Deposition of Chiral Heptahelicene Molecules on Ferromagnetic Co and Fe Thin-Film Substrates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36234411
PubMed Central
PMC9565510
DOI
10.3390/nano12193281
PII: nano12193281
Knihovny.cz E-zdroje
- Klíčová slova
- STM, adsorption geometry, chiral molecules, ferromagnetic surfaces, molecular deposition,
- Publikační typ
- časopisecké články MeSH
The discovery of chirality-induced spin selectivity (CISS), resulting from an interaction between the electron spin and handedness of chiral molecules, has sparked interest in surface-adsorbed chiral molecules due to potential applications in spintronics, enantioseparation, and enantioselective chemical or biological processes. We study the deposition of chiral heptahelicene by sublimation under ultra-high vacuum onto bare Cu(111), Co bilayer nanoislands on Cu(111), and Fe bilayers on W(110) by low-temperature spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS). In all cases, the molecules remain intact and adsorb with the proximal phenanthrene group aligned parallel to the surface. Three degenerate in-plane orientations on Cu(111) and Co(111), reflecting substrate symmetry, and only two on Fe(110), i.e., fewer than symmetry permits, indicate a specific adsorption site for each substrate. Heptahelicene physisorbs on Cu(111) but chemisorbs on Co(111) and Fe(110) bilayers, which nevertheless remain for the sub-monolayer coverage ferromagnetic and magnetized out-of-plane. We are able to determine the handedness of individual molecules chemisorbed on Fe(110) and Co(111), as previously reported for less reactive Cu(111). The demonstrated deposition control and STM/STS imaging capabilities for heptahelicene on Co/Cu(111) and Fe/W(110) substrate systems lay the foundation for studying CISS in ultra-high vacuum and on the microscopic level of single molecules in controlled atomic configurations.
Fakultät für Physik Universität Duisburg Essen 47057 Duisburg Germany
Jülich Aachen Research Alliance Fundamentals of Future Information Technology 52425 Jülich Germany
Nanosurf Laboratory Institute of Physics The Czech Academy of Sciences 16200 Prague Czech Republic
Peter Grünberg Institute Electronic Properties Forschungszentrum Jülich 52428 Jülich Germany
Zobrazit více v PubMed
Ray K., Ananthavel S.P., Waldeck D.H., Naaman R. Asymmetric Scattering of Polarized Electrons by Organized Organic Films of Chiral Molecules. Science. 1999;283:814–816. doi: 10.1126/science.283.5403.814. PubMed DOI
Naaman R., Waldeck D.H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012;3:2178–2187. doi: 10.1021/jz300793y. PubMed DOI
Naaman R., Waldeck D.H. Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules. Annu. Rev. Phys. Chem. 2015;66:263–281. doi: 10.1146/annurev-physchem-040214-121554. PubMed DOI
Naaman R., Paltiel Y., Waldeck D.H. Chiral molecules and the electron spin. Nat. Rev. Chem. 2019;3:250–260. doi: 10.1038/s41570-019-0087-1. DOI
Aiello C.D., Abendroth J.M., Abbas M., Afanasev A., Agarwal S., Banerjee A.S., Beratan D.N., Belling J.N., Berche B., Botana A., et al. A Chirality-Based Quantum Leap. ACS Nano. 2022;16:4989–5035. doi: 10.1021/acsnano.1c01347. PubMed DOI PMC
Al-Bustami H., Bloom B.P., Ziv A., Goldring S., Yochelis S., Naaman R., Waldeck D.H., Paltiel Y. Optical Multilevel Spin Bit Device Using Chiral Quantum Dots. Nano Lett. 2020;20:8675–8681. doi: 10.1021/acs.nanolett.0c03445. PubMed DOI
Naaman R., Waldeck D.H., Paltiel Y. Chiral molecules-ferromagnetic interfaces, an approach towards spin controlled interactions. Appl. Phys. Lett. 2019;115:133701. doi: 10.1063/1.5125034. DOI
Ray S.G., Daube S.S., Leitus G., Vager Z., Naaman R. Chirality-induced spin-selective properties of self-assembled monolayers of DNA on gold. Phys. Rev. Lett. 2006;96:036101. doi: 10.1103/PhysRevLett.96.036101. PubMed DOI
Mishra S., Mondal A.K., Smolinsky E.Z., Naaman R., Maeda K., Nishimura T., Taniguchi T., Yoshida T., Takayama K., Yashima E. Spin Filtering Along Chiral Polymers. Angew. Chem. Int. Ed. 2020;59:14671–14676. doi: 10.1002/anie.202006570. PubMed DOI PMC
Kettner M., Maslyuk V.V., Nürenberg D., Seibel J., Gutierrez R., Cuniberti G., Ernst K.H., Zacharias H. Chirality-Dependent Electron Spin Filtering by Molecular Monolayers of Helicenes. J. Phys. Chem. Lett. 2018;9:2025–2030. doi: 10.1021/acs.jpclett.8b00208. PubMed DOI
Göhler B., Hamelbeck V., Markus T.Z., Kettner M., Hanne G.F., Vager Z., Naaman R., Zacharias H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science. 2011;331:894–897. doi: 10.1126/science.1199339. PubMed DOI
Kim Y.H., Zhai Y., Lu H., Pan X., Xiao C., Gaulding E.A., Harvey S.P., Berry J.J., Vardeny Z.V., Luther J.M., et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science. 2021;371:1129–1133. doi: 10.1126/science.abf5291. PubMed DOI
Banerjee-Ghosh K., Dor O.B., Tassinari F., Capua E., Yochelis S., Capua A., Yang S.H., Parkin S.S., Sarkar S., Kronik L., et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science. 2018;360:1331–1334. doi: 10.1126/science.aar4265. PubMed DOI
Ben Dor O., Yochelis S., Radko A., Vankayala K., Capua E., Capua A., Yang S.H., Baczewski L.T., Parkin S.S.P., Naaman R., et al. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. Nat. Commun. 2017;8:14567. doi: 10.1038/ncomms14567. PubMed DOI PMC
Fransson J. Chirality-Induced Spin Selectivity: The Role of Electron Correlations. J. Phys. Chem. Lett. 2019;10:7126–7132. doi: 10.1021/acs.jpclett.9b02929. PubMed DOI
Michaeli K., Naaman R. Origin of Spin-Dependent Tunneling Through Chiral Molecules. J. Phys. Chem. C. 2019;123:17043–17048. doi: 10.1021/acs.jpcc.9b05020. DOI
Ghazaryan A., Paltiel Y., Lemeshko M. Analytic Model of Chiral-Induced Spin Selectivity. J. Phys. Chem. C. 2020;124:11716–11721. doi: 10.1021/acs.jpcc.0c02584. PubMed DOI PMC
Yeganeh S., Ratner M.A., Medina E., Mujica V. Chiral electron transport: Scattering through helical potentials. J. Chem. Phys. 2009;131:014707. doi: 10.1063/1.3167404. PubMed DOI
Geyer M., Gutierrez R., Mujica V., Cuniberti G. Chirality-Induced Spin Selectivity in a Coarse-Grained Tight-Binding Model for Helicene. J. Phys. Chem. C. 2019;123:27230–27241. doi: 10.1021/acs.jpcc.9b07764. DOI
Huisman K.H., Thijssen J.M. CISS Effect: A Magnetoresistance through Inelastic Scattering. J. Phys. Chem. C. 2021;125:23364–23369. doi: 10.1021/acs.jpcc.1c06193. PubMed DOI PMC
Kiran V., Mathew S.P., Cohen S.R., Hernández Delgado I., Lacour J., Naaman R. Helicenes—A New Class of Organic Spin Filter. Adv. Mater. 2016;28:1957–1962. doi: 10.1002/adma.201504725. PubMed DOI
Pan T.R., Guo A.M., Sun Q.F. Spin-polarized electron transport through helicene molecular junctions. Phys. Rev. B. 2016;94:235448. doi: 10.1103/PhysRevB.94.235448. DOI
Fasel R., Cossy A., Ernst K.H., Baumberger F., Greber T., Osterwalder J. Orientation of chiral heptahelicene C30H18 on copper surfaces: An x-ray photoelectron diffraction study. J. Chem. Phys. 2001;115:1020–1027. doi: 10.1063/1.1377886. DOI
Seibel J., Parschau M., Ernst K.H. From Homochiral Clusters to Racemate Crystals: Viable Nuclei in 2D Chiral Crystallization. J. Am. Chem. Soc. 2015;137:7970–7973. doi: 10.1021/jacs.5b02262. PubMed DOI
Ernst K.H., Baumann S., Lutz C.P., Seibel J., Zoppi L., Heinrich A.J. Pasteurs Experiment Performed at the Nanoscale: Manual Separation of Chiral Molecules, One by One. Nano Lett. 2015;15:5388–5392. doi: 10.1021/acs.nanolett.5b01762. PubMed DOI
Ernst K.H. Stereochemical Recognition of Helicenes on Metal Surfaces. Acc. Chem. Res. 2016;49:1182–1190. doi: 10.1021/acs.accounts.6b00110. PubMed DOI
Fasel R., Parschau M., Ernst K.H. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature. 2006;439:449–452. doi: 10.1038/nature04419. PubMed DOI
Ernst K.H., Kuster Y., Fasel R., McFadden C.F., Ellerbeck U. Adsorption of helical aromatic molecules: Heptahelicene on Ni(111) Surf. Sci. 2003;530:195–202. doi: 10.1016/S0039-6028(03)00489-8. DOI
Fahrendorf S., Matthes F., Bürgler D.E., Schneider C.M., Atodiresei N., Caciuc V., Blügel S., Besson C., Kögerler P. Structural integrity of single bis(phthalocyaninato)-neodymium(iii) molecules on metal surfaces with different reactivity. Spin. 2014;4:144007. doi: 10.1142/S2010324714400074. DOI
Schleicher S., Borca B., Rawson J., Matthes F., Bürgler D.E., Kögerler P., Schneider C.M. Ultra-High Vacuum Deposition of Pyrene Molecules on Metal Surfaces. Phys. Stat. Sol. B. 2018;255:1800235. doi: 10.1002/pssb.201800235. DOI
De La Figuera J., Prieto J.E., Ocal C., Miranda R. Scanning-tunneling-microscopy study of the growth of cobalt on Cu(111) Phys. Rev. B. 1993;47:13043–13046. doi: 10.1103/PhysRevB.47.13043. PubMed DOI
Bode M., Krause S., Berbil-Bautista L., Heinze S., Wiesendanger R. On the preparation and electronic properties of clean W(110) surfaces. Surf. Sci. 2007;601:3308–3314. doi: 10.1016/j.susc.2007.06.017. DOI
Pietzsch O., Kubetzka A., Bode M., Wiesendanger R. Spin-Polarized Scanning Tunneling Spectroscopy of Nanoscale Cobalt Islands on Cu(111) Phys. Rev. Lett. 2004;92:057202. doi: 10.1103/PhysRevLett.92.057202. PubMed DOI
Pietzsch O., Okatov S., Kubetzka A., Bode M., Heinze S., Lichtenstein A., Wiesendanger R. Spin-Resolved Electronic Structure of Nanoscale Cobalt Islands on Cu(111) Phys. Rev. Lett. 2006;96:237203. doi: 10.1103/PhysRevLett.96.237203. PubMed DOI
Negulyaev N.N., Stepanyuk V.S., Bruno P., Diekhöner L., Wahl P., Kern K. Bilayer growth of nanoscale Co islands on Cu(111) Phys. Rev. B. 2008;77:125437. doi: 10.1103/PhysRevB.77.125437. DOI
Oka H., Ignatiev P.A., Wedekind S., Rodary G., Niebergall L., Stepanyuk V.S., Sander D., Kirschner J. Spin-Dependent Quantum Interference Within a Single Magnetic Nanostructure. Science. 2010;327:843–846. doi: 10.1126/science.1183224. PubMed DOI
