Deposition of Chiral Heptahelicene Molecules on Ferromagnetic Co and Fe Thin-Film Substrates

. 2022 Sep 21 ; 12 (19) : . [epub] 20220921

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36234411

The discovery of chirality-induced spin selectivity (CISS), resulting from an interaction between the electron spin and handedness of chiral molecules, has sparked interest in surface-adsorbed chiral molecules due to potential applications in spintronics, enantioseparation, and enantioselective chemical or biological processes. We study the deposition of chiral heptahelicene by sublimation under ultra-high vacuum onto bare Cu(111), Co bilayer nanoislands on Cu(111), and Fe bilayers on W(110) by low-temperature spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS). In all cases, the molecules remain intact and adsorb with the proximal phenanthrene group aligned parallel to the surface. Three degenerate in-plane orientations on Cu(111) and Co(111), reflecting substrate symmetry, and only two on Fe(110), i.e., fewer than symmetry permits, indicate a specific adsorption site for each substrate. Heptahelicene physisorbs on Cu(111) but chemisorbs on Co(111) and Fe(110) bilayers, which nevertheless remain for the sub-monolayer coverage ferromagnetic and magnetized out-of-plane. We are able to determine the handedness of individual molecules chemisorbed on Fe(110) and Co(111), as previously reported for less reactive Cu(111). The demonstrated deposition control and STM/STS imaging capabilities for heptahelicene on Co/Cu(111) and Fe/W(110) substrate systems lay the foundation for studying CISS in ultra-high vacuum and on the microscopic level of single molecules in controlled atomic configurations.

Zobrazit více v PubMed

Ray K., Ananthavel S.P., Waldeck D.H., Naaman R. Asymmetric Scattering of Polarized Electrons by Organized Organic Films of Chiral Molecules. Science. 1999;283:814–816. doi: 10.1126/science.283.5403.814. PubMed DOI

Naaman R., Waldeck D.H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012;3:2178–2187. doi: 10.1021/jz300793y. PubMed DOI

Naaman R., Waldeck D.H. Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules. Annu. Rev. Phys. Chem. 2015;66:263–281. doi: 10.1146/annurev-physchem-040214-121554. PubMed DOI

Naaman R., Paltiel Y., Waldeck D.H. Chiral molecules and the electron spin. Nat. Rev. Chem. 2019;3:250–260. doi: 10.1038/s41570-019-0087-1. DOI

Aiello C.D., Abendroth J.M., Abbas M., Afanasev A., Agarwal S., Banerjee A.S., Beratan D.N., Belling J.N., Berche B., Botana A., et al. A Chirality-Based Quantum Leap. ACS Nano. 2022;16:4989–5035. doi: 10.1021/acsnano.1c01347. PubMed DOI PMC

Al-Bustami H., Bloom B.P., Ziv A., Goldring S., Yochelis S., Naaman R., Waldeck D.H., Paltiel Y. Optical Multilevel Spin Bit Device Using Chiral Quantum Dots. Nano Lett. 2020;20:8675–8681. doi: 10.1021/acs.nanolett.0c03445. PubMed DOI

Naaman R., Waldeck D.H., Paltiel Y. Chiral molecules-ferromagnetic interfaces, an approach towards spin controlled interactions. Appl. Phys. Lett. 2019;115:133701. doi: 10.1063/1.5125034. DOI

Ray S.G., Daube S.S., Leitus G., Vager Z., Naaman R. Chirality-induced spin-selective properties of self-assembled monolayers of DNA on gold. Phys. Rev. Lett. 2006;96:036101. doi: 10.1103/PhysRevLett.96.036101. PubMed DOI

Mishra S., Mondal A.K., Smolinsky E.Z., Naaman R., Maeda K., Nishimura T., Taniguchi T., Yoshida T., Takayama K., Yashima E. Spin Filtering Along Chiral Polymers. Angew. Chem. Int. Ed. 2020;59:14671–14676. doi: 10.1002/anie.202006570. PubMed DOI PMC

