Feasibility of Biochar Derived from Sewage Sludge to Promote Sustainable Agriculture and Mitigate GHG Emissions-A Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
085/2022/Z
University of South Bohemia in České Budějovice
PubMed
36232283
PubMed Central
PMC9564516
DOI
10.3390/ijerph191912983
PII: ijerph191912983
Knihovny.cz E-zdroje
- Klíčová slova
- GHG emissions, carbon cycle, plant health, soil amendment, waste management,
- MeSH
- dřevěné a živočišné uhlí MeSH
- odpadní vody * MeSH
- oxid uhličitý analýza MeSH
- půda MeSH
- skleníkové plyny * MeSH
- studie proveditelnosti MeSH
- uhlík MeSH
- vodík MeSH
- zemědělství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biochar MeSH Prohlížeč
- dřevěné a živočišné uhlí MeSH
- odpadní vody * MeSH
- oxid uhličitý MeSH
- půda MeSH
- skleníkové plyny * MeSH
- uhlík MeSH
- vodík MeSH
Sewage sludge (SS) has been connected to a variety of global environmental problems. Assessing the risk of various disposal techniques can be quite useful in recommending appropriate management. The preparation of sewage sludge biochar (SSB) and its impacts on soil characteristics, plant health, nutrient leaching, and greenhouse gas emissions (GHGs) are critically reviewed in this study. Comparing the features of SSB obtained at various pyrolysis temperatures revealed changes in its elemental content. Lower hydrogen/carbon ratios in SSB generated at higher pyrolysis temperatures point to the existence of more aromatic carbon molecules. Additionally, the preparation of SSB has an increased ash content, a lower yield, and a higher surface area as a result of the rise in pyrolysis temperature. The worldwide potential of SS output and CO2-equivalent emissions in 2050 were predicted as factors of global population and common disposal management in order to create a futuristic strategy and cope with the quantity of abundant global SS. According to estimations, the worldwide SS output and associated CO2-eq emissions were around 115 million tons dry solid (Mt DS) and 14,139 teragrams (Tg), respectively, in 2020. This quantity will rise to about 138 Mt DS sewage sludge and 16985 Tg CO2-eq emissions in 2050, a 20% increase. In this regard, developing and populous countries may support economic growth by utilizing low-cost methods for producing biochar and employing it in local agriculture. To completely comprehend the benefits and drawbacks of SSB as a soil supplement, further study on long-term field applications of SSB is required.
Department of Mechanical Engineering National Chin Yi University of Technology Taichung 411 Taiwan
Research Center for Smart Sustainable Circular Economy Tunghai University Taichung 407 Taiwan
Zobrazit více v PubMed
Kacprzak M., Neczaj E., Fijałkowski K., Grobelak A., Grosser A., Worwag M., Rorat A., Brattebo H., Almås Å., Singh B.R. Sewage Sludge Disposal Strategies for Sustainable Development. Environ. Res. 2017;156:39–46. doi: 10.1016/j.envres.2017.03.010. PubMed DOI
Inoue S., Sawayama S., Ogi T., Yokoyama S. Organic Composition of Liquidized Sewage Sludge. Biomass Bioenergy. 1996;10:37–40. doi: 10.1016/0961-9534(95)00056-9. DOI
Christodoulou A., Stamatelatou K. Overview of Legislation on Sewage Sludge Management in Developed Countries Worldwide. Water Sci. Technol. 2016;73:453–462. doi: 10.2166/wst.2015.521. PubMed DOI
Wang J., Zhang D., Stabnikova O., Tay J. Evaluation of Electrokinetic Removal of Heavy Metals from Sewage Sludge. J. Hazard. Mater. 2005;124:139–146. doi: 10.1016/j.jhazmat.2005.04.036. PubMed DOI
Di Giacomo G., Romano P. Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification. Energies. 2022;15:5633. doi: 10.3390/en15155633. DOI
Rorat A., Courtois P., Vandenbulcke F., Lemiere S. Industrial and Municipal Sludge. Elsevier; Amsterdam, The Netherlands: 2019. Sanitary and Environmental Aspects of Sewage Sludge Management; pp. 155–180. DOI
Mateo-Sagasta J., Raschid-Sally L., Thebo A. Wastewater. Springer; Dordrecht, The Netherlands: 2015. Global Wastewater and Sludge Production, Treatment and Use; pp. 15–38. DOI
Zhang Q., Hu J., Lee D.-J., Chang Y., Lee Y.-J. Sludge Treatment: Current Research Trends. Bioresour. Technol. 2017;243:1159–1172. doi: 10.1016/j.biortech.2017.07.070. PubMed DOI
Piippo S., Lauronen M., Postila H. Greenhouse Gas Emissions from Different Sewage Sludge Treatment Methods in North. J. Clean. Prod. 2018;177:483–492. doi: 10.1016/j.jclepro.2017.12.232. DOI
Koutsou O.P., Gatidou G., Stasinakis A.S. Domestic Wastewater Management in Greece: Greenhouse Gas Emissions Estimation at Country Scale. J. Clean. Prod. 2018;188:851–859. doi: 10.1016/j.jclepro.2018.04.039. DOI
Shaddel S., Bakhtiary-Davijany H., Kabbe C., Dadgar F., Østerhus S. Sustainable Sewage Sludge Management: From Current Practices to Emerging Nutrient Recovery Technologies. Sustainability. 2019;11:3435. doi: 10.3390/su11123435. DOI
Badgett A., Newes E., Milbrandt A. Economic Analysis of Wet Waste-to-Energy Resources in the United States. Energy. 2019;176:224–234. doi: 10.1016/j.energy.2019.03.188. DOI
US EPA . Handbook Estimating Sludge Management Costs. US EPA; Dayton, OH, USA: 2015.
