Smart Modulators Based on Electric Field-Triggering of Surface Plasmon-Polariton for Active Plasmonics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36234493
PubMed Central
PMC9565573
DOI
10.3390/nano12193366
PII: nano12193366
Knihovny.cz E-zdroje
- Klíčová slova
- LIPSS, SERS, modification, nanostructures, plasmon excitation, polymer, sensor, smart materials, thin layers,
- Publikační typ
- časopisecké články MeSH
Design and properties of a plasmonic modulator in situ tunable by electric field are presented. Our design comprises the creation of periodic surface pattern on the surface of an elastic polymer supported by a piezo-substrate by excimer laser irradiation and subsequent selective coverage by silver by tilted angle vacuum evaporation. The structure creation was confirmed by AFM and FIB-SEM techniques. An external electric field is used for fine control of the polymer pattern amplitude, which tends to decrease with increasing voltage. As a result, surface plasmon-polariton excitation is quenched, leading to the less pronounced structure of plasmon response. This quenching was checked using UV-Vis spectroscopy and SERS measurements, and confirmed by numerical simulation. All methods prove the proposed functionality of the structures enabling the creation smart plasmonic materials for a very broad range of advanced optical applications.
Baumit Spol s r o 250 01 Brandys nad Labem Stara Boleslav Czech Republic
Faculty of Mechanical Engineering J E Purkyně University 400 96 Usti nad Labem Czech Republic
Faculty of Science J E Purkyně University 400 96 Usti nad Labem Czech Republic
Zobrazit více v PubMed
de Angelis B., Depalo N., Petronella F., Quinarelli C., Curri L.M., Pani R., Calogero A., Locatelli F., de Sio L. Stimuli-responsive nanoparticle-assisted immunotherapy: A new weapon against solid tumours. J. Mater. Chem. B. 2020;8:1823–1840. doi: 10.1039/C9TB02246E. PubMed DOI
Kalachyova Y., Guselnikova O., Elashnikov R., Panov I., Žádný J., Církva V., Storch J., Sykora J., Zaruba K., Svorcik V., et al. Helicene-SPP-based chiral plasmonic hybrid structure: Toward direct enantiomers SERS discrimination. ACS Appl. Mater. Interfac. 2018;11:1555–1562. doi: 10.1021/acsami.8b15520. PubMed DOI
Ren H., Maier S.A. Nanophotonic Materials for Twisted-Light Manipulation. Adv. Mater. 2021:2106692. doi: 10.1002/adma.202106692. PubMed DOI
Ahmadivand A., Gerislioglu B. Photonic and Plasmonic Metasensors. Laser Photon. Rev. 2022;16:2100328. doi: 10.1002/lpor.202100328. DOI
Zabelin D., Zabelina A., Tulupova A., Elashnikov R., Kolska Z., Svorcik V., Lyutakov O. A surface plasmon polariton-triggered Z-scheme for overall water splitting and solely light-induced hydrogen generation. J. Mat. Chem. A. 2022;10:13829–13838. doi: 10.1039/D2TA02365B. DOI
Ha M., Kim J.H., You M., Li Q., Fan C., Nam J.M. Multicomponent plasmonic nanoparticles: From heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 2019;119:12208–12278. doi: 10.1021/acs.chemrev.9b00234. PubMed DOI
Wang L., Kafshgari M.H., Meunier M. Optical properties and applications of plasmonic-metal nanoparticles. Adv. Funct. Mater. 2020;30:2005400. doi: 10.1002/adfm.202005400. DOI
Lütolf F., Casari D., Gallinet B. Low-Cost and Large-Area Strain Sensors Based on Plasmonic Fano Resonances. Adv. Opt. Mater. 2016;4:715–721. doi: 10.1002/adom.201500601. DOI
Wen J., Zhang H., Chen H., Zhang W., Chen J. Stretchable Plasmonic Substrate with Tunable Resonances for Surface-Enhanced Raman Spectroscopy. J. Opt. 2015;11:114015. doi: 10.1088/2040-8978/17/11/114015. DOI