Kettner M., Maslyuk V.V., Nürenberg D., Seibel J., Gutierrez R., Cuniberti G., Ernst K.H., Zacharias H. Chirality-Dependent Electron Spin Filtering by Molecular Monolayers of Helicenes. J. Phys. Chem. Lett. 2018;9:2025–2030. doi: 10.1021/acs.jpclett.8b00208. PubMed DOI

Göhler B., Hamelbeck V., Markus T.Z., Kettner M., Hanne G.F., Vager Z., Naaman R., Zacharias H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science. 2011;331:894–897. doi: 10.1126/science.1199339. PubMed DOI

Kim Y.H., Zhai Y., Lu H., Pan X., Xiao C., Gaulding E.A., Harvey S.P., Berry J.J., Vardeny Z.V., Luther J.M., et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science. 2021;371:1129–1133. doi: 10.1126/science.abf5291. PubMed DOI

Banerjee-Ghosh K., Dor O.B., Tassinari F., Capua E., Yochelis S., Capua A., Yang S.H., Parkin S.S., Sarkar S., Kronik L., et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science. 2018;360:1331–1334. doi: 10.1126/science.aar4265. PubMed DOI

Ben Dor O., Yochelis S., Radko A., Vankayala K., Capua E., Capua A., Yang S.H., Baczewski L.T., Parkin S.S.P., Naaman R., et al. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. Nat. Commun. 2017;8:14567. doi: 10.1038/ncomms14567. PubMed DOI PMC

Fransson J. Chirality-Induced Spin Selectivity: The Role of Electron Correlations. J. Phys. Chem. Lett. 2019;10:7126–7132. doi: 10.1021/acs.jpclett.9b02929. PubMed DOI

Michaeli K., Naaman R. Origin of Spin-Dependent Tunneling Through Chiral Molecules. J. Phys. Chem. C. 2019;123:17043–17048. doi: 10.1021/acs.jpcc.9b05020. DOI

Ghazaryan A., Paltiel Y., Lemeshko M. Analytic Model of Chiral-Induced Spin Selectivity. J. Phys. Chem. C. 2020;124:11716–11721. doi: 10.1021/acs.jpcc.0c02584. PubMed DOI PMC

Yeganeh S., Ratner M.A., Medina E., Mujica V. Chiral electron transport: Scattering through helical potentials. J. Chem. Phys. 2009;131:014707. doi: 10.1063/1.3167404. PubMed DOI

Geyer M., Gutierrez R., Mujica V., Cuniberti G. Chirality-Induced Spin Selectivity in a Coarse-Grained Tight-Binding Model for Helicene. J. Phys. Chem. C. 2019;123:27230–27241. doi: 10.1021/acs.jpcc.9b07764. DOI

Huisman K.H., Thijssen J.M. CISS Effect: A Magnetoresistance through Inelastic Scattering. J. Phys. Chem. C. 2021;125:23364–23369. doi: 10.1021/acs.jpcc.1c06193. PubMed DOI PMC

Kiran V., Mathew S.P., Cohen S.R., Hernández Delgado I., Lacour J., Naaman R. Helicenes—A New Class of Organic Spin Filter. Adv. Mater. 2016;28:1957–1962. doi: 10.1002/adma.201504725. PubMed DOI

Pan T.R., Guo A.M., Sun Q.F. Spin-polarized electron transport through helicene molecular junctions. Phys. Rev. B. 2016;94:235448. doi: 10.1103/PhysRevB.94.235448. DOI

Fasel R., Cossy A., Ernst K.H., Baumberger F., Greber T., Osterwalder J. Orientation of chiral heptahelicene C30H18 on copper surfaces: An x-ray photoelectron diffraction study. J. Chem. Phys. 2001;115:1020–1027. doi: 10.1063/1.1377886. DOI

Seibel J., Parschau M., Ernst K.H. From Homochiral Clusters to Racemate Crystals: Viable Nuclei in 2D Chiral Crystallization. J. Am. Chem. Soc. 2015;137:7970–7973. doi: 10.1021/jacs.5b02262. PubMed DOI