Xu Y., Naidoo A.R., Zhang X.-F., Meng X.-Z. Optimizing Sampling Strategy for Chinese National Sewage Sludge Survey (CNSSS) Based on Urban Agglomeration, Wastewater Treatment Process, and Treatment Capacity. Sci. Total Environ. 2019;696:133998. doi: 10.1016/j.scitotenv.2019.133998. DOI
Cameron K.C., Di H.J., Moir J.L. Nitrogen Losses from the Soil/Plant System: A Review. Ann. Appl. Biol. 2013;162:145–173. doi: 10.1111/aab.12014. DOI
Lamastra L., Suciu N.A., Trevisan M. Sewage Sludge for Sustainable Agriculture: Contaminants’ Contents and Potential Use as Fertilizer. Chem. Biol. Technol. Agric. 2018;5:10. doi: 10.1186/s40538-018-0122-3. DOI
Lü H., Chen X.-H., Mo C.-H., Huang Y.-H., He M.-Y., Li Y.-W., Feng N.-X., Katsoyiannis A., Cai Q.-Y. Occurrence and Dissipation Mechanism of Organic Pollutants during the Composting of Sewage Sludge: A Critical Review. Bioresour. Technol. 2021;328:124847. doi: 10.1016/j.biortech.2021.124847. PubMed DOI
Wei L., Zhu F., Li Q., Xue C., Xia X., Yu H., Zhao Q., Jiang J., Bai S. Development, Current State and Future Trends of Sludge Management in China: Based on Exploratory Data and CO2-Equivaient Emissions Analysis. Environ. Int. 2020;144:106093. doi: 10.1016/j.envint.2020.106093. PubMed DOI
Lu Y., Zheng G., Zhou W., Wang J., Zhou L. Bioleaching Conditioning Increased the Bioavailability of Polycyclic Aromatic Hydrocarbons to Promote Their Removal during Co-Composting of Industrial and Municipal Sewage Sludges. Sci. Total Environ. 2019;665:1073–1082. doi: 10.1016/j.scitotenv.2019.02.174. PubMed DOI
Fijalkowski K., Rorat A., Grobelak A., Kacprzak M.J. The Presence of Contaminations in Sewage Sludge—The Current Situation. J. Environ. Manag. 2017;203:1126–1136. doi: 10.1016/j.jenvman.2017.05.068. PubMed DOI PMC
Oni B.A., Oziegbe O., Olawole O.O. Significance of Biochar Application to the Environment and Economy. Ann. Agric. Sci. 2019;64:222–236. doi: 10.1016/j.aoas.2019.12.006. DOI
Méndez A., Cárdenas-Aguiar E., Paz-Ferreiro J., Plaza C., Gascó G. The Effect of Sewage Sludge Biochar on Peat-Based Growing Media. Biol. Agric. Hortic. 2017;33:40–51. doi: 10.1080/01448765.2016.1185645. DOI
Phoungthong K., Zhang H., Shao L.-M., He P.-J. Leaching Characteristics and Phytotoxic Effects of Sewage Sludge Biochar. J. Mater. Cycles Waste Manag. 2018;20:2089–2099. doi: 10.1007/s10163-018-0763-0. DOI
You J., Sun L., Liu X., Hu X., Xu Q. Effects of Sewage Sludge Biochar on Soil Characteristics and Crop Yield in Loamy Sand Soil. Pol. J. Environ. Stud. 2019;28:2973–2980. doi: 10.15244/pjoes/93294. DOI
Chagas J.K.M., de Figueiredo C.C., da Silva J., Paz-Ferreiro J. The Residual Effect of Sewage Sludge Biochar on Soil Availability and Bioaccumulation of Heavy Metals: Evidence from a Three-Year Field Experiment. J. Environ. Manag. 2021;279:111824. doi: 10.1016/j.jenvman.2020.111824. PubMed DOI
Lasaridi K.-E., Manios T., Stamatiadis S., Chroni C., Kyriacou A. The Evaluation of Hazards to Man and the Environment during the Composting of Sewage Sludge. Sustainability. 2018;10:2618. doi: 10.3390/su10082618. DOI
Havukainen J., Zhan M., Dong J., Liikanen M., Deviatkin I., Li X., Horttanainen M. Environmental Impact Assessment of Municipal Solid Waste Management Incorporating Mechanical Treatment of Waste and Incineration in Hangzhou, China. J. Clean. Prod. 2017;141:453–461. doi: 10.1016/j.jclepro.2016.09.146. DOI
Li Y., Shi S., Zhang L., Liu Y. Global Trends and Performances of Publication on Sewage Sludge from 1991 to 2012. Procedia Environ. Sci. 2016;31:65–74. doi: 10.1016/j.proenv.2016.02.009. DOI
Eggleston H., Leandro B., Kyoko M., Todd N., Kiyoto T. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. U.S. Department of Energy Office of Scientific and Technical Information; Washington, DC, USA: 2006.
Eurostat . Sewage Sludge Production and Disposal from Urban Wastewater. Eurostat; Luxembourg: 2019.
Nakao S., Akita K., Ozaki A., Masumoto K., Okuda T. Circulation of Fibrous Microplastic (Microfiber) in Sewage and Sewage Sludge Treatment Processes. Sci. Total Environ. 2021;795:148873. doi: 10.1016/j.scitotenv.2021.148873. PubMed DOI
Shan Y., Lv M., Zuo W., Tang Z., Ding C., Yu Z., Shen Z., Gu C., Bai Y. Sewage Sludge Application Enhances Soil Properties and Rice Growth in a Salt-Affected Mudflat Soil. Sci. Rep. 2021;11:1402. doi: 10.1038/s41598-020-80358-2. PubMed DOI PMC
Ai Y.-J., Li F.-P., Gu H.-H., Chi X.-J., Yuan X.-T., Han D.-Y. Combined Effects of Green Manure Returning and Addition of Sewage Sludge Compost on Plant Growth and Microorganism Communities in Gold Tailings. Environ. Sci. Pollut. Res. 2020;27:31686–31698. doi: 10.1007/s11356-020-09118-z. PubMed DOI
Jakubus M., Graczyk M. Microelement Variability in Plants as an Effect of Sewage Sludge Compost Application Assessed by Different Statistical Methods. Agronomy. 2020;10:642. doi: 10.3390/agronomy10050642. DOI
Buta M., Hubeny J., Zieliński W., Harnisz M., Korzeniewska E. Sewage Sludge in Agriculture—The Effects of Selected Chemical Pollutants and Emerging Genetic Resistance Determinants on the Quality of Soil and Crops—A Review. Ecotoxicol. Environ. Saf. 2021;214:112070. doi: 10.1016/j.ecoenv.2021.112070. PubMed DOI
De Souza Souza C., Bomfim M.R., da Conceição de Almeida M., de Souza Alves L., de Santana W.N., da Silva Amorim I.C., Santos J.A.G. Induced Changes of Pyrolysis Temperature on the Physicochemical Traits of Sewage Sludge and on the Potential Ecological Risks. Sci. Rep. 2021;11:974. doi: 10.1038/s41598-020-79658-4. PubMed DOI PMC
Jin J., Li Y., Zhang J., Wu S., Cao Y., Liang P., Zhang J., Wong M.H., Wang M., Shan S., et al. Influence of Pyrolysis Temperature on Properties and Environmental Safety of Heavy Metals in Biochars Derived from Municipal Sewage Sludge. J. Hazard. Mater. 2016;320:417–426. doi: 10.1016/j.jhazmat.2016.08.050. PubMed DOI
Tian Y., Cui L., Lin Q., Li G., Zhao X. The Sewage Sludge Biochar at Low Pyrolysis Temperature Had Better Improvement in Urban Soil and Turf Grass. Agronomy. 2019;9:156. doi: 10.3390/agronomy9030156. DOI
Lin Y.-Y., Chen W.-H., Liu H.-C. Aging and Emulsification Analyses of Hydrothermal Liquefaction Bio-Oil Derived from Sewage Sludge and Swine Leather Residue. J. Clean. Prod. 2020;266:122050. doi: 10.1016/j.jclepro.2020.122050. DOI
Xiao Y., Raheem A., Ding L., Chen W.-H., Chen X., Wang F., Lin S.-L. Pretreatment, Modification and Applications of Sewage Sludge-Derived Biochar for Resource Recovery—A Review. Chemosphere. 2022;287:131969. doi: 10.1016/j.chemosphere.2021.131969. PubMed DOI
Khanmohammadi Z., Afyuni M., Mosaddeghi M.R. Effect of Pyrolysis Temperature on Chemical and Physical Properties of Sewage Sludge Biochar. Waste Manag. Res. J. Sustain. Circ. Econ. 2015;33:275–283. doi: 10.1177/0734242X14565210. PubMed DOI
Zielińska A., Oleszczuk P., Charmas B., Skubiszewska-Zięba J., Pasieczna-Patkowska S. Effect of Sewage Sludge Properties on the Biochar Characteristic. J. Anal. Appl. Pyrolysis. 2015;112:201–213. doi: 10.1016/j.jaap.2015.01.025. DOI
Raynaud M., Vaxelaire J., Olivier J., Dieudé-Fauvel E., Baudez J.-C. Compression Dewatering of Municipal Activated Sludge: Effects of Salt and PH. Water Res. 2012;46:4448–4456. doi: 10.1016/j.watres.2012.05.047. PubMed DOI
Zhang C., Ho S.-H., Chen W.-H., Eng C.F., Wang C.-T. Simultaneous Implementation of Sludge Dewatering and Solid Biofuel Production by Microwave Torrefaction. Environ. Res. 2021;195:110775. doi: 10.1016/j.envres.2021.110775. PubMed DOI
Fytili D., Zabaniotou A. Utilization of Sewage Sludge in EU Application of Old and New Methods—A Review. Renew. Sustain. Energy Rev. 2008;12:116–140. doi: 10.1016/j.rser.2006.05.014. DOI
Naqvi S.R., Tariq R., Hameed Z., Ali I., Naqvi M., Chen W.-H., Ceylan S., Rashid H., Ahmad J., Taqvi S.A., et al. Pyrolysis of High Ash Sewage Sludge: Kinetics and Thermodynamic Analysis Using Coats-Redfern Method. Renew. Energy. 2019;131:854–860. doi: 10.1016/j.renene.2018.07.094. DOI
Paz-Ferreiro J., Gascó G., Gutiérrez B., Méndez A. Soil Biochemical Activities and the Geometric Mean of Enzyme Activities after Application of Sewage Sludge and Sewage Sludge Biochar to Soil. Biol. Fertil. Soils. 2012;48:511–517. doi: 10.1007/s00374-011-0644-3. DOI
Devi P., Saroha A.K. Effect of Pyrolysis Temperature on Polycyclic Aromatic Hydrocarbons Toxicity and Sorption Behaviour of Biochars Prepared by Pyrolysis of Paper Mill Effluent Treatment Plant Sludge. Bioresour. Technol. 2015;192:312–320. doi: 10.1016/j.biortech.2015.05.084. PubMed DOI
Wang Z., Shu X., Zhu H., Xie L., Cheng S. Characteristics of Biochars Prepared by Co- Pyrolysis of Sewage Sludge and Cotton Stalk Intended for Use as Soil Amendments. Environ. Technol. 2018;41:1347–1357. doi: 10.1080/09593330.2018.1534891. PubMed DOI
Zhang X., Zhao B., Liu H., Zhao Y., Li L. Environmental Technology & Innovation Effects of Pyrolysis Temperature on Biochar’ s Characteristics and Speciation and Environmental Risks of Heavy Metals in Sewage Sludge Biochars. Environ. Technol. Innov. 2022;26:102288. doi: 10.1016/j.eti.2022.102288. DOI
Titova J., Baltrėnaitė E. Physical and Chemical Properties of Biochar Produced from Sewage Sludge Compost and Plants Biomass, Fertilized with That Compost, Important for Soil Improvement. Waste Biomass Valorization. 2021;12:3781–3800. doi: 10.1007/s12649-020-01272-2. DOI
Sousa A.A.T.C., Figueiredo C.C. Sewage Sludge Biochar: Effects on Soil Fertility and Growth of Radish. Biol. Agric. Hortic. 2016;32:127–138. doi: 10.1080/01448765.2015.1093545. DOI
Zhang J., Lü F., Zhang H., Shao L., Chen D., He P. Multiscale Visualization of the Structural and Characteristic Changes of Sewage Sludge Biochar Oriented towards Potential Agronomic and Environmental Implication. Sci. Rep. 2015;5:9406. doi: 10.1038/srep09406. PubMed DOI PMC
Rehman R.A., Rizwan M., Qayyum M.F., Ali S., Zia-ur-Rehman M., Zafar-ul-Hye M., Hafeez F., Iqbal M.F. Efficiency of Various Sewage Sludges and Their Biochars in Improving Selected Soil Properties and Growth of Wheat (Triticum Aestivum) J. Environ. Manag. 2018;223:607–613. doi: 10.1016/j.jenvman.2018.06.081. PubMed DOI
Lu H., Zhang W., Wang S., Zhuang L., Yang Y., Qiu R. Journal of Analytical and Applied Pyrolysis Characterization of Sewage Sludge-Derived Biochars from Different Feedstocks and Pyrolysis Temperatures. J. Anal. Appl. Pyrolysis. 2013;102:137–143. doi: 10.1016/j.jaap.2013.03.004. DOI
Mierzwa-Hersztek M., Gondek K., Klimkowicz-Pawlas A., Baran A., Bajda T. Sewage Sludge Biochars Management-Ecotoxicity, Mobility of Heavy Metals, and Soil Microbial Biomass. Environ. Toxicol. Chem. 2018;37:1197–1207. doi: 10.1002/etc.4045. PubMed DOI
Méndez A., Terradillos M., Gascó G. Physicochemical and Agronomic Properties of Biochar from Sewage Sludge Pyrolysed at Different Temperatures. J. Anal. Appl. Pyrolysis. 2013;102:124–130. doi: 10.1016/j.jaap.2013.03.006. DOI
Khan S., Chao C., Waqas M., Arp H.P.H., Zhu Y.-G. Sewage Sludge Biochar Influence upon Rice (Oryza sativa L.) Yield, Metal Bioaccumulation and Greenhouse Gas Emissions from Acidic Paddy Soil. Environ. Sci. Technol. 2013;47:8624–8632. doi: 10.1021/es400554x. PubMed DOI
Gwenzi W., Muzava M., Mapanda F., Tauro T.P. Comparative Short-Term Effects of Sewage Sludge and Its Biochar on Soil Properties, Maize Growth and Uptake of Nutrients on a Tropical Clay Soil in Zimbabwe. J. Integr. Agric. 2016;15:1395–1406. doi: 10.1016/S2095-3119(15)61154-6. DOI
Shao Q., Ju Y., Guo W., Xia X., Bian R., Li L., Li W., Liu X., Zheng J., Pan G. Pyrolyzed Municipal Sewage Sludge Ensured Safe Grain Production While Reduced C Emissions in a Paddy Soil under Rice and Wheat Rotation. Environ. Sci. Pollut. Res. 2019;26:9244–9256. doi: 10.1007/s11356-019-04417-6. PubMed DOI
Goldan E., Nedeff V., Barsan N., Culea M., Tomozei C., Panainte-Lehadus M., Mosnegutu E. Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review. Sustainability. 2022;14:5309. doi: 10.3390/su14095309. DOI
Tarayre C., De Clercq L., Charlier R., Michels E., Meers E., Camargo-valero M., Delvigne F. Bioresource Technology New Perspectives for the Design of Sustainable Bioprocesses for Phosphorus Recovery from Waste. 2016, 206, 264–274. Bioresour. Technol. doi: 10.1016/j.biortech.2016.01.091. PubMed DOI
Ghorbani M., Amirahmadi E., Zamanian K. In-situ Biochar Production Associated with Paddies: Direct Involvement of Farmers in Greenhouse Gases Reduction Policies besides Increasing Nutrients Availability and Rice Production. Land Degrad. Dev. 2021;32:3893–3904. doi: 10.1002/ldr.4006. DOI
Spokas K.A. Review of the Stability of Biochar in Soils: Predictability of O:C Molar Ratios. Carbon Manag. 2010;1:289–303. doi: 10.4155/cmt.10.32. DOI
Opatokun S.A., Strezov V., Kan T. Product Based Evaluation of Pyrolysis of Food Waste and Its Digestate. Energy. 2015;92:349–354. doi: 10.1016/j.energy.2015.02.098. DOI
Song X.D., Xue X.Y., Chen D.Z., He P.J., Dai X.H. Application of Biochar from Sewage Sludge to Plant Cultivation: Influence of Pyrolysis Temperature and Biochar-to-Soil Ratio on Yield and Heavy Metal Accumulation. Chemosphere. 2014;109:213–220. doi: 10.1016/j.chemosphere.2014.01.070. PubMed DOI
Yuan J., Chadwick D., Zhang D., Li G., Chen S., Luo W., Du L., He S., Peng S. Effects of Aeration Rate on Maturity and Gaseous Emissions during Sewage Sludge Composting. Waste Manag. 2016;56:403–410. doi: 10.1016/j.wasman.2016.07.017. PubMed DOI
Yue Y., Cui L., Lin Q., Li G., Zhao X. Efficiency of Sewage Sludge Biochar in Improving Urban Soil Properties and Promoting Grass Growth. Chemosphere. 2017;173:551–556. doi: 10.1016/j.chemosphere.2017.01.096. PubMed DOI
Faria W.M., de Figueiredo C.C., Coser T.R., Vale A.T., Schneider B.G. Is Sewage Sludge Biochar Capable of Replacing Inorganic Fertilizers for Corn Production? Evidence from a Two-Year Field Experiment. Arch. Agron. Soil Sci. 2018;64:505–519. doi: 10.1080/03650340.2017.1360488. DOI
Yu O.-Y., Raichle B., Sink S. Impact of Biochar on the Water Holding Capacity of Loamy Sand Soil. Int. J. Energy Environ. Eng. 2013;4:44. doi: 10.1186/2251-6832-4-44. DOI
Filipović V., Černe M., Šimůnek J., Filipović L., Romić M., Ondrašek G., Bogunović I., Mustać I., Krevh V., Ferenčević A., et al. Modeling Water Flow and Phosphorus Sorption in a Soil Amended with Sewage Sludge and Olive Pomace as Compost or Biochar. Agronomy. 2020;10:1163. doi: 10.3390/agronomy10081163. DOI
Razzaghi F., Obour P.B., Arthur E. Does Biochar Improve Soil Water Retention? A Systematic Review and Meta-Analysis. Geoderma. 2020;361:114055. doi: 10.1016/j.geoderma.2019.114055. DOI
Velli P., Manolikaki I., Diamadopoulos E. Effect of Biochar Produced from Sewage Sludge on Tomato (Solanum lycopersicum L.) Growth, Soil Chemical Properties and Heavy Metal Concentrations. J. Environ. Manag. 2021;297:113325. doi: 10.1016/j.jenvman.2021.113325. PubMed DOI
Zhang Y., Chen T., Liao Y., Reid B.J., Chi H., Hou Y., Cai C. Modest Amendment of Sewage Sludge Biochar to Reduce the Accumulation of Cadmium into Rice (Oryza Sativa L.): A Field Study. Environ. Pollut. 2016;216:819–825. doi: 10.1016/j.envpol.2016.06.053. PubMed DOI
Liu Z., Demisie W., Zhang M. Simulated Degradation of Biochar and Its Potential Environmental Implications. Environ. Pollut. 2013;179:146–152. doi: 10.1016/j.envpol.2013.04.030. PubMed DOI
Duan X.-Y., Cao Y., Liu T.-Z., Li L., Wang B., Wang X.-D. Nutrient Stability and Sorption of Sewage Sludge Biochar Prepared from Co-Pyrolysis of Sewage Sludge and Stalks/Mineral Materials. Environ. Pollut. Bioavailab. 2020;32:12–18. doi: 10.1080/26395940.2019.1710259. DOI
De Figueiredo C.C., Reis A.D.S.P.J., de Araujo A.S., Blum L.E.B., Shah K., Paz-Ferreiro J. Assessing the Potential of Sewage Sludge-Derived Biochar as a Novel Phosphorus Fertilizer: Influence of Extractant Solutions and Pyrolysis Temperatures. Waste Manag. 2021;124:144–153. doi: 10.1016/j.wasman.2021.01.044. PubMed DOI
Grutzmacher P., Puga A.P., Bibar M.P.S., Coscione A.R., Packer A.P., de Andrade C.A. Carbon Stability and Mitigation of Fertilizer Induced N2O Emissions in Soil Amended with Biochar. Sci. Total Environ. 2018;625:1459–1466. doi: 10.1016/j.scitotenv.2017.12.196. PubMed DOI
Nafez A.H., Nikaeen M., Kadkhodaie S., Hatamzadeh M., Moghim S. Sewage Sludge Composting: Quality Assessment for Agricultural Application. Environ. Monit. Assess. 2015;187:709. doi: 10.1007/s10661-015-4940-5. PubMed DOI
Kumar V., Chopra A.K., Kumar A. A Review on Sewage Sludge (Biosolids) a Resource for Sustainable Agriculture. Arch. Agric. Environ. Sci. 2017;2:340–347. doi: 10.26832/24566632.2017.020417. DOI
Song U., Lee E.J. Environmental and Economical Assessment of Sewage Sludge Compost Application on Soil and Plants in a Landfill. Resour. Conserv. Recycl. 2010;54:1109–1116. doi: 10.1016/j.resconrec.2010.03.005. DOI
De Lucia B., Cristiano G., Vecchietti L., Bruno L. Effect of Different Rates of Composted Organic Amendment on Urban Soil Properties, Growth and Nutrient Status of Three Mediterranean Native Hedge Species. Urban For. Urban Green. 2013;12:537–545. doi: 10.1016/j.ufug.2013.07.008. DOI
Bowszys T., Wierzbowska J., Sternik P., Busse M. Effect of the application of sewage sludge compost on the content and leaching of zinc and copper from soils under agricultural use. J. Ecol. Eng. 2015;16:1–7. doi: 10.12911/22998993/580. DOI
Farrell M., Jones D.L. Critical Evaluation of Municipal Solid Waste Composting and Potential Compost Markets. Bioresour. Technol. 2009;100:4301–4310. doi: 10.1016/j.biortech.2009.04.029. PubMed DOI
Corrêa R.S., White R.E., Weatherley A.J. Effect of Compost Treatment of Sewage Sludge on Nitrogen Behavior in Two Soils. Waste Manag. 2006;26:614–619. doi: 10.1016/j.wasman.2005.09.008. PubMed DOI
Chu S., Wu D., Liang L.L., Zhong F., Hu Y., Hu X., Lai C., Zeng S. Municipal Sewage Sludge Compost Promotes Mangifera Persiciforma Tree Growth with No Risk of Heavy Metal Contamination of Soil. Sci. Rep. 2017;7:13408. doi: 10.1038/s41598-017-13895-y. PubMed DOI PMC
Sharma B., Sarkar A., Singh P., Singh R.P. Agricultural Utilization of Biosolids: A Review on Potential Effects on Soil and Plant Grown. Waste Manag. 2017;64:117–132. doi: 10.1016/j.wasman.2017.03.002. PubMed DOI
Major N., Schierstaedt J., Jechalke S., Nesme J., Ban S.G., Černe M., Sørensen S.J., Ban D., Schikora A. Composted Sewage Sludge Influences the Microbiome and Persistence of Human Pathogens in Soil. Microorganisms. 2020;8:1020. doi: 10.3390/microorganisms8071020. PubMed DOI PMC
Wierzbowska J., Sienkiewicz S., Krzebietke S., Sternik P. Sewage Sludge as a Source of Nitrogen and Phosphorus for Virginia Fanpetals. Bulg. J. Agric. Sci. 2016;22:722–727.
Qian T., Yang Q., Jun D.C.F., Dong F., Zhou Y. Transformation of Phosphorus in Sewage Sludge Biochar Mediated by a Phosphate-Solubilizing Microorganism. Chem. Eng. J. 2019;359:1573–1580. doi: 10.1016/j.cej.2018.11.015. DOI
Li L., Zhang Y.-J., Novak A., Yang Y., Wang J. Role of Biochar in Improving Sandy Soil Water Retention and Resilience to Drought. Water. 2021;13:407. doi: 10.3390/w13040407. DOI
Glaser B., Lehr V.-I. Biochar Effects on Phosphorus Availability in Agricultural Soils: A Meta-Analysis. Sci. Rep. 2019;9:9338. doi: 10.1038/s41598-019-45693-z. PubMed DOI PMC
Siedt M., Schäffer A., Smith K.E.C., Nabel M., Roß-Nickoll M., van Dongen J.T. Comparing Straw, Compost, and Biochar Regarding Their Suitability as Agricultural Soil Amendments to Affect Soil Structure, Nutrient Leaching, Microbial Communities, and the Fate of Pesticides. Sci. Total Environ. 2021;751:141607. doi: 10.1016/j.scitotenv.2020.141607. PubMed DOI
Černe M., Palčić I., Major N., Pasković I., Perković J., Užila Z., Filipović V., Romić M., Goreta Ban S., Jaćimović R., et al. Effect of Sewage Sludge Derived Compost or Biochar Amendment on the Phytoaccumulation of Potentially Toxic Elements and Radionuclides by Chinese Cabbage. J. Environ. Manag. 2021;293:112955. doi: 10.1016/j.jenvman.2021.112955. PubMed DOI
Uzinger N., Takács T., Szili-Kovács T., Radimszky L., Füzy A., Draskovits E., Szűcs-Vásárhelyi N., Molnár M., Farkas É., Kutasi J., et al. Fertility Impact of Separate and Combined Treatments with Biochar, Sewage Sludge Compost and Bacterial Inocula on Acidic Sandy Soil. Agronomy. 2020;10:1612. doi: 10.3390/agronomy10101612. DOI
Kumar V., Chopra A.K. Accumulation and Translocation of Metals in Soil and Different Parts of French Bean (Phaseolus Vulgaris L.) Amended with Sewage Sludge. Bull. Environ. Contam. Toxicol. 2014;92:103–108. doi: 10.1007/s00128-013-1142-0. PubMed DOI
Casado-Vela J., Sellés S., Navarro J., Bustamante M.A., Mataix J., Guerrero C., Gomez I. Evaluation of Composted Sewage Sludge as Nutritional Source for Horticultural Soils. Waste Manag. 2006;26:946–952. doi: 10.1016/j.wasman.2005.07.016. PubMed DOI
Smith S. A Critical Review of the Bioavailability and Impacts of Heavy Metals in Municipal Solid Waste Composts Compared to Sewage Sludge. Environ. Int. 2009;35:142–156. doi: 10.1016/j.envint.2008.06.009. PubMed DOI
Feng L., Zhang L., Feng L. Dissipation of Polycyclic Aromatic Hydrocarbons in Soil Amended with Sewage Sludge Compost. Int. Biodeterior. Biodegrad. 2014;95:200–207. doi: 10.1016/j.ibiod.2014.04.012. DOI
Liu H. Achilles Heel of Environmental Risk from Recycling of Sludge to Soil as Amendment: A Summary in Recent Ten Years (2007–2016) Waste Manag. 2016;56:575–583. doi: 10.1016/j.wasman.2016.05.028. PubMed DOI
Fang W., Delapp R.C., Kosson D.S., van der Sloot H.A., Liu J. Release of Heavy Metals during Long-Term Land Application of Sewage Sludge Compost: Percolation Leaching Tests with Repeated Additions of Compost. Chemosphere. 2017;169:271–280. doi: 10.1016/j.chemosphere.2016.11.086. PubMed DOI
He Y., Liu C., Tang X.Y., Xian Q.S., Zhang J.Q., Guan Z. Biochar Impacts on Sorption-Desorption of Oxytetracycline and Florfenicol in an Alkaline Farmland Soil as Affected by Field Ageing. Sci. Total Environ. 2019;671:928–936. doi: 10.1016/j.scitotenv.2019.03.414. DOI
Qi G., Jia Y., Liu W., Wei Y., Du B., Fang W., Guo Y., Guo F., Wu Y., Zou Q., et al. Leaching Behavior and Potential Ecological Risk of Heavy Metals in Southwestern China Soils Applied with Sewage Sludge Compost under Acid Precipitation Based on Lysimeter Trials. Chemosphere. 2020;249:126212. doi: 10.1016/j.chemosphere.2020.126212. PubMed DOI
Perezmurcia M., Moral R., Morenocaselles J., Perezespinosa A., Paredes C. Use of Composted Sewage Sludge in Growth Media for Broccoli. Bioresour. Technol. 2006;97:123–130. doi: 10.1016/j.biortech.2005.02.005. PubMed DOI
Zheljazkov V.D., Warman P.R. Phytoavailability and Fractionation of Copper, Manganese, and Zinc in Soil Following Application of Two Composts to Four Crops. Environ. Pollut. 2004;131:187–195. doi: 10.1016/j.envpol.2004.02.007. PubMed DOI
Wei Y., Liu Y. Effects of Sewage Sludge Compost Application on Crops and Cropland in a 3-Year Field Study. Chemosphere. 2005;59:1257–1265. doi: 10.1016/j.chemosphere.2004.11.052. PubMed DOI
Manara P., Zabaniotou A. Towards Sewage Sludge Based Biofuels via Thermochemical Conversion—A Review. Renew. Sustain. Energy Rev. 2012;16:2566–2582. doi: 10.1016/j.rser.2012.01.074. DOI
Zoghlami R.I., Hechmi S., Weghlani R., Jedidi N., Moussa M. Biochar Derived from Domestic Sewage Sludge: Influence of Temperature Pyrolysis on Biochars’ Chemical Properties and Phytotoxicity. J. Chem. 2021;2021:1818241. doi: 10.1155/2021/1818241. DOI
Méndez A., Gómez A., Paz-Ferreiro J., Gascó G. Effects of Sewage Sludge Biochar on Plant Metal Availability after Application to a Mediterranean Soil. Chemosphere. 2012;89:1354–1359. doi: 10.1016/j.chemosphere.2012.05.092. PubMed DOI
Cotxarrera L., Trillas-Gay M.I., Steinberg C., Alabouvette C. Use of Sewage Sludge Compost and Trichoderma Asperellum Isolates to Suppress Fusarium Wilt of Tomato. Soil Biol. Biochem. 2002;34:467–476. doi: 10.1016/S0038-0717(01)00205-X. DOI
Tang S., Shao N., Zheng C., Yan F., Zhang Z. Amino-Functionalized Sewage Sludge-Derived Biochar as Sustainable Efficient Adsorbent for Cu(II) Removal. Waste Manag. 2019;90:17–28. doi: 10.1016/j.wasman.2019.04.042. PubMed DOI
Gopinath A., Divyapriya G., Srivastava V., Laiju A.R., Nidheesh P.V., Kumar M.S. Conversion of Sewage Sludge into Biochar: A Potential Resource in Water and Wastewater Treatment. Environ. Res. 2021;194:110656. doi: 10.1016/j.envres.2020.110656. PubMed DOI
Nguyen T.T.N., Wallace H.M., Xu C.-Y., Xu Z., Farrar M.B., Joseph S., Van Zwieten L., Bai S.H. Short-Term Effects of Organo-Mineral Biochar and Organic Fertilisers on Nitrogen Cycling, Plant Photosynthesis, and Nitrogen Use Efficiency. J. Soils Sediments. 2017;17:2763–2774. doi: 10.1007/s11368-017-1839-5. DOI
Borchard N., Schirrmann M., Cayuela M.L., Kammann C., Wrage-Mönnig N., Estavillo J.M., Fuertes-Mendizábal T., Sigua G., Spokas K., Ippolito J.A., et al. Biochar, Soil and Land-Use Interactions That Reduce Nitrate Leaching and N2O Emissions: A Meta-Analysis. Sci. Total Environ. 2019;651:2354–2364. doi: 10.1016/j.scitotenv.2018.10.060. PubMed DOI
Cayuela M.L., Sánchez-Monedero M.A., Roig A., Hanley K., Enders A., Lehmann J. Biochar and Denitrification in Soils: When, How Much and Why Does Biochar Reduce N2O Emissions? Sci. Rep. 2013;3:1732. doi: 10.1038/srep01732. PubMed DOI PMC
Nguyen T.T.N., Xu C.-Y., Tahmasbian I., Che R., Xu Z., Zhou X., Wallace H.M., Bai S.H. Effects of Biochar on Soil Available Inorganic Nitrogen: A Review and Meta-Analysis. Geoderma. 2017;288:79–96. doi: 10.1016/j.geoderma.2016.11.004. DOI
Dong W., Walkiewicz A., Bieganowski A., Oenema O., Nosalewicz M., He C., Zhang Y., Hu C. Biochar Promotes the Reduction of N2O to N2 and Concurrently Suppresses the Production of N2O in Calcareous Soil. Geoderma. 2020;362:114091. doi: 10.1016/j.geoderma.2019.114091. DOI
Kubaczyński A., Walkiewicz A., Pytlak A., Grządziel J., Gałązka A., Brzezińska M. Biochar Dose Determines Methane Uptake and Methanotroph Abundance in Haplic Luvisol. Sci. Total Environ. 2022;806:151259. doi: 10.1016/j.scitotenv.2021.151259. PubMed DOI
Spokas K., Reicosky D. Impacts of Sixteen Different Biochars on Soil Greenhouse Gas Production. Ann. Environ. Sci. 2009;3:179–193.
Kubaczyński A., Walkiewicz A., Pytlak A., Brzezińska M. New Biochars from Raspberry and Potato Stems Absorb More Methane than Wood Offcuts and Sunflower Husk Biochars. Int. Agrophysics. 2020;34:355–364. doi: 10.31545/intagr/126762. DOI
Walkiewicz A., Kalinichenko K., Kubaczyński A., Brzezińska M., Bieganowski A. Usage of Biochar for Mitigation of CO2 Emission and Enhancement of CH4 Consumption in Forest and Orchard Haplic Luvisol (Siltic) Soils. Appl. Soil Ecol. 2020;156:103711. doi: 10.1016/j.apsoil.2020.103711. DOI
Sun H., Luo L., Wang D., Liu W., Lan Y., Yang T., Gai C., Liu Z. Carbon Balance Analysis of Sewage Sludge Biochar-to-Soil System. J. Clean. Prod. 2022;358:132057. doi: 10.1016/j.jclepro.2022.132057. DOI
Miller-Robbie L., Ulrich B.A., Ramey D.F., Spencer K.S., Herzog S.P., Cath T.Y., Stokes J.R., Higgins C.P. Life Cycle Energy and Greenhouse Gas Assessment of the Co-Production of Biosolids and Biochar for Land Application. J. Clean. Prod. 2015;91:118–127. doi: 10.1016/j.jclepro.2014.12.050. DOI
Teoh S.K., Li L.Y. Feasibility of Alternative Sewage Sludge Treatment Methods from a Lifecycle Assessment (LCA) Perspective. J. Clean. Prod. 2020;247:119495. doi: 10.1016/j.jclepro.2019.119495. DOI
Mayer F., Bhandari R., Gäth S.A. Life Cycle Assessment of Prospective Sewage Sludge Treatment Paths in Germany. J. Environ. Manag. 2021;290:112557. doi: 10.1016/j.jenvman.2021.112557. PubMed DOI
Przydatek G., Wota A.K. Analysis of the Comprehensive Management of Sewage Sludge in Poland. J. Mater. Cycles Waste Manag. 2020;22:80–88. doi: 10.1007/s10163-019-00937-y. DOI
Rizzardini C., Goi D. Sustainability of Domestic Sewage Sludge Disposal. Sustainability. 2014;6:2424–2434. doi: 10.3390/su6052424. DOI
Grobelak A., Czerwińska K., Murtaś A. Industrial and Municipal Sludge. Elsevier; Amsterdam, The Netherlands: 2019. General Considerations on Sludge Disposal, Industrial and Municipal Sludge; pp. 135–153. DOI
Liu B., Wei Q., Zhang B., Bi J. Life Cycle GHG Emissions of Sewage Sludge Treatment and Disposal Options in Tai Lake Watershed, China. Sci. Total Environ. 2013;447:361–369. doi: 10.1016/j.scitotenv.2013.01.019. PubMed DOI
Houillon G., Jolliet O. Life Cycle Assessment of Processes for the Treatment of Wastewater Urban Sludge: Energy and Global Warming Analysis. J. Clean. Prod. 2005;13:287–299. doi: 10.1016/j.jclepro.2004.02.022. DOI
Hallaji S.M., Kuroshkarim M., Moussavi S.P. Enhancing Methane Production Using Anaerobic Co-Digestion of Waste Activated Sludge with Combined Fruit Waste and Cheese Whey. BMC Biotechnol. 2019;19:19. doi: 10.1186/s12896-019-0513-y. PubMed DOI PMC
Villegas M., Huiliñir C. Biodrying of Sewage Sludge: Kinetics of Volatile Solids Degradation under Different Initial Moisture Contents and Air-Flow Rates. Bioresour. Technol. 2014;174:33–41. doi: 10.1016/j.biortech.2014.09.136. PubMed DOI
Yuan H., Lu T., Wang Y., Chen Y., Lei T. Sewage Sludge Biochar: Nutrient Composition and Its Effect on the Leaching of Soil Nutrients. Geoderma. 2016;267:17–23. doi: 10.1016/j.geoderma.2015.12.020. DOI
Moënne-Loccoz P., Fee J.A. Catalyzing NO to N2O in the Nitrogen Cycle. Science. 2010;330:1632–1633. doi: 10.1126/science.1200247. PubMed DOI PMC
Guo L., Zhang H., Jiang X., Wang Y., Liu Z., Fang S., Zhang Z. Classification and Disposal Strategy of Excess Sludge in the Petrochemical Industry. Appl. Sci. 2019;9:1186. doi: 10.3390/app9061186. DOI
Conesa J.A. Sewage Sludge as Inhibitor of the Formation of Persistent Organic Pollutants during Incineration. Sustainability. 2021;13:10935. doi: 10.3390/su131910935. DOI
Kanhar A.H., Chen S., Wang F. Incineration Fly Ash and Its Treatment to Possible Utilization: A Review. Energies. 2020;13:6681. doi: 10.3390/en13246681. DOI
Kim J., Jeong S. Economic and Environmental Cost Analysis of Incineration and Recovery Alternatives for Flammable Industrial Waste: The Case of South Korea. Sustainability. 2017;9:1638. doi: 10.3390/su9091638. DOI
Li Y.B., Liu T.T., Song J.L., Lv J.H., Jiang J.S. Effects of Chemical Additives on Emissions of Ammonia and Greenhouse Gas during Sewage Sludge Composting. Process Saf. Environ. Prot. 2020;143:129–137. doi: 10.1016/j.psep.2020.05.056. DOI
Thomazini A., Spokas K., Hall K., Ippolito J., Lentz R., Novak J. GHG Impacts of Biochar: Predictability for the Same Biochar. Agric. Ecosyst. Environ. 2015;207:183–191. doi: 10.1016/j.agee.2015.04.012. DOI
Chen Y.-C., Kuo J. Potential of Greenhouse Gas Emissions from Sewage Sludge Management: A Case Study of Taiwan. J. Clean. Prod. 2016;129:196–201. doi: 10.1016/j.jclepro.2016.04.084. DOI
Jiang T., Ma X., Yang J., Tang Q., Yi Z., Chen M., Li G. Effect of Different Struvite Crystallization Methods on Gaseous Emission and the Comprehensive Comparison during the Composting. Bioresour. Technol. 2016;217:219–226. doi: 10.1016/j.biortech.2016.02.046. PubMed DOI
Fukumoto Y., Osada T., Hanajima D., Haga K. Patterns and Quantities of NH3, N2O and CH4 Emissions during Swine Manure Composting without Forced Aeration––Effect of Compost Pile Scale. Bioresour. Technol. 2003;89:109–114. doi: 10.1016/S0960-8524(03)00060-9. PubMed DOI
Đurđević D., Blecich P., Jurić Ž. Energy Recovery from Sewage Sludge: The Case Study of Croatia. Energies. 2019;12:1927. doi: 10.3390/en12101927. DOI
Wang Q., Wang Z., Awasthi M.K., Jiang Y., Li R., Ren X., Zhao J., Shen F., Wang M., Zhang Z. Evaluation of Medical Stone Amendment for the Reduction of Nitrogen Loss and Bioavailability of Heavy Metals during Pig Manure Composting. Bioresour. Technol. 2016;220:297–304. doi: 10.1016/j.biortech.2016.08.081. PubMed DOI
Shen Y., Ren L., Li G., Chen T., Guo R. Influence of Aeration on CH4, N2O and NH3 Emissions during Aerobic Composting of a Chicken Manure and High C/N Waste Mixture. Waste Manag. 2011;31:33–38. doi: 10.1016/j.wasman.2010.08.019. PubMed DOI
Beck-Friis B., Pell M., Sonesson U., Jönsson H., Kirchmann H. Formation and Emission of N2O and CH4 from Compost Heaps of Organic Household Waster. Environ. Monit. Assess. 2000;62:317–331. doi: 10.1023/A:1006245227491. DOI
Sommer S.G., Møller H.B. Emission of Greenhouse Gases during Composting of Deep Litter from Pig Production—Effect of Straw Content. J. Agric. Sci. 2000;134:327–335. doi: 10.1017/S0021859699007625. DOI
Bubalo A., Vouk D., Stirmer N., Nad K. Use of Sewage Sludge Ash in the Production of Innovative Bricks—An Example of a Circular Economy. Sustainability. 2021;13:9330. doi: 10.3390/su13169330. DOI
Vochozka M., Maroušková A., Váchal J., Straková J. Biochar Pricing Hampers Biochar Farming. Clean Technol. Environ. Policy. 2016;18:1225–1231. doi: 10.1007/s10098-016-1113-3. DOI
Ahmed M.B., Zhou J.L., Ngo H.H., Guo W. Insight into Biochar Properties and Its Cost Analysis. Biomass Bioenergy. 2016;84:76–86. doi: 10.1016/j.biombioe.2015.11.002. DOI
Singh S., Kumar V., Dhanjal D.S., Datta S., Bhatia D., Dhiman J., Samuel J., Prasad R., Singh J. A Sustainable Paradigm of Sewage Sludge Biochar: Valorization, Opportunities, Challenges and Future Prospects. J. Clean. Prod. 2020;269:122259. doi: 10.1016/j.jclepro.2020.122259. DOI
Callegari A., Capodaglio A. Properties and Beneficial Uses of (Bio)Chars, with Special Attention to Products from Sewage Sludge Pyrolysis. Resources. 2018;7:20. doi: 10.3390/resources7010020. DOI
Barry D., Barbiero C., Briens C., Berruti F. Pyrolysis as an Economical and Ecological Treatment Option for Municipal Sewage Sludge. Biomass Bioenergy. 2019;122:472–480. doi: 10.1016/j.biombioe.2019.01.041. DOI
Maroušek J. Significant Breakthrough in Biochar Cost Reduction. Clean Technol. Environ. Policy. 2014;16:1821–1825. doi: 10.1007/s10098-014-0730-y. DOI
Fernando-Foncillas C., Estevez M.M., Uellendahl H., Varrone C. Co-Management of Sewage Sludge and Other Organic Wastes: A Scandinavian Case Study. Energies. 2021;14:3411. doi: 10.3390/en14123411. DOI
Shahbeig H., Nosrati M. Pyrolysis of Municipal Sewage Sludge for Bioenergy Production: Thermo-Kinetic Studies, Evolved Gas Analysis, and Techno-Socio-Economic Assessment. Renew. Sustain. Energy Rev. 2020;119:109567. doi: 10.1016/j.rser.2019.109567. DOI
Dickinson D., Balduccio L., Buysse J., Ronsse F., van Huylenbroeck G., Prins W. Cost-Benefit Analysis of Using Biochar to Improve Cereals Agriculture. GCB Bioenergy. 2015;7:850–864. doi: 10.1111/gcbb.12180. DOI
Maroušek J., Strunecký O., Stehel V. Biochar Farming: Defining Economically Perspective Applications. Clean Technol. Environ. Policy. 2019;21:1389–1395. doi: 10.1007/s10098-019-01728-7. DOI
Shackley S., Hammond J., Gaunt J., Ibarrola R. The Feasibility and Costs of Biochar Deployment in the UK. Carbon Manag. 2011;2:335–356. doi: 10.4155/cmt.11.22. DOI
Canatoy R.C., Jeong S.T., Galgo S.J.C., Kim P.J., Cho S.R. Biochar as Soil Amendment: Syngas Recycling System Is Essential to Create Positive Carbon Credit. Sci. Total Environ. 2022;809:151140. doi: 10.1016/j.scitotenv.2021.151140. PubMed DOI
Yao Z., You S., Ge T., Wang C.-H. Biomass Gasification for Syngas and Biochar Co-Production: Energy Application and Economic Evaluation. Appl. Energy. 2018;209:43–55. doi: 10.1016/j.apenergy.2017.10.077. DOI
Wang T., Liu H., Duan C., Xu R., Zhang Z., She D., Zheng J. The Eco-Friendly Biochar and Valuable Bio-Oil from Caragana Korshinskii: Pyrolysis Preparation, Characterization, and Adsorption Applications. Materials. 2020;13:3391. doi: 10.3390/ma13153391. PubMed DOI PMC
Trabelsi A.B.H., Zaafouri K., Friaa A., Abidi S., Naoui S., Jamaaoui F. Municipal Sewage Sludge Energetic Conversion as a Tool for Environmental Sustainability: Production of Innovative Biofuels and Biochar. Environ. Sci. Pollut. Res. 2021;28:9777–9791. doi: 10.1007/s11356-020-11400-z. PubMed DOI
Karaca C., Sözen S., Orhon D., Okutan H. High Temperature Pyrolysis of Sewage Sludge as a Sustainable Process for Energy Recovery. Waste Manag. 2018;78:217–226. doi: 10.1016/j.wasman.2018.05.034. PubMed DOI
Djandja O.S., Wang Z.-C., Wang F., Xu Y.-P., Duan P.-G. Pyrolysis of Municipal Sewage Sludge for Biofuel Production: A Review. Ind. Eng. Chem. Res. 2020;59:16939–16956. doi: 10.1021/acs.iecr.0c01546. DOI
Ro K.S., Hunt P.G., Jackson M.A., Compton D.L., Yates S.R., Cantrell K., Chang S. Co-Pyrolysis of Swine Manure with Agricultural Plastic Waste: Laboratory-Scale Study. Waste Manag. 2014;34:1520–1528. doi: 10.1016/j.wasman.2014.04.001. PubMed DOI
Pokorna E., Postelmans N., Jenicek P., Schreurs S., Carleer R., Yperman J. Study of Bio-Oils and Solids from Flash Pyrolysis of Sewage Sludges. Fuel. 2009;88:1344–1350. doi: 10.1016/j.fuel.2009.02.020. DOI
Papiernik S.K., Yates S.R., Chellemi D.O. A Standardized Approach for Estimating the Permeability of Plastic Films to Soil Fumigants under Various Field and Environmental Conditions. J. Environ. Qual. 2011;40:1375–1382. doi: 10.2134/jeq2010.0118. PubMed DOI
Nations U. World Population Prospects the 2020 Revision-Key Findings and Advance Tables. United Nations; New York, NY, USA: 2020.
Karagiannidis A., Samaras P., Kasampalis T., Perkoulidis G., Ziogas P., Zorpas A. Evaluation of Sewage Sludge Production and Utilization in Greece in the Frame of Integrated Energy Recovery. Desalin. Water Treat. 2011;33:185–193. doi: 10.5004/dwt.2011.2613. DOI
Semiyaga S., Okure M.A.E., Niwagaba C.B., Katukiza A.Y., Kansiime F. Decentralized Options for Faecal Sludge Management in Urban Slum Areas of Sub-Saharan Africa: A Review of Technologies, Practices and End-Uses. Resour. Conserv. Recycl. 2015;104:109–119. doi: 10.1016/j.resconrec.2015.09.001. DOI
Xenarios S., Shenhav R., Abdullaev I., Mastellari A. Current and Future Challenges of Water Security in Central Asia. Springer; Singapore: 2018. pp. 117–142. DOI
Singh B.P., Hatton B.J., Singh B., Cowie A.L., Kathuria A. Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils. J. Environ. Qual. 2010;39:1224–1235. doi: 10.2134/jeq2009.0138. PubMed DOI
Bondarczuk K., Markowicz A., Piotrowska-Seget Z. The Urgent Need for Risk Assessment on the Antibiotic Resistance Spread via Sewage Sludge Land Application. Environ. Int. 2016;87:49–55. doi: 10.1016/j.envint.2015.11.011. PubMed DOI
Collivignarelli M., Abbà A., Frattarola A., Carnevale Miino M., Padovani S., Katsoyiannis I., Torretta V. Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview. Sustainability. 2019;11:6015. doi: 10.3390/su11216015. DOI