults?

. 2022 Sep 20 ; 19 (19) : . [epub] 20220920

Language English Country Switzerland Media electronic

Document type Journal Article

The relationship between an athlete's somatotype three-numeral rating and his or her athletic performance is well known. However, a direct effect of the different dominant somatotype on jumping and sprinting variables has not yet been reported. The aim of this study was to investigate the effects of dominant somatotype on sport-specific explosive variables. One hundred and twelve physically active young adults (mean ± standard deviation age: 21.82 ± 3.18 years) were somatotype-rated using the Heath-Carter method. Participants were classified as balanced ectomorph, balanced mesomorph, central, mesomorph-endomorph, and mesomorphic ectomorph. Vertical jump and linear sprint tests were performed to measure peak lower body performance and sprint variables (time, speed, and momentum), respectively. The analysis revealed that balanced mesomorph had significantly higher vertical jump (effect size (ES) = 1.10, p = 0.005) and power to body mass (ES = 1.04, p = 0.023) than mesomorph-endomorph. In addition, balanced mesomorph showed significantly superior performance in 30-m sprint time and velocity than central and mesomorph-endomorph (ES range = 0.93-1, p < 0.05). Finally, balanced ectomorph (ES = 1.12, p = 0.009) and mesomorphic ectomorph (ES = 1.10, p = 0.017) were lower in sprint momentum compared to balanced mesomorphs. In conclusion, this study has shown the importance of the interaction between subtypes and athletic performance. The knowledge gained may be important in identifying those who tend to perform well in sports with explosive power and in prescribing training programs.

See more in PubMed

Carter J.L., Heath B.H. Somatotyping: Development and Applications. Cambridge University Press; Cambridge, UK: 1990.

Carter J.E.L., Ackland T.R., Kerr D.A., Stapff A.B. Somatotype and size of elite female basketball players. J. Sports Sci. 2005;23:1057–1063. doi: 10.1080/02640410400023233. PubMed DOI

Heath B.H., Carter J.L. A modified somatotype method. Am. J. Phys. Anthropol. 1967;27:57–74. doi: 10.1002/ajpa.1330270108. PubMed DOI

Fidelix Y.L., Berria J., Ferrari E.P., Ortiz J.G., Cetolin T., Petroski E.L. Somatotype of competitive youth soccer players from Brazil. J. Hum. Kinet. 2014;42:259. doi: 10.2478/hukin-2014-0079. PubMed DOI PMC

Guimarães Almeida L., Numata Filho E.S., dos Santos G.A., Carneiro Cardoso J.T., Rodrigues Moreira S. Anthropometric Profile and Functional Performance of Capoeira Competitors in the World Games. Int. J. Morphol. 2021;39:969–976. doi: 10.4067/S0717-95022021000400969. DOI

Laubach L.L., McConville J.T. The relationship of strength to body size and typology. Med. Sci. Sports Exerc. 1969;1:189–194. doi: 10.1249/00005768-196912000-00004. DOI

Marta C., Marinho D.A., Costa A.M., Barbosa T.M., Marques M.C. Somatotype is more interactive with strength than fat mass and physical activity in peripubertal children. J. Hum. Kinet. 2011;29A:83–91. doi: 10.2478/v10078-011-0063-4. PubMed DOI PMC

Lewandowska J., Buśko K., Pastuszak A., Boguszewska K. Somatotype variables related to muscle torque and power in judoists. J. Hum. Kinet. 2011;30:21. doi: 10.2478/v10078-011-0069-y. PubMed DOI PMC

Kandel M., Baeyens J.P., Clarys P. Somatotype, training and performance in Ironman athletes. Eur. J. Sport Sci. 2014;14:301–308. doi: 10.1080/17461391.2013.813971. PubMed DOI

Allen S.V., Hopkins W.G. Age of peak competitive performance of elite athletes: A systematic review. Sports Med. 2015;45:1431–1441. doi: 10.1007/s40279-015-0354-3. PubMed DOI