Ahn J., Wang D., Ding Y., Zhang J., Qin D. Site-selective carving and Co-deposition: Transformation of Ag nanocubes into concave nanocrystals encased by Au–Ag alloy frames. ACS Nano. 2018;12:298–307. doi: 10.1021/acsnano.7b06353. PubMed DOI
Liu N.L., Duan X.Y., Kamin S. Dynamic Plasmonic Colour Display. Nat. Commun. 2017;8:14606. PubMed PMC
Kowerdziej R., Wróbel J., Kula P. Ultrafast electrical switching of nanostructured metadevice with dual-frequency liquid crystal. Sci. Rep. 2019;9:20367. doi: 10.1038/s41598-019-55656-z. PubMed DOI PMC
Hang Y., Boryczka J., Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: A review. Chem. Soc. Rev. 2022;51:329–375. PubMed PMC
Olshtrem A., Guselnikova O., Postnikov P.S., Trelin A., Yusubov M.S., Kalachyova Y., Lapcak L., Cieslar M., Ulbrich P., Lyutakov O. Plasmon-assisted grafting of anisotropic nanoparticles–spatially selective surface modification and creation of amphiphilic SERS-nanoprobes. Nanoscale. 2020;12:14581–14588. doi: 10.1039/D0NR02934C. PubMed DOI
Laible F., Horneber A., Fleischer M. Mechanically Tunable Nanogap Antennas: Single-Structure Effects and Multi-Structure Applications. Adv. Opt. Mater. 2021;9:2100326. doi: 10.1002/adom.202100326. DOI
Tokarev I., Minko S. Tunable Plasmonic Nanostructures from Noble Metal Nanoparticles and Stimuli-Responsive Polymers. Soft Matter. 2012;8:5980–5987. doi: 10.1039/c2sm25069a. DOI
Lacroix J.-C., van Nguyen Q., Ai Y., van Nguyen Q., Martin P., Lacaze P.-C. From active plasmonic devices to plasmonic molecular electronics. Polym. Int. 2019;68:607–619. doi: 10.1002/pi.5756. DOI
Liang L., Lam S.H., Ma L., Lu W., Wang S.B., Chen A., Wang J., Shao L., Jiang N., Jiang N. (Gold nanorod core)/(poly (3, 4-ethylene-dioxythiophene) shell) nanostructures and their monolayer arrays for plasmonic switching. Nanoscale. 2020;12:20684–20692. doi: 10.1039/D0NR05502F. PubMed DOI
Stockhausen V., Martin P., Ghilane J., Leroux Y., Randriamahazaka H., Grand J., Felidj N., Lacroix J.C. Giant Plasmon Resonance Shift Using Poly(3,4- ethylenedioxythiophene) Electrochemical Switching. J. Am. Chem. Soc. 2010;132:10224–10226. doi: 10.1021/ja103337d. PubMed DOI
Ding T., Rüttiger C., Zheng X., Benz F., Ohadi H., Vandenbosch G.A., Moshchalkov V., Gallei M., Baumberg J.J. Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films. Adv. Opt. Mater. 2016;4:877–882. doi: 10.1002/adom.201600094. DOI
Lapsley I.M., Shahravan A., Hao Q., Giardinelli J.B.K.S., Lu M., Zhao Y., Chiang I.K., Matsoukas T., Huang T.J. Shifts in Plasmon Resonance due to Charging of a Nanodisk Array in Argon Plasma. Appl. Phys. Lett. 2012;100:101903. doi: 10.1063/1.3673327. PubMed DOI PMC
Wang Y., Liu L., Wang Q., Han W., Lu M., Dong L. Strain-Tunable Plasmonic Crystal Using Elevated Nanodisks with Polarization-Dependent Characteristics. Appl. Phys. Lett. 2016;108:071110. doi: 10.1063/1.4942454. DOI
Güell-Grau P., Pi F., Villa R., Eskilson O., Aili D., Nogués J., Sepulveda B., Alvarez M. Elastic Plasmonic-Enhanced Fabry–Pérot Cavities with Ultrasensitive Stretching Tunability. Adv. Mater. 2022;37:2106731. doi: 10.1002/adma.202106731. PubMed DOI
Song M., Wang D., Peana S., Choudhury S., Nyga P., Kudyshev Z.A., Yu H., Boltasseva A., Shalaev C.M., Kildishev A.V. Colors with plasmonic nanostructures: A full-spectrum review. Appl. Phys. Rev. 2019;6:041308. doi: 10.1063/1.5110051. DOI
Steiner A.M., Mayer M., Seuss M., Nikolov S., Harris K.D., Alexeev A., Kuttner C., Konig T.A.F., Fery A. Macroscopic Strain-Induced Transition from Quasