Feasibility of Biochar Derived from Sewage Sludge to Promote Sustainable Agriculture and Mitigate GHG Emissions-A Review

. 2022 Oct 10 ; 19 (19) : . [epub] 20221010

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36232283

Grantová podpora
085/2022/Z University of South Bohemia in České Budějovice

Sewage sludge (SS) has been connected to a variety of global environmental problems. Assessing the risk of various disposal techniques can be quite useful in recommending appropriate management. The preparation of sewage sludge biochar (SSB) and its impacts on soil characteristics, plant health, nutrient leaching, and greenhouse gas emissions (GHGs) are critically reviewed in this study. Comparing the features of SSB obtained at various pyrolysis temperatures revealed changes in its elemental content. Lower hydrogen/carbon ratios in SSB generated at higher pyrolysis temperatures point to the existence of more aromatic carbon molecules. Additionally, the preparation of SSB has an increased ash content, a lower yield, and a higher surface area as a result of the rise in pyrolysis temperature. The worldwide potential of SS output and CO2-equivalent emissions in 2050 were predicted as factors of global population and common disposal management in order to create a futuristic strategy and cope with the quantity of abundant global SS. According to estimations, the worldwide SS output and associated CO2-eq emissions were around 115 million tons dry solid (Mt DS) and 14,139 teragrams (Tg), respectively, in 2020. This quantity will rise to about 138 Mt DS sewage sludge and 16985 Tg CO2-eq emissions in 2050, a 20% increase. In this regard, developing and populous countries may support economic growth by utilizing low-cost methods for producing biochar and employing it in local agriculture. To completely comprehend the benefits and drawbacks of SSB as a soil supplement, further study on long-term field applications of SSB is required.

Zobrazit více v PubMed

Kacprzak M., Neczaj E., Fijałkowski K., Grobelak A., Grosser A., Worwag M., Rorat A., Brattebo H., Almås Å., Singh B.R. Sewage Sludge Disposal Strategies for Sustainable Development. Environ. Res. 2017;156:39–46. doi: 10.1016/j.envres.2017.03.010. PubMed DOI

Inoue S., Sawayama S., Ogi T., Yokoyama S. Organic Composition of Liquidized Sewage Sludge. Biomass Bioenergy. 1996;10:37–40. doi: 10.1016/0961-9534(95)00056-9. DOI

Christodoulou A., Stamatelatou K. Overview of Legislation on Sewage Sludge Management in Developed Countries Worldwide. Water Sci. Technol. 2016;73:453–462. doi: 10.2166/wst.2015.521. PubMed DOI

Wang J., Zhang D., Stabnikova O., Tay J. Evaluation of Electrokinetic Removal of Heavy Metals from Sewage Sludge. J. Hazard. Mater. 2005;124:139–146. doi: 10.1016/j.jhazmat.2005.04.036. PubMed DOI

Di Giacomo G., Romano P. Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification. Energies. 2022;15:5633. doi: 10.3390/en15155633. DOI

Rorat A., Courtois P., Vandenbulcke F., Lemiere S. Industrial and Municipal Sludge. Elsevier; Amsterdam, The Netherlands: 2019. Sanitary and Environmental Aspects of Sewage Sludge Management; pp. 155–180. DOI

Mateo-Sagasta J., Raschid-Sally L., Thebo A. Wastewater. Springer; Dordrecht, The Netherlands: 2015. Global Wastewater and Sludge Production, Treatment and Use; pp. 15–38. DOI

Zhang Q., Hu J., Lee D.-J., Chang Y., Lee Y.-J. Sludge Treatment: Current Research Trends. Bioresour. Technol. 2017;243:1159–1172. doi: 10.1016/j.biortech.2017.07.070. PubMed DOI

Piippo S., Lauronen M., Postila H. Greenhouse Gas Emissions from Different Sewage Sludge Treatment Methods in North. J. Clean. Prod. 2018;177:483–492. doi: 10.1016/j.jclepro.2017.12.232. DOI

Koutsou O.P., Gatidou G., Stasinakis A.S. Domestic Wastewater Management in Greece: Greenhouse Gas Emissions Estimation at Country Scale. J. Clean. Prod. 2018;188:851–859. doi: 10.1016/j.jclepro.2018.04.039. DOI

Shaddel S., Bakhtiary-Davijany H., Kabbe C., Dadgar F., Østerhus S. Sustainable Sewage Sludge Management: From Current Practices to Emerging Nutrient Recovery Technologies. Sustainability. 2019;11:3435. doi: 10.3390/su11123435. DOI

Badgett A., Newes E., Milbrandt A. Economic Analysis of Wet Waste-to-Energy Resources in the United States. Energy. 2019;176:224–234. doi: 10.1016/j.energy.2019.03.188. DOI

US EPA . Handbook Estimating Sludge Management Costs. US EPA; Dayton, OH, USA: 2015.

Xu Y., Naidoo A.R., Zhang X.-F., Meng X.-Z. Optimizing Sampling Strategy for Chinese National Sewage Sludge Survey (CNSSS) Based on Urban Agglomeration, Wastewater Treatment Process, and Treatment Capacity. Sci. Total Environ. 2019;696:133998. doi: 10.1016/j.scitotenv.2019.133998. DOI

Cameron K.C., Di H.J., Moir J.L. Nitrogen Losses from the Soil/Plant System: A Review. Ann. Appl. Biol. 2013;162:145–173. doi: 10.1111/aab.12014. DOI

Lamastra L., Suciu N.A., Trevisan M. Sewage Sludge for Sustainable Agriculture: Contaminants’ Contents and Potential Use as Fertilizer. Chem. Biol. Technol. Agric. 2018;5:10. doi: 10.1186/s40538-018-0122-3. DOI

Lü H., Chen X.-H., Mo C.-H., Huang Y.-H., He M.-Y., Li Y.-W., Feng N.-X., Katsoyiannis A., Cai Q.-Y. Occurrence and Dissipation Mechanism of Organic Pollutants during the Composting of Sewage Sludge: A Critical Review. Bioresour. Technol. 2021;328:124847. doi: 10.1016/j.biortech.2021.124847. PubMed DOI

Wei L., Zhu F., Li Q., Xue C., Xia X., Yu H., Zhao Q., Jiang J., Bai S. Development, Current State and Future Trends of Sludge Management in China: Based on Exploratory Data and CO2-Equivaient Emissions Analysis. Environ. Int. 2020;144:106093. doi: 10.1016/j.envint.2020.106093. PubMed DOI

Lu Y., Zheng G., Zhou W., Wang J., Zhou L. Bioleaching Conditioning Increased the Bioavailability of Polycyclic Aromatic Hydrocarbons to Promote Their Removal during Co-Composting of Industrial and Municipal Sewage Sludges. Sci. Total Environ. 2019;665:1073–1082. doi: 10.1016/j.scitotenv.2019.02.174. PubMed DOI

Fijalkowski K., Rorat A., Grobelak A., Kacprzak M.J. The Presence of Contaminations in Sewage Sludge—The Current Situation. J. Environ. Manag. 2017;203:1126–1136. doi: 10.1016/j.jenvman.2017.05.068. PubMed DOI PMC

Oni B.A., Oziegbe O., Olawole O.O. Significance of Biochar Application to the Environment and Economy. Ann. Agric. Sci. 2019;64:222–236. doi: 10.1016/j.aoas.2019.12.006. DOI

Méndez A., Cárdenas-Aguiar E., Paz-Ferreiro J., Plaza C., Gascó G. The Effect of Sewage Sludge Biochar on Peat-Based Growing Media. Biol. Agric. Hortic. 2017;33:40–51. doi: 10.1080/01448765.2016.1185645. DOI

Phoungthong K., Zhang H., Shao L.-M., He P.-J. Leaching Characteristics and Phytotoxic Effects of Sewage Sludge Biochar. J. Mater. Cycles Waste Manag. 2018;20:2089–2099. doi: 10.1007/s10163-018-0763-0. DOI

You J., Sun L., Liu X., Hu X., Xu Q. Effects of Sewage Sludge Biochar on Soil Characteristics and Crop Yield in Loamy Sand Soil. Pol. J. Environ. Stud. 2019;28:2973–2980. doi: 10.15244/pjoes/93294. DOI

Chagas J.K.M., de Figueiredo C.C., da Silva J., Paz-Ferreiro J. The Residual Effect of Sewage Sludge Biochar on Soil Availability and Bioaccumulation of Heavy Metals: Evidence from a Three-Year Field Experiment. J. Environ. Manag. 2021;279:111824. doi: 10.1016/j.jenvman.2020.111824. PubMed DOI

Lasaridi K.-E., Manios T., Stamatiadis S., Chroni C., Kyriacou A. The Evaluation of Hazards to Man and the Environment during the Composting of Sewage Sludge. Sustainability. 2018;10:2618. doi: 10.3390/su10082618. DOI

Havukainen J., Zhan M., Dong J., Liikanen M., Deviatkin I., Li X., Horttanainen M. Environmental Impact Assessment of Municipal Solid Waste Management Incorporating Mechanical Treatment of Waste and Incineration in Hangzhou, China. J. Clean. Prod. 2017;141:453–461. doi: 10.1016/j.jclepro.2016.09.146. DOI

Li Y., Shi S., Zhang L., Liu Y. Global Trends and Performances of Publication on Sewage Sludge from 1991 to 2012. Procedia Environ. Sci. 2016;31:65–74. doi: 10.1016/j.proenv.2016.02.009. DOI

Eggleston H., Leandro B., Kyoko M., Todd N., Kiyoto T. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. U.S. Department of Energy Office of Scientific and Technical Information; Washington, DC, USA: 2006.

Eurostat . Sewage Sludge Production and Disposal from Urban Wastewater. Eurostat; Luxembourg: 2019.

Nakao S., Akita K., Ozaki A., Masumoto K., Okuda T. Circulation of Fibrous Microplastic (Microfiber) in Sewage and Sewage Sludge Treatment Processes. Sci. Total Environ. 2021;795:148873. doi: 10.1016/j.scitotenv.2021.148873. PubMed DOI

Shan Y., Lv M., Zuo W., Tang Z., Ding C., Yu Z., Shen Z., Gu C., Bai Y. Sewage Sludge Application Enhances Soil Properties and Rice Growth in a Salt-Affected Mudflat Soil. Sci. Rep. 2021;11:1402. doi: 10.1038/s41598-020-80358-2. PubMed DOI PMC

Ai Y.-J., Li F.-P., Gu H.-H., Chi X.-J., Yuan X.-T., Han D.-Y. Combined Effects of Green Manure Returning and Addition of Sewage Sludge Compost on Plant Growth and Microorganism Communities in Gold Tailings. Environ. Sci. Pollut. Res. 2020;27:31686–31698. doi: 10.1007/s11356-020-09118-z. PubMed DOI

Jakubus M., Graczyk M. Microelement Variability in Plants as an Effect of Sewage Sludge Compost Application Assessed by Different Statistical Methods. Agronomy. 2020;10:642. doi: 10.3390/agronomy10050642. DOI

Buta M., Hubeny J., Zieliński W., Harnisz M., Korzeniewska E. Sewage Sludge in Agriculture—The Effects of Selected Chemical Pollutants and Emerging Genetic Resistance Determinants on the Quality of Soil and Crops—A Review. Ecotoxicol. Environ. Saf. 2021;214:112070. doi: 10.1016/j.ecoenv.2021.112070. PubMed DOI

De Souza Souza C., Bomfim M.R., da Conceição de Almeida M., de Souza Alves L., de Santana W.N., da Silva Amorim I.C., Santos J.A.G. Induced Changes of Pyrolysis Temperature on the Physicochemical Traits of Sewage Sludge and on the Potential Ecological Risks. Sci. Rep. 2021;11:974. doi: 10.1038/s41598-020-79658-4. PubMed DOI PMC

Jin J., Li Y., Zhang J., Wu S., Cao Y., Liang P., Zhang J., Wong M.H., Wang M., Shan S., et al. Influence of Pyrolysis Temperature on Properties and Environmental Safety of Heavy Metals in Biochars Derived from Municipal Sewage Sludge. J. Hazard. Mater. 2016;320:417–426. doi: 10.1016/j.jhazmat.2016.08.050. PubMed DOI

Tian Y., Cui L., Lin Q., Li G., Zhao X. The Sewage Sludge Biochar at Low Pyrolysis Temperature Had Better Improvement in Urban Soil and Turf Grass. Agronomy. 2019;9:156. doi: 10.3390/agronomy9030156. DOI

Lin Y.-Y., Chen W.-H., Liu H.-C. Aging and Emulsification Analyses of Hydrothermal Liquefaction Bio-Oil Derived from Sewage Sludge and Swine Leather Residue. J. Clean. Prod. 2020;266:122050. doi: 10.1016/j.jclepro.2020.122050. DOI

Xiao Y., Raheem A., Ding L., Chen W.-H., Chen X., Wang F., Lin S.-L. Pretreatment, Modification and Applications of Sewage Sludge-Derived Biochar for Resource Recovery—A Review. Chemosphere. 2022;287:131969. doi: 10.1016/j.chemosphere.2021.131969. PubMed DOI

Khanmohammadi Z., Afyuni M., Mosaddeghi M.R. Effect of Pyrolysis Temperature on Chemical and Physical Properties of Sewage Sludge Biochar. Waste Manag. Res. J. Sustain. Circ. Econ. 2015;33:275–283. doi: 10.1177/0734242X14565210. PubMed DOI

Zielińska A., Oleszczuk P., Charmas B., Skubiszewska-Zięba J., Pasieczna-Patkowska S. Effect of Sewage Sludge Properties on the Biochar Characteristic. J. Anal. Appl. Pyrolysis. 2015;112:201–213. doi: 10.1016/j.jaap.2015.01.025. DOI

Raynaud M., Vaxelaire J., Olivier J., Dieudé-Fauvel E., Baudez J.-C. Compression Dewatering of Municipal Activated Sludge: Effects of Salt and PH. Water Res. 2012;46:4448–4456. doi: 10.1016/j.watres.2012.05.047. PubMed DOI

Zhang C., Ho S.-H., Chen W.-H., Eng C.F., Wang C.-T. Simultaneous Implementation of Sludge Dewatering and Solid Biofuel Production by Microwave Torrefaction. Environ. Res. 2021;195:110775. doi: 10.1016/j.envres.2021.110775. PubMed DOI

Fytili D., Zabaniotou A. Utilization of Sewage Sludge in EU Application of Old and New Methods—A Review. Renew. Sustain. Energy Rev. 2008;12:116–140. doi: 10.1016/j.rser.2006.05.014. DOI

Naqvi S.R., Tariq R., Hameed Z., Ali I., Naqvi M., Chen W.-H., Ceylan S., Rashid H., Ahmad J., Taqvi S.A., et al. Pyrolysis of High Ash Sewage Sludge: Kinetics and Thermodynamic Analysis Using Coats-Redfern Method. Renew. Energy. 2019;131:854–860. doi: 10.1016/j.renene.2018.07.094. DOI

Paz-Ferreiro J., Gascó G., Gutiérrez B., Méndez A. Soil Biochemical Activities and the Geometric Mean of Enzyme Activities after Application of Sewage Sludge and Sewage Sludge Biochar to Soil. Biol. Fertil. Soils. 2012;48:511–517. doi: 10.1007/s00374-011-0644-3. DOI

Devi P., Saroha A.K. Effect of Pyrolysis Temperature on Polycyclic Aromatic Hydrocarbons Toxicity and Sorption Behaviour of Biochars Prepared by Pyrolysis of Paper Mill Effluent Treatment Plant Sludge. Bioresour. Technol. 2015;192:312–320. doi: 10.1016/j.biortech.2015.05.084. PubMed DOI

Wang Z., Shu X., Zhu H., Xie L., Cheng S. Characteristics of Biochars Prepared by Co- Pyrolysis of Sewage Sludge and Cotton Stalk Intended for Use as Soil Amendments. Environ. Technol. 2018;41:1347–1357. doi: 10.1080/09593330.2018.1534891. PubMed DOI

Zhang X., Zhao B., Liu H., Zhao Y., Li L. Environmental Technology & Innovation Effects of Pyrolysis Temperature on Biochar’ s Characteristics and Speciation and Environmental Risks of Heavy Metals in Sewage Sludge Biochars. Environ. Technol. Innov. 2022;26:102288. doi: 10.1016/j.eti.2022.102288. DOI

Titova J., Baltrėnaitė E. Physical and Chemical Properties of Biochar Produced from Sewage Sludge Compost and Plants Biomass, Fertilized with That Compost, Important for Soil Improvement. Waste Biomass Valorization. 2021;12:3781–3800. doi: 10.1007/s12649-020-01272-2. DOI

Sousa A.A.T.C., Figueiredo C.C. Sewage Sludge Biochar: Effects on Soil Fertility and Growth of Radish. Biol. Agric. Hortic. 2016;32:127–138. doi: 10.1080/01448765.2015.1093545. DOI

Zhang J., Lü F., Zhang H., Shao L., Chen D., He P. Multiscale Visualization of the Structural and Characteristic Changes of Sewage Sludge Biochar Oriented towards Potential Agronomic and Environmental Implication. Sci. Rep. 2015;5:9406. doi: 10.1038/srep09406. PubMed DOI PMC

Rehman R.A., Rizwan M., Qayyum M.F., Ali S., Zia-ur-Rehman M., Zafar-ul-Hye M., Hafeez F., Iqbal M.F. Efficiency of Various Sewage Sludges and Their Biochars in Improving Selected Soil Properties and Growth of Wheat (Triticum Aestivum) J. Environ. Manag. 2018;223:607–613. doi: 10.1016/j.jenvman.2018.06.081. PubMed DOI

Lu H., Zhang W., Wang S., Zhuang L., Yang Y., Qiu R. Journal of Analytical and Applied Pyrolysis Characterization of Sewage Sludge-Derived Biochars from Different Feedstocks and Pyrolysis Temperatures. J. Anal. Appl. Pyrolysis. 2013;102:137–143. doi: 10.1016/j.jaap.2013.03.004. DOI

Mierzwa-Hersztek M., Gondek K., Klimkowicz-Pawlas A., Baran A., Bajda T. Sewage Sludge Biochars Management-Ecotoxicity, Mobility of Heavy Metals, and Soil Microbial Biomass. Environ. Toxicol. Chem. 2018;37:1197–1207. doi: 10.1002/etc.4045. PubMed DOI

Méndez A., Terradillos M., Gascó G. Physicochemical and Agronomic Properties of Biochar from Sewage Sludge Pyrolysed at Different Temperatures. J. Anal. Appl. Pyrolysis. 2013;102:124–130. doi: 10.1016/j.jaap.2013.03.006. DOI

Khan S., Chao C., Waqas M., Arp H.P.H., Zhu Y.-G. Sewage Sludge Biochar Influence upon Rice (Oryza sativa L.) Yield, Metal Bioaccumulation and Greenhouse Gas Emissions from Acidic Paddy Soil. Environ. Sci. Technol. 2013;47:8624–8632. doi: 10.1021/es400554x. PubMed DOI

Gwenzi W., Muzava M., Mapanda F., Tauro T.P. Comparative Short-Term Effects of Sewage Sludge and Its Biochar on Soil Properties, Maize Growth and Uptake of Nutrients on a Tropical Clay Soil in Zimbabwe. J. Integr. Agric. 2016;15:1395–1406. doi: 10.1016/S2095-3119(15)61154-6. DOI

Shao Q., Ju Y., Guo W., Xia X., Bian R., Li L., Li W., Liu X., Zheng J., Pan G. Pyrolyzed Municipal Sewage Sludge Ensured Safe Grain Production While Reduced C Emissions in a Paddy Soil under Rice and Wheat Rotation. Environ. Sci. Pollut. Res. 2019;26:9244–9256. doi: 10.1007/s11356-019-04417-6. PubMed DOI

Goldan E., Nedeff V., Barsan N., Culea M., Tomozei C., Panainte-Lehadus M., Mosnegutu E. Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review. Sustainability. 2022;14:5309. doi: 10.3390/su14095309. DOI

Tarayre C., De Clercq L., Charlier R., Michels E., Meers E., Camargo-valero M., Delvigne F. Bioresource Technology New Perspectives for the Design of Sustainable Bioprocesses for Phosphorus Recovery from Waste. 2016, 206, 264–274. Bioresour. Technol. doi: 10.1016/j.biortech.2016.01.091. PubMed DOI

Ghorbani M., Amirahmadi E., Zamanian K. In-situ Biochar Production Associated with Paddies: Direct Involvement of Farmers in Greenhouse Gases Reduction Policies besides Increasing Nutrients Availability and Rice Production. Land Degrad. Dev. 2021;32:3893–3904. doi: 10.1002/ldr.4006. DOI

Spokas K.A. Review of the Stability of Biochar in Soils: Predictability of O:C Molar Ratios. Carbon Manag. 2010;1:289–303. doi: 10.4155/cmt.10.32. DOI

Opatokun S.A., Strezov V., Kan T. Product Based Evaluation of Pyrolysis of Food Waste and Its Digestate. Energy. 2015;92:349–354. doi: 10.1016/j.energy.2015.02.098. DOI

Song X.D., Xue X.Y., Chen D.Z., He P.J., Dai X.H. Application of Biochar from Sewage Sludge to Plant Cultivation: Influence of Pyrolysis Temperature and Biochar-to-Soil Ratio on Yield and Heavy Metal Accumulation. Chemosphere. 2014;109:213–220. doi: 10.1016/j.chemosphere.2014.01.070. PubMed DOI

Yuan J., Chadwick D., Zhang D., Li G., Chen S., Luo W., Du L., He S., Peng S. Effects of Aeration Rate on Maturity and Gaseous Emissions during Sewage Sludge Composting. Waste Manag. 2016;56:403–410. doi: 10.1016/j.wasman.2016.07.017. PubMed DOI

Yue Y., Cui L., Lin Q., Li G., Zhao X. Efficiency of Sewage Sludge Biochar in Improving Urban Soil Properties and Promoting Grass Growth. Chemosphere. 2017;173:551–556. doi: 10.1016/j.chemosphere.2017.01.096. PubMed DOI

Faria W.M., de Figueiredo C.C., Coser T.R., Vale A.T., Schneider B.G. Is Sewage Sludge Biochar Capable of Replacing Inorganic Fertilizers for Corn Production? Evidence from a Two-Year Field Experiment. Arch. Agron. Soil Sci. 2018;64:505–519. doi: 10.1080/03650340.2017.1360488. DOI

Yu O.-Y., Raichle B., Sink S. Impact of Biochar on the Water Holding Capacity of Loamy Sand Soil. Int. J. Energy Environ. Eng. 2013;4:44. doi: 10.1186/2251-6832-4-44. DOI

Filipović V., Černe M., Šimůnek J., Filipović L., Romić M., Ondrašek G., Bogunović I., Mustać I., Krevh V., Ferenčević A., et al. Modeling Water Flow and Phosphorus Sorption in a Soil Amended with Sewage Sludge and Olive Pomace as Compost or Biochar. Agronomy. 2020;10:1163. doi: 10.3390/agronomy10081163. DOI

Razzaghi F., Obour P.B., Arthur E. Does Biochar Improve Soil Water Retention? A Systematic Review and Meta-Analysis. Geoderma. 2020;361:114055. doi: 10.1016/j.geoderma.2019.114055. DOI

Velli P., Manolikaki I., Diamadopoulos E. Effect of Biochar Produced from Sewage Sludge on Tomato (Solanum lycopersicum L.) Growth, Soil Chemical Properties and Heavy Metal Concentrations. J. Environ. Manag. 2021;297:113325. doi: 10.1016/j.jenvman.2021.113325. PubMed DOI

Zhang Y., Chen T., Liao Y., Reid B.J., Chi H., Hou Y., Cai C. Modest Amendment of Sewage Sludge Biochar to Reduce the Accumulation of Cadmium into Rice (Oryza Sativa L.): A Field Study. Environ. Pollut. 2016;216:819–825. doi: 10.1016/j.envpol.2016.06.053. PubMed DOI

Liu Z., Demisie W., Zhang M. Simulated Degradation of Biochar and Its Potential Environmental Implications. Environ. Pollut. 2013;179:146–152. doi: 10.1016/j.envpol.2013.04.030. PubMed DOI

Duan X.-Y., Cao Y., Liu T.-Z., Li L., Wang B., Wang X.-D. Nutrient Stability and Sorption of Sewage Sludge Biochar Prepared from Co-Pyrolysis of Sewage Sludge and Stalks/Mineral Materials. Environ. Pollut. Bioavailab. 2020;32:12–18. doi: 10.1080/26395940.2019.1710259. DOI

De Figueiredo C.C., Reis A.D.S.P.J., de Araujo A.S., Blum L.E.B., Shah K., Paz-Ferreiro J. Assessing the Potential of Sewage Sludge-Derived Biochar as a Novel Phosphorus Fertilizer: Influence of Extractant Solutions and Pyrolysis Temperatures. Waste Manag. 2021;124:144–153. doi: 10.1016/j.wasman.2021.01.044. PubMed DOI

Grutzmacher P., Puga A.P., Bibar M.P.S., Coscione A.R., Packer A.P., de Andrade C.A. Carbon Stability and Mitigation of Fertilizer Induced N2O Emissions in Soil Amended with Biochar. Sci. Total Environ. 2018;625:1459–1466. doi: 10.1016/j.scitotenv.2017.12.196. PubMed DOI

Nafez A.H., Nikaeen M., Kadkhodaie S., Hatamzadeh M., Moghim S. Sewage Sludge Composting: Quality Assessment for Agricultural Application. Environ. Monit. Assess. 2015;187:709. doi: 10.1007/s10661-015-4940-5. PubMed DOI

Kumar V., Chopra A.K., Kumar A. A Review on Sewage Sludge (Biosolids) a Resource for Sustainable Agriculture. Arch. Agric. Environ. Sci. 2017;2:340–347. doi: 10.26832/24566632.2017.020417. DOI

Song U., Lee E.J. Environmental and Economical Assessment of Sewage Sludge Compost Application on Soil and Plants in a Landfill. Resour. Conserv. Recycl. 2010;54:1109–1116. doi: 10.1016/j.resconrec.2010.03.005. DOI

De Lucia B., Cristiano G., Vecchietti L., Bruno L. Effect of Different Rates of Composted Organic Amendment on Urban Soil Properties, Growth and Nutrient Status of Three Mediterranean Native Hedge Species. Urban For. Urban Green. 2013;12:537–545. doi: 10.1016/j.ufug.2013.07.008. DOI

Bowszys T., Wierzbowska J., Sternik P., Busse M. Effect of the application of sewage sludge compost on the content and leaching of zinc and copper from soils under agricultural use. J. Ecol. Eng. 2015;16:1–7. doi: 10.12911/22998993/580. DOI

Farrell M., Jones D.L. Critical Evaluation of Municipal Solid Waste Composting and Potential Compost Markets. Bioresour. Technol. 2009;100:4301–4310. doi: 10.1016/j.biortech.2009.04.029. PubMed DOI

Corrêa R.S., White R.E., Weatherley A.J. Effect of Compost Treatment of Sewage Sludge on Nitrogen Behavior in Two Soils. Waste Manag. 2006;26:614–619. doi: 10.1016/j.wasman.2005.09.008. PubMed DOI

Chu S., Wu D., Liang L.L., Zhong F., Hu Y., Hu X., Lai C., Zeng S. Municipal Sewage Sludge Compost Promotes Mangifera Persiciforma Tree Growth with No Risk of Heavy Metal Contamination of Soil. Sci. Rep. 2017;7:13408. doi: 10.1038/s41598-017-13895-y. PubMed DOI PMC

Sharma B., Sarkar A., Singh P., Singh R.P. Agricultural Utilization of Biosolids: A Review on Potential Effects on Soil and Plant Grown. Waste Manag. 2017;64:117–132. doi: 10.1016/j.wasman.2017.03.002. PubMed DOI

Major N., Schierstaedt J., Jechalke S., Nesme J., Ban S.G., Černe M., Sørensen S.J., Ban D., Schikora A. Composted Sewage Sludge Influences the Microbiome and Persistence of Human Pathogens in Soil. Microorganisms. 2020;8:1020. doi: 10.3390/microorganisms8071020. PubMed DOI PMC

Wierzbowska J., Sienkiewicz S., Krzebietke S., Sternik P. Sewage Sludge as a Source of Nitrogen and Phosphorus for Virginia Fanpetals. Bulg. J. Agric. Sci. 2016;22:722–727.

Qian T., Yang Q., Jun D.C.F., Dong F., Zhou Y. Transformation of Phosphorus in Sewage Sludge Biochar Mediated by a Phosphate-Solubilizing Microorganism. Chem. Eng. J. 2019;359:1573–1580. doi: 10.1016/j.cej.2018.11.015. DOI

Li L., Zhang Y.-J., Novak A., Yang Y., Wang J. Role of Biochar in Improving Sandy Soil Water Retention and Resilience to Drought. Water. 2021;13:407. doi: 10.3390/w13040407. DOI

Glaser B., Lehr V.-I. Biochar Effects on Phosphorus Availability in Agricultural Soils: A Meta-Analysis. Sci. Rep. 2019;9:9338. doi: 10.1038/s41598-019-45693-z. PubMed DOI PMC

Siedt M., Schäffer A., Smith K.E.C., Nabel M., Roß-Nickoll M., van Dongen J.T. Comparing Straw, Compost, and Biochar Regarding Their Suitability as Agricultural Soil Amendments to Affect Soil Structure, Nutrient Leaching, Microbial Communities, and the Fate of Pesticides. Sci. Total Environ. 2021;751:141607. doi: 10.1016/j.scitotenv.2020.141607. PubMed DOI

Černe M., Palčić I., Major N., Pasković I., Perković J., Užila Z., Filipović V., Romić M., Goreta Ban S., Jaćimović R., et al. Effect of Sewage Sludge Derived Compost or Biochar Amendment on the Phytoaccumulation of Potentially Toxic Elements and Radionuclides by Chinese Cabbage. J. Environ. Manag. 2021;293:112955. doi: 10.1016/j.jenvman.2021.112955. PubMed DOI

Uzinger N., Takács T., Szili-Kovács T., Radimszky L., Füzy A., Draskovits E., Szűcs-Vásárhelyi N., Molnár M., Farkas É., Kutasi J., et al. Fertility Impact of Separate and Combined Treatments with Biochar, Sewage Sludge Compost and Bacterial Inocula on Acidic Sandy Soil. Agronomy. 2020;10:1612. doi: 10.3390/agronomy10101612. DOI

Kumar V., Chopra A.K. Accumulation and Translocation of Metals in Soil and Different Parts of French Bean (Phaseolus Vulgaris L.) Amended with Sewage Sludge. Bull. Environ. Contam. Toxicol. 2014;92:103–108. doi: 10.1007/s00128-013-1142-0. PubMed DOI

Casado-Vela J., Sellés S., Navarro J., Bustamante M.A., Mataix J., Guerrero C., Gomez I. Evaluation of Composted Sewage Sludge as Nutritional Source for Horticultural Soils. Waste Manag. 2006;26:946–952. doi: 10.1016/j.wasman.2005.07.016. PubMed DOI

Smith S. A Critical Review of the Bioavailability and Impacts of Heavy Metals in Municipal Solid Waste Composts Compared to Sewage Sludge. Environ. Int. 2009;35:142–156. doi: 10.1016/j.envint.2008.06.009. PubMed DOI

Feng L., Zhang L., Feng L. Dissipation of Polycyclic Aromatic Hydrocarbons in Soil Amended with Sewage Sludge Compost. Int. Biodeterior. Biodegrad. 2014;95:200–207. doi: 10.1016/j.ibiod.2014.04.012. DOI

Liu H. Achilles Heel of Environmental Risk from Recycling of Sludge to Soil as Amendment: A Summary in Recent Ten Years (2007–2016) Waste Manag. 2016;56:575–583. doi: 10.1016/j.wasman.2016.05.028. PubMed DOI

Fang W., Delapp R.C., Kosson D.S., van der Sloot H.A., Liu J. Release of Heavy Metals during Long-Term Land Application of Sewage Sludge Compost: Percolation Leaching Tests with Repeated Additions of Compost. Chemosphere. 2017;169:271–280. doi: 10.1016/j.chemosphere.2016.11.086. PubMed DOI

He Y., Liu C., Tang X.Y., Xian Q.S., Zhang J.Q., Guan Z. Biochar Impacts on Sorption-Desorption of Oxytetracycline and Florfenicol in an Alkaline Farmland Soil as Affected by Field Ageing. Sci. Total Environ. 2019;671:928–936. doi: 10.1016/j.scitotenv.2019.03.414. DOI

Qi G., Jia Y., Liu W., Wei Y., Du B., Fang W., Guo Y., Guo F., Wu Y., Zou Q., et al. Leaching Behavior and Potential Ecological Risk of Heavy Metals in Southwestern China Soils Applied with Sewage Sludge Compost under Acid Precipitation Based on Lysimeter Trials. Chemosphere. 2020;249:126212. doi: 10.1016/j.chemosphere.2020.126212. PubMed DOI

Perezmurcia M., Moral R., Morenocaselles J., Perezespinosa A., Paredes C. Use of Composted Sewage Sludge in Growth Media for Broccoli. Bioresour. Technol. 2006;97:123–130. doi: 10.1016/j.biortech.2005.02.005. PubMed DOI

Zheljazkov V.D., Warman P.R. Phytoavailability and Fractionation of Copper, Manganese, and Zinc in Soil Following Application of Two Composts to Four Crops. Environ. Pollut. 2004;131:187–195. doi: 10.1016/j.envpol.2004.02.007. PubMed DOI

Wei Y., Liu Y. Effects of Sewage Sludge Compost Application on Crops and Cropland in a 3-Year Field Study. Chemosphere. 2005;59:1257–1265. doi: 10.1016/j.chemosphere.2004.11.052. PubMed DOI

Manara P., Zabaniotou A. Towards Sewage Sludge Based Biofuels via Thermochemical Conversion—A Review. Renew. Sustain. Energy Rev. 2012;16:2566–2582. doi: 10.1016/j.rser.2012.01.074. DOI

Zoghlami R.I., Hechmi S., Weghlani R., Jedidi N., Moussa M. Biochar Derived from Domestic Sewage Sludge: Influence of Temperature Pyrolysis on Biochars’ Chemical Properties and Phytotoxicity. J. Chem. 2021;2021:1818241. doi: 10.1155/2021/1818241. DOI

Méndez A., Gómez A., Paz-Ferreiro J., Gascó G. Effects of Sewage Sludge Biochar on Plant Metal Availability after Application to a Mediterranean Soil. Chemosphere. 2012;89:1354–1359. doi: 10.1016/j.chemosphere.2012.05.092. PubMed DOI

Cotxarrera L., Trillas-Gay M.I., Steinberg C., Alabouvette C. Use of Sewage Sludge Compost and Trichoderma Asperellum Isolates to Suppress Fusarium Wilt of Tomato. Soil Biol. Biochem. 2002;34:467–476. doi: 10.1016/S0038-0717(01)00205-X. DOI

Tang S., Shao N., Zheng C., Yan F., Zhang Z. Amino-Functionalized Sewage Sludge-Derived Biochar as Sustainable Efficient Adsorbent for Cu(II) Removal. Waste Manag. 2019;90:17–28. doi: 10.1016/j.wasman.2019.04.042. PubMed DOI

Gopinath A., Divyapriya G., Srivastava V., Laiju A.R., Nidheesh P.V., Kumar M.S. Conversion of Sewage Sludge into Biochar: A Potential Resource in Water and Wastewater Treatment. Environ. Res. 2021;194:110656. doi: 10.1016/j.envres.2020.110656. PubMed DOI

Nguyen T.T.N., Wallace H.M., Xu C.-Y., Xu Z., Farrar M.B., Joseph S., Van Zwieten L., Bai S.H. Short-Term Effects of Organo-Mineral Biochar and Organic Fertilisers on Nitrogen Cycling, Plant Photosynthesis, and Nitrogen Use Efficiency. J. Soils Sediments. 2017;17:2763–2774. doi: 10.1007/s11368-017-1839-5. DOI

Borchard N., Schirrmann M., Cayuela M.L., Kammann C., Wrage-Mönnig N., Estavillo J.M., Fuertes-Mendizábal T., Sigua G., Spokas K., Ippolito J.A., et al. Biochar, Soil and Land-Use Interactions That Reduce Nitrate Leaching and N2O Emissions: A Meta-Analysis. Sci. Total Environ. 2019;651:2354–2364. doi: 10.1016/j.scitotenv.2018.10.060. PubMed DOI

Cayuela M.L., Sánchez-Monedero M.A., Roig A., Hanley K., Enders A., Lehmann J. Biochar and Denitrification in Soils: When, How Much and Why Does Biochar Reduce N2O Emissions? Sci. Rep. 2013;3:1732. doi: 10.1038/srep01732. PubMed DOI PMC

Nguyen T.T.N., Xu C.-Y., Tahmasbian I., Che R., Xu Z., Zhou X., Wallace H.M., Bai S.H. Effects of Biochar on Soil Available Inorganic Nitrogen: A Review and Meta-Analysis. Geoderma. 2017;288:79–96. doi: 10.1016/j.geoderma.2016.11.004. DOI

Dong W., Walkiewicz A., Bieganowski A., Oenema O., Nosalewicz M., He C., Zhang Y., Hu C. Biochar Promotes the Reduction of N2O to N2 and Concurrently Suppresses the Production of N2O in Calcareous Soil. Geoderma. 2020;362:114091. doi: 10.1016/j.geoderma.2019.114091. DOI

Kubaczyński A., Walkiewicz A., Pytlak A., Grządziel J., Gałązka A., Brzezińska M. Biochar Dose Determines Methane Uptake and Methanotroph Abundance in Haplic Luvisol. Sci. Total Environ. 2022;806:151259. doi: 10.1016/j.scitotenv.2021.151259. PubMed DOI

Spokas K., Reicosky D. Impacts of Sixteen Different Biochars on Soil Greenhouse Gas Production. Ann. Environ. Sci. 2009;3:179–193.

Kubaczyński A., Walkiewicz A., Pytlak A., Brzezińska M. New Biochars from Raspberry and Potato Stems Absorb More Methane than Wood Offcuts and Sunflower Husk Biochars. Int. Agrophysics. 2020;34:355–364. doi: 10.31545/intagr/126762. DOI

Walkiewicz A., Kalinichenko K., Kubaczyński A., Brzezińska M., Bieganowski A. Usage of Biochar for Mitigation of CO2 Emission and Enhancement of CH4 Consumption in Forest and Orchard Haplic Luvisol (Siltic) Soils. Appl. Soil Ecol. 2020;156:103711. doi: 10.1016/j.apsoil.2020.103711. DOI

Sun H., Luo L., Wang D., Liu W., Lan Y., Yang T., Gai C., Liu Z. Carbon Balance Analysis of Sewage Sludge Biochar-to-Soil System. J. Clean. Prod. 2022;358:132057. doi: 10.1016/j.jclepro.2022.132057. DOI

Miller-Robbie L., Ulrich B.A., Ramey D.F., Spencer K.S., Herzog S.P., Cath T.Y., Stokes J.R., Higgins C.P. Life Cycle Energy and Greenhouse Gas Assessment of the Co-Production of Biosolids and Biochar for Land Application. J. Clean. Prod. 2015;91:118–127. doi: 10.1016/j.jclepro.2014.12.050. DOI

Teoh S.K., Li L.Y. Feasibility of Alternative Sewage Sludge Treatment Methods from a Lifecycle Assessment (LCA) Perspective. J. Clean. Prod. 2020;247:119495. doi: 10.1016/j.jclepro.2019.119495. DOI

Mayer F., Bhandari R., Gäth S.A. Life Cycle Assessment of Prospective Sewage Sludge Treatment Paths in Germany. J. Environ. Manag. 2021;290:112557. doi: 10.1016/j.jenvman.2021.112557. PubMed DOI

Przydatek G., Wota A.K. Analysis of the Comprehensive Management of Sewage Sludge in Poland. J. Mater. Cycles Waste Manag. 2020;22:80–88. doi: 10.1007/s10163-019-00937-y. DOI