Esat T., Friedrich R., Matthes F., Caciuc V., Atodiresei N., Blügel S., Bürgler D.E., Tautz F.S., Schneider C.M. Quantum interference effects in molecular spin hybrids. Phys. Rev. B. 2017;95:094409. doi: 10.1103/PhysRevB.95.094409. DOI
Alkemper U., Carbone C., Vescovo E., Eberhardt W., Rader O., Gudat W. Exchange-split electronic states of ultrathin Co layers on Cu(111) Phys. Rev. B. 1994;50:17496–17501. doi: 10.1103/PhysRevB.50.17496. PubMed DOI
Metzelaars M., Schleicher S., Hattori T., Borca B., Matthes F., Sanz S., Bürgler D.E., Rawson J., Schneider C.M., Kögerler P. Cyclophane with eclipsed pyrene units enables construction of spin interfaces with chemical accuracy. Chem. Sci. 2021;12:8430–8437. doi: 10.1039/D1SC01036K. PubMed DOI PMC
Jia X., An W. Adsorption of Monocyclic Aromatics on Transition Metal Surfaces: Insight into Variation of Binding Strength from First-Principles. J. Phys. Chem. C. 2018;122:21897–21909. doi: 10.1021/acs.jpcc.8b06321. DOI
Bethge H., Heuer D., Jensen C., Reshöft K., Köhler U. Misfit-related effects in the epitaxial growth of iron on W(110) Surf. Sci. 1995;331-333:878–884. doi: 10.1016/0039-6028(95)00166-2. DOI
Pietzsch O., Kubetzka A., Bode M., Wiesendanger R. Real-Space Observation of Dipolar Antiferromagnetism in Magnetic Nanowires by Spin-Polarized Scanning Tunneling Spectroscopy. Phys. Rev. Lett. 2000;84:5212–5215. doi: 10.1103/PhysRevLett.84.5212. PubMed DOI
Kubetzka A., Pietzsch O., Bode M., Wiesendanger R. Magnetism of nanoscale Fe islands studied by spin-polarized scanning tunneling spectroscopy. Phys. Rev. B. 2001;63:140407. doi: 10.1103/PhysRevB.63.140407. DOI
Kubetzka A., Bode M., Pietzsch O., Wiesendanger R. Spin-Polarized Scanning Tunneling Microscopy with Antiferromagnetic Probe Tips. Phys. Rev. Lett. 2002;88:4. doi: 10.1103/PhysRevLett.88.057201. PubMed DOI
Pratzer M., Elmers H.J., Bode M., Pietzsch O., Kubetzka A., Wiesendanger R. Atomic-Scale Magnetic Domain Walls in Quasi-One-Dimensional Fe Nanostripes. Phys. Rev. Lett. 2001;87:127201–127204. doi: 10.1103/PhysRevLett.87.127201. PubMed DOI
Bode M., Heinze S., Kubetzka A., Pietzsch O., Nie X., Bihlmayer G., Blügel S., Wiesendanger R. Magnetization-Direction-Dependent Local Electronic Structure Probed by Scanning Tunneling Spectroscopy. Phys. Rev. Lett. 2002;89:237205. doi: 10.1103/PhysRevLett.89.237205. PubMed DOI
Von Bergmann K., Menzel M., Serrate D., Schröder Y.Y., Ferriani P., Kubetzka A., Wiesendanger R., Heinze S. Tunneling anisotropic magnetoresistance on the atomic scale. Phys. Rev. B. 2012;86:134422. doi: 10.1103/PhysRevB.86.134422. DOI
Heß V., Friedrich R., Matthes F., Caciuc V., Atodiresei N., Bürgler D.E., Blügel S., Schneider C.M. Magnetic subunits within a single molecule-surface hybrid. New J. Phys. 2017;19 doi: 10.1088/1367-2630/aa6ece. DOI
Sicot M., Kurnosikov O., Swagten H.J., Koopmans B. Hydrogen superstructures on Co nanoislands and Cu(111) Surf. Sci. 2008;602:3667–3673. doi: 10.1016/j.susc.2008.10.012. DOI
Schlenhoff A., Krause S., Herzog G., Wiesendanger R. Bulk Cr tips with full spatial magnetic sensitivity for spin-polarized scanning tunneling microscopy. Appl. Phys. Lett. 2010;97:083104. doi: 10.1063/1.3474659. DOI