Ernst K.H., Baumann S., Lutz C.P., Seibel J., Zoppi L., Heinrich A.J. Pasteurs Experiment Performed at the Nanoscale: Manual Separation of Chiral Molecules, One by One. Nano Lett. 2015;15:5388–5392. doi: 10.1021/acs.nanolett.5b01762. PubMed DOI

Ernst K.H. Stereochemical Recognition of Helicenes on Metal Surfaces. Acc. Chem. Res. 2016;49:1182–1190. doi: 10.1021/acs.accounts.6b00110. PubMed DOI

Fasel R., Parschau M., Ernst K.H. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature. 2006;439:449–452. doi: 10.1038/nature04419. PubMed DOI

Ernst K.H., Kuster Y., Fasel R., McFadden C.F., Ellerbeck U. Adsorption of helical aromatic molecules: Heptahelicene on Ni(111) Surf. Sci. 2003;530:195–202. doi: 10.1016/S0039-6028(03)00489-8. DOI

Fahrendorf S., Matthes F., Bürgler D.E., Schneider C.M., Atodiresei N., Caciuc V., Blügel S., Besson C., Kögerler P. Structural integrity of single bis(phthalocyaninato)-neodymium(iii) molecules on metal surfaces with different reactivity. Spin. 2014;4:144007. doi: 10.1142/S2010324714400074. DOI

Schleicher S., Borca B., Rawson J., Matthes F., Bürgler D.E., Kögerler P., Schneider C.M. Ultra-High Vacuum Deposition of Pyrene Molecules on Metal Surfaces. Phys. Stat. Sol. B. 2018;255:1800235. doi: 10.1002/pssb.201800235. DOI

De La Figuera J., Prieto J.E., Ocal C., Miranda R. Scanning-tunneling-microscopy study of the growth of cobalt on Cu(111) Phys. Rev. B. 1993;47:13043–13046. doi: 10.1103/PhysRevB.47.13043. PubMed DOI

Bode M., Krause S., Berbil-Bautista L., Heinze S., Wiesendanger R. On the preparation and electronic properties of clean W(110) surfaces. Surf. Sci. 2007;601:3308–3314. doi: 10.1016/j.susc.2007.06.017. DOI

Pietzsch O., Kubetzka A., Bode M., Wiesendanger R. Spin-Polarized Scanning Tunneling Spectroscopy of Nanoscale Cobalt Islands on Cu(111) Phys. Rev. Lett. 2004;92:057202. doi: 10.1103/PhysRevLett.92.057202. PubMed DOI

Pietzsch O., Okatov S., Kubetzka A., Bode M., Heinze S., Lichtenstein A., Wiesendanger R. Spin-Resolved Electronic Structure of Nanoscale Cobalt Islands on Cu(111) Phys. Rev. Lett. 2006;96:237203. doi: 10.1103/PhysRevLett.96.237203. PubMed DOI

Negulyaev N.N., Stepanyuk V.S., Bruno P., Diekhöner L., Wahl P., Kern K. Bilayer growth of nanoscale Co islands on Cu(111) Phys. Rev. B. 2008;77:125437. doi: 10.1103/PhysRevB.77.125437. DOI

Oka H., Ignatiev P.A., Wedekind S., Rodary G., Niebergall L., Stepanyuk V.S., Sander D., Kirschner J. Spin-Dependent Quantum Interference Within a Single Magnetic Nanostructure. Science. 2010;327:843–846. doi: 10.1126/science.1183224. PubMed DOI

Esat T., Friedrich R., Matthes F., Caciuc V., Atodiresei N., Blügel S., Bürgler D.E., Tautz F.S., Schneider C.M. Quantum interference effects in molecular spin hybrids. Phys. Rev. B. 2017;95:094409. doi: 10.1103/PhysRevB.95.094409. DOI

Alkemper U., Carbone C., Vescovo E., Eberhardt W., Rader O., Gudat W. Exchange-split electronic states of ultrathin Co layers on Cu(111) Phys. Rev. B. 1994;50:17496–17501. doi: 10.1103/PhysRevB.50.17496. PubMed DOI

Metzelaars M., Schleicher S., Hattori T., Borca B., Matthes F., Sanz S., Bürgler D.E., Rawson J., Schneider C.M., Kögerler P. Cyclophane with eclipsed pyrene units enables construction of spin interfaces with chemical accuracy. Chem. Sci. 2021;12:8430–8437. doi: 10.1039/D1SC01036K. PubMed DOI PMC

Jia X., An W. Adsorption of Monocyclic Aromatics on Transition Metal Surfaces: Insight into Variation of Binding Strength from First-Principles. J. Phys. Chem. C. 2018;122:21897–21909. doi: 10.1021/acs.jpcc.8b06321. DOI

Bethge H., Heuer D., Jensen C., Reshöft K., Köhler U. Misfit-related effects in the epitaxial growth of iron on W(110) Surf. Sci. 1995;331-333:878–884. doi: 10.1016/0039-6028(95)00166-2. DOI

Pietzsch O., Kubetzka A., Bode M., Wiesendanger R. Real-Space Observation of Dipolar Antiferromagnetism in Magnetic Nanowires by Spin-Polarized Scanning Tunneling Spectroscopy. Phys. Rev. Lett. 2000;84:5212–5215. doi: 10.1103/PhysRevLett.84.5212. PubMed DOI

Kubetzka A., Pietzsch O., Bode M., Wiesendanger R. Magnetism of nanoscale Fe islands studied by spin-polarized scanning tunneling spectroscopy. Phys. Rev. B. 2001;63:140407. doi: 10.1103/PhysRevB.63.140407. DOI

Kubetzka A., Bode M., Pietzsch O., Wiesendanger R. Spin-Polarized Scanning Tunneling Microscopy with Antiferromagnetic Probe Tips. Phys. Rev. Lett. 2002;88:4. doi: 10.1103/PhysRevLett.88.057201. PubMed DOI

Pratzer M., Elmers H.J., Bode M., Pietzsch O., Kubetzka A., Wiesendanger R. Atomic-Scale Magnetic Domain Walls in Quasi-One-Dimensional Fe Nanostripes. Phys. Rev. Lett. 2001;87:127201–127204. doi: 10.1103/PhysRevLett.87.127201. PubMed DOI

Bode M., Heinze S., Kubetzka A., Pietzsch O., Nie X., Bihlmayer G., Blügel S., Wiesendanger R. Magnetization-Direction-Dependent Local Electronic Structure Probed by Scanning Tunneling Spectroscopy. Phys. Rev. Lett. 2002;89:237205. doi: 10.1103/PhysRevLett.89.237205. PubMed DOI

Von Bergmann K., Menzel M., Serrate D., Schröder Y.Y., Ferriani P., Kubetzka A., Wiesendanger R., Heinze S. Tunneling anisotropic magnetoresistance on the atomic scale. Phys. Rev. B. 2012;86:134422. doi: 10.1103/PhysRevB.86.134422. DOI

Heß V., Friedrich R., Matthes F., Caciuc V., Atodiresei N., Bürgler D.E., Blügel S., Schneider C.M. Magnetic subunits within a single molecule-surface hybrid. New J. Phys. 2017;19 doi: 10.1088/1367-2630/aa6ece. DOI

Sicot M., Kurnosikov O., Swagten H.J., Koopmans B. Hydrogen superstructures on Co nanoislands and Cu(111) Surf. Sci. 2008;602:3667–3673. doi: 10.1016/j.susc.2008.10.012. DOI

Schlenhoff A., Krause S., Herzog G., Wiesendanger R. Bulk Cr tips with full spatial magnetic sensitivity for spin-polarized scanning tunneling microscopy. Appl. Phys. Lett. 2010;97:083104. doi: 10.1063/1.3474659. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...