Rizzardini C., Goi D. Sustainability of Domestic Sewage Sludge Disposal. Sustainability. 2014;6:2424–2434. doi: 10.3390/su6052424. DOI

Grobelak A., Czerwińska K., Murtaś A. Industrial and Municipal Sludge. Elsevier; Amsterdam, The Netherlands: 2019. General Considerations on Sludge Disposal, Industrial and Municipal Sludge; pp. 135–153. DOI

Liu B., Wei Q., Zhang B., Bi J. Life Cycle GHG Emissions of Sewage Sludge Treatment and Disposal Options in Tai Lake Watershed, China. Sci. Total Environ. 2013;447:361–369. doi: 10.1016/j.scitotenv.2013.01.019. PubMed DOI

Houillon G., Jolliet O. Life Cycle Assessment of Processes for the Treatment of Wastewater Urban Sludge: Energy and Global Warming Analysis. J. Clean. Prod. 2005;13:287–299. doi: 10.1016/j.jclepro.2004.02.022. DOI

Hallaji S.M., Kuroshkarim M., Moussavi S.P. Enhancing Methane Production Using Anaerobic Co-Digestion of Waste Activated Sludge with Combined Fruit Waste and Cheese Whey. BMC Biotechnol. 2019;19:19. doi: 10.1186/s12896-019-0513-y. PubMed DOI PMC

Villegas M., Huiliñir C. Biodrying of Sewage Sludge: Kinetics of Volatile Solids Degradation under Different Initial Moisture Contents and Air-Flow Rates. Bioresour. Technol. 2014;174:33–41. doi: 10.1016/j.biortech.2014.09.136. PubMed DOI

Yuan H., Lu T., Wang Y., Chen Y., Lei T. Sewage Sludge Biochar: Nutrient Composition and Its Effect on the Leaching of Soil Nutrients. Geoderma. 2016;267:17–23. doi: 10.1016/j.geoderma.2015.12.020. DOI

Moënne-Loccoz P., Fee J.A. Catalyzing NO to N2O in the Nitrogen Cycle. Science. 2010;330:1632–1633. doi: 10.1126/science.1200247. PubMed DOI PMC

Guo L., Zhang H., Jiang X., Wang Y., Liu Z., Fang S., Zhang Z. Classification and Disposal Strategy of Excess Sludge in the Petrochemical Industry. Appl. Sci. 2019;9:1186. doi: 10.3390/app9061186. DOI

Conesa J.A. Sewage Sludge as Inhibitor of the Formation of Persistent Organic Pollutants during Incineration. Sustainability. 2021;13:10935. doi: 10.3390/su131910935. DOI

Kanhar A.H., Chen S., Wang F. Incineration Fly Ash and Its Treatment to Possible Utilization: A Review. Energies. 2020;13:6681. doi: 10.3390/en13246681. DOI

Kim J., Jeong S. Economic and Environmental Cost Analysis of Incineration and Recovery Alternatives for Flammable Industrial Waste: The Case of South Korea. Sustainability. 2017;9:1638. doi: 10.3390/su9091638. DOI

Li Y.B., Liu T.T., Song J.L., Lv J.H., Jiang J.S. Effects of Chemical Additives on Emissions of Ammonia and Greenhouse Gas during Sewage Sludge Composting. Process Saf. Environ. Prot. 2020;143:129–137. doi: 10.1016/j.psep.2020.05.056. DOI

Thomazini A., Spokas K., Hall K., Ippolito J., Lentz R., Novak J. GHG Impacts of Biochar: Predictability for the Same Biochar. Agric. Ecosyst. Environ. 2015;207:183–191. doi: 10.1016/j.agee.2015.04.012. DOI

Chen Y.-C., Kuo J. Potential of Greenhouse Gas Emissions from Sewage Sludge Management: A Case Study of Taiwan. J. Clean. Prod. 2016;129:196–201. doi: 10.1016/j.jclepro.2016.04.084. DOI

Jiang T., Ma X., Yang J., Tang Q., Yi Z., Chen M., Li G. Effect of Different Struvite Crystallization Methods on Gaseous Emission and the Comprehensive Comparison during the Composting. Bioresour. Technol. 2016;217:219–226. doi: 10.1016/j.biortech.2016.02.046. PubMed DOI

Fukumoto Y., Osada T., Hanajima D., Haga K. Patterns and Quantities of NH3, N2O and CH4 Emissions during Swine Manure Composting without Forced Aeration––Effect of Compost Pile Scale. Bioresour. Technol. 2003;89:109–114. doi: 10.1016/S0960-8524(03)00060-9. PubMed DOI

Đurđević D., Blecich P., Jurić Ž. Energy Recovery from Sewage Sludge: The Case Study of Croatia. Energies. 2019;12:1927. doi: 10.3390/en12101927. DOI

Wang Q., Wang Z., Awasthi M.K., Jiang Y., Li R., Ren X., Zhao J., Shen F., Wang M., Zhang Z. Evaluation of Medical Stone Amendment for the Reduction of Nitrogen Loss and Bioavailability of Heavy Metals during Pig Manure Composting. Bioresour. Technol. 2016;220:297–304. doi: 10.1016/j.biortech.2016.08.081. PubMed DOI

Shen Y., Ren L., Li G., Chen T., Guo R. Influence of Aeration on CH4, N2O and NH3 Emissions during Aerobic Composting of a Chicken Manure and High C/N Waste Mixture. Waste Manag. 2011;31:33–38. doi: 10.1016/j.wasman.2010.08.019. PubMed DOI

Beck-Friis B., Pell M., Sonesson U., Jönsson H., Kirchmann H. Formation and Emission of N2O and CH4 from Compost Heaps of Organic Household Waster. Environ. Monit. Assess. 2000;62:317–331. doi: 10.1023/A:1006245227491. DOI

Sommer S.G., Møller H.B. Emission of Greenhouse Gases during Composting of Deep Litter from Pig Production—Effect of Straw Content. J. Agric. Sci. 2000;134:327–335. doi: 10.1017/S0021859699007625. DOI

Bubalo A., Vouk D., Stirmer N., Nad K. Use of Sewage Sludge Ash in the Production of Innovative Bricks—An Example of a Circular Economy. Sustainability. 2021;13:9330. doi: 10.3390/su13169330. DOI

Vochozka M., Maroušková A., Váchal J., Straková J. Biochar Pricing Hampers Biochar Farming. Clean Technol. Environ. Policy. 2016;18:1225–1231. doi: 10.1007/s10098-016-1113-3. DOI

Ahmed M.B., Zhou J.L., Ngo H.H., Guo W. Insight into Biochar Properties and Its Cost Analysis. Biomass Bioenergy. 2016;84:76–86. doi: 10.1016/j.biombioe.2015.11.002. DOI

Singh S., Kumar V., Dhanjal D.S., Datta S., Bhatia D., Dhiman J., Samuel J., Prasad R., Singh J. A Sustainable Paradigm of Sewage Sludge Biochar: Valorization, Opportunities, Challenges and Future Prospects. J. Clean. Prod. 2020;269:122259. doi: 10.1016/j.jclepro.2020.122259. DOI

Callegari A., Capodaglio A. Properties and Beneficial Uses of (Bio)Chars, with Special Attention to Products from Sewage Sludge Pyrolysis. Resources. 2018;7:20. doi: 10.3390/resources7010020. DOI

Barry D., Barbiero C., Briens C., Berruti F. Pyrolysis as an Economical and Ecological Treatment Option for Municipal Sewage Sludge. Biomass Bioenergy. 2019;122:472–480. doi: 10.1016/j.biombioe.2019.01.041. DOI

Maroušek J. Significant Breakthrough in Biochar Cost Reduction. Clean Technol. Environ. Policy. 2014;16:1821–1825. doi: 10.1007/s10098-014-0730-y. DOI

Fernando-Foncillas C., Estevez M.M., Uellendahl H., Varrone C. Co-Management of Sewage Sludge and Other Organic Wastes: A Scandinavian Case Study. Energies. 2021;14:3411. doi: 10.3390/en14123411. DOI

Shahbeig H., Nosrati M. Pyrolysis of Municipal Sewage Sludge for Bioenergy Production: Thermo-Kinetic Studies, Evolved Gas Analysis, and Techno-Socio-Economic Assessment. Renew. Sustain. Energy Rev. 2020;119:109567. doi: 10.1016/j.rser.2019.109567. DOI

Dickinson D., Balduccio L., Buysse J., Ronsse F., van Huylenbroeck G., Prins W. Cost-Benefit Analysis of Using Biochar to Improve Cereals Agriculture. GCB Bioenergy. 2015;7:850–864. doi: 10.1111/gcbb.12180. DOI

Maroušek J., Strunecký O., Stehel V. Biochar Farming: Defining Economically Perspective Applications. Clean Technol. Environ. Policy. 2019;21:1389–1395. doi: 10.1007/s10098-019-01728-7. DOI

Shackley S., Hammond J., Gaunt J., Ibarrola R. The Feasibility and Costs of Biochar Deployment in the UK. Carbon Manag. 2011;2:335–356. doi: 10.4155/cmt.11.22. DOI

Canatoy R.C., Jeong S.T., Galgo S.J.C., Kim P.J., Cho S.R. Biochar as Soil Amendment: Syngas Recycling System Is Essential to Create Positive Carbon Credit. Sci. Total Environ. 2022;809:151140. doi: 10.1016/j.scitotenv.2021.151140. PubMed DOI

Yao Z., You S., Ge T., Wang C.-H. Biomass Gasification for Syngas and Biochar Co-Production: Energy Application and Economic Evaluation. Appl. Energy. 2018;209:43–55. doi: 10.1016/j.apenergy.2017.10.077. DOI

Wang T., Liu H., Duan C., Xu R., Zhang Z., She D., Zheng J. The Eco-Friendly Biochar and Valuable Bio-Oil from Caragana Korshinskii: Pyrolysis Preparation, Characterization, and Adsorption Applications. Materials. 2020;13:3391. doi: 10.3390/ma13153391. PubMed DOI PMC

Trabelsi A.B.H., Zaafouri K., Friaa A., Abidi S., Naoui S., Jamaaoui F. Municipal Sewage Sludge Energetic Conversion as a Tool for Environmental Sustainability: Production of Innovative Biofuels and Biochar. Environ. Sci. Pollut. Res. 2021;28:9777–9791. doi: 10.1007/s11356-020-11400-z. PubMed DOI

Karaca C., Sözen S., Orhon D., Okutan H. High Temperature Pyrolysis of Sewage Sludge as a Sustainable Process for Energy Recovery. Waste Manag. 2018;78:217–226. doi: 10.1016/j.wasman.2018.05.034. PubMed DOI

Djandja O.S., Wang Z.-C., Wang F., Xu Y.-P., Duan P.-G. Pyrolysis of Municipal Sewage Sludge for Biofuel Production: A Review. Ind. Eng. Chem. Res. 2020;59:16939–16956. doi: 10.1021/acs.iecr.0c01546. DOI

Ro K.S., Hunt P.G., Jackson M.A., Compton D.L., Yates S.R., Cantrell K., Chang S. Co-Pyrolysis of Swine Manure with Agricultural Plastic Waste: Laboratory-Scale Study. Waste Manag. 2014;34:1520–1528. doi: 10.1016/j.wasman.2014.04.001. PubMed DOI

Pokorna E., Postelmans N., Jenicek P., Schreurs S., Carleer R., Yperman J. Study of Bio-Oils and Solids from Flash Pyrolysis of Sewage Sludges. Fuel. 2009;88:1344–1350. doi: 10.1016/j.fuel.2009.02.020. DOI

Papiernik S.K., Yates S.R., Chellemi D.O. A Standardized Approach for Estimating the Permeability of Plastic Films to Soil Fumigants under Various Field and Environmental Conditions. J. Environ. Qual. 2011;40:1375–1382. doi: 10.2134/jeq2010.0118. PubMed DOI

Nations U. World Population Prospects the 2020 Revision-Key Findings and Advance Tables. United Nations; New York, NY, USA: 2020.

Karagiannidis A., Samaras P., Kasampalis T., Perkoulidis G., Ziogas P., Zorpas A. Evaluation of Sewage Sludge Production and Utilization in Greece in the Frame of Integrated Energy Recovery. Desalin. Water Treat. 2011;33:185–193. doi: 10.5004/dwt.2011.2613. DOI

Semiyaga S., Okure M.A.E., Niwagaba C.B., Katukiza A.Y., Kansiime F. Decentralized Options for Faecal Sludge Management in Urban Slum Areas of Sub-Saharan Africa: A Review of Technologies, Practices and End-Uses. Resour. Conserv. Recycl. 2015;104:109–119. doi: 10.1016/j.resconrec.2015.09.001. DOI

Xenarios S., Shenhav R., Abdullaev I., Mastellari A. Current and Future Challenges of Water Security in Central Asia. Springer; Singapore: 2018. pp. 117–142. DOI

Singh B.P., Hatton B.J., Singh B., Cowie A.L., Kathuria A. Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils. J. Environ. Qual. 2010;39:1224–1235. doi: 10.2134/jeq2009.0138. PubMed DOI

Bondarczuk K., Markowicz A., Piotrowska-Seget Z. The Urgent Need for Risk Assessment on the Antibiotic Resistance Spread via Sewage Sludge Land Application. Environ. Int. 2016;87:49–55. doi: 10.1016/j.envint.2015.11.011. PubMed DOI

Collivignarelli M., Abbà A., Frattarola A., Carnevale Miino M., Padovani S., Katsoyiannis I., Torretta V. Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview. Sustainability. 2019;11:6015. doi: 10.3390/su11216015. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...