Ryan-Stewart H., Faulkner J., Jobson S. The influence of somatotype on anaerobic performance. PLoS ONE. 2018;13:e0197761. doi: 10.1371/journal.pone.0197761. PubMed DOI PMC

Cinarli F.S., Kafkas M.E. The effect of somatotype characters on selected physical performance parameters. J. Phys. Educ. Stud. 2019;23:279–287. doi: 10.15561/20755279.2019.0602. DOI

Marta C.C., Marinho D.A., Barbosa T.M., Carneiro A.L., Izquierdo M., Marques M.C. Effects of body fat and dominant somatotype on explosive strength and aerobic capacity trainability in prepubescent children. J. Strength Cond. Res. 2013;27:3233–3244. doi: 10.1519/JSC.0000000000000252. PubMed DOI

Kutseryb T., Vovkanych L., Hrynkiv M., Majevska S., Muzyka F. Peculiarities of the somatotype of athletes with different directions of the training process. J. Phys. Educ. Sport. 2017;17:431.

Keogh J.W., Hume P.A., Pearson S.N., Mellow P. Anthropometric dimensions of male powerlifters of varying body mass. J. Sports Sci. 2007;25:1365–1376. doi: 10.1080/02640410601059630. PubMed DOI

Perez-Gomez J., Rodriguez G.V., Ara I., Olmedillas H., Chavarren J., González-Henriquez J.J., Calbet J.A. Role of muscle mass on sprint performance: Gender differences? Eur. J. Appl. Physiol. 2008;102:685–694. doi: 10.1007/s00421-007-0648-8. PubMed DOI

Moncef C., Said M., Olfa N., Dagbaji G. Influence of morphological characteristics on physical and physiological performances of tunisian elite male handball players. Asian J. Sports Med. 2012;3:74. doi: 10.5812/asjsm.34700. PubMed DOI PMC

Barbieri D., Zaccagni L., Babić V., Rakovac M., Mišigoj-Duraković M., Gualdi-Russo E. Body composition and size in sprint athletes. J. Sports Med. Phys. Fit. 2017;57:1142–1146. doi: 10.23736/S0022-4707.17.06925-0. PubMed DOI

Stewart A., Marfell-Jones M., Olds T., de Ridder H. International Standards for Anthropometric Assessment. International Society for the Advancement of Kinanthropometry; Melbourne, Australia: 2011.

Wilczyński B., Hinca J., Ślęzak D., Zorena K. The relationship between dynamic balance and jumping tests among adolescent amateur rugby players: A preliminary study. Int. J. Environ. Res. Public. Health. 2021;18:312. doi: 10.3390/ijerph18010312. PubMed DOI PMC

Sayers S.P., Harackiewicz D.V., Harman E.A., Frykman P.N., Rosenstein M.T. Cross-validation of three jump power equations. Med. Sci. Sports. Exerc. 1999;31:572–577. doi: 10.1097/00005768-199904000-00013. PubMed DOI

Jalilvand F., Banoocy N.K., Rumpf M.C., Lockie R.G. Relationship between body mass, peak power, and power-to-body mass ratio on sprint velocity and momentum in high-school football players. J. Strength Cond. Res. 2019;33:1871–1877. doi: 10.1519/JSC.0000000000002808. PubMed DOI

Gabbett T.J., Kelly J.N., Sheppard J.M. Speed, change of direction speed, and reactive agility of rugby league players. J. Strength Cond. Res. 2008;22:174–181. doi: 10.1519/JSC.0b013e31815ef700. PubMed DOI

Mann J.B., Mayhew J.L., Dos Santos M.L., Dawes J.J., Signorile J.F. Momentum, Rather Than Velocity, Is a More Effective Measure of Improvements in Division IA Football Player Performance. J. Strength Cond. Res. 2022;36:551–557. doi: 10.1519/JSC.0000000000004206. PubMed DOI

Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Earlbaum Associates; Hillsdale, NJ, USA: 1988.

Hopkins W.G. How to interpret changes in an athletic performance test. Sport Sci. 2004;8:1–7.

Vila H., Manchado C., Rodriguez N., Abraldes J.A., Alcaraz P.E., Ferragut C. Anthropometric profile, vertical jump, and throwing velocity in elite female handball players by playing positions. J. Strength Cond. Res. 2012;26:2146–2155. doi: 10.1519/JSC.0b013e31823b0a46. PubMed DOI

Saha S. Somatotype, body composition and explosive power of athlete and non-athlete. J. Sports Med. Doping Stud. 2014;4:2. doi: 10.4172/2161-0673.1000137. DOI

Esco M.R., Fedewa M.V., Cicone Z.S., Sinelnikov O.A., Sekulic D., Holmes C.J. Field-based performance tests are related to body fat percentage and fat-free mass, but not body mass index, in youth soccer players. Sports. 2018;6:105. doi: 10.3390/sports6040105. PubMed DOI PMC

Nikolaidis P.T. Body mass index and body fat percentage are associated with decreased physical fitness in adolescent and adult female volleyball players. J. Res. Med. Sci. 2013;18:22. PubMed PMC

Zary J.C., Reis V.M., Rouboa A., Silva A.J., Fernandes P.R. The somatotype and dermatoglyphic profiles of adult, junior and juvenile male Brazilian top-level volleyball players. Sci. Sports. 2010;25:146–152. doi: 10.1016/j.scispo.2009.09.002. DOI

Martín-Matillas M., Valadés D., Hernández-Hernández E., Olea-Serrano F., Sjöström M., Delgado-Fernández M., Ortega F.B. Anthropometric, body composition and somatotype characteristics of elite female volleyball players from the highest Spanish league. J. Sports Sci. 2014;32:137–148. doi: 10.1080/02640414.2013.809472. PubMed DOI

Gualdi-Russo E., Zaccagni L. Somatotype, role and performance in elite volleyball players. J Sports Med. Phys. Fit. 2001;41:256. PubMed

Aerenhouts D., Delecluse C., Hagman F., Taeymans J., Debaere S., Van Gheluwe B., Clarys P. Comparison of anthropometric characteristics and sprint start performance between elite adolescent and adult sprint athletes. Eur. J. Sport Sci. 2012;12:9–15. doi: 10.1080/17461391.2010.536580. DOI

Rahmawati N.T., Budiharjo S., Ashizawa K. Somatotypes of young male athletes and non-athlete students in Yogyakarta, Indonesia. Anthropol. Sci. 2007;115:1–7. doi: 10.1537/ase.051008. DOI

Abe T., Kawamoto K., Dankel S.J., Bell Z.W., Spitz R.W., Wong V., Loenneke J.P. Longitudinal associations between changes in body composition and changes in sprint performance in elite female sprinters. Eur. J. Sport Sci. 2020;20:100–105. doi: 10.1080/17461391.2019.1612950. PubMed DOI

Hansen K.T., Cronin J.B., Pickering S.L., Douglas L. Do force–time and power–time measures in a loaded jump squat differentiate between speed performance and playing level in elite and elite junior rugby union players? J. Strength Cond. Res. 2011;25:2382–2391. doi: 10.1519/JSC.0b013e318201bf48. PubMed DOI

Barr M.J., Sheppard J.M., Gabbett T.J., Newton R.U. Long-term training-induced changes in sprinting speed and sprint momentum in elite rugby union players. J. Strength Cond. Res. 2014;28:2724–2731. doi: 10.1519/JSC.0000000000000364. PubMed DOI

Baker D.G., Newton R.U. Comparison of lower body strength, power, acceleration, speed, agility, and sprint momentum to describe and compare playing rank among professional rugby league players. J. Strength Cond. Res. 2008;22:153–158. doi: 10.1519/JSC.0b013e31815f9519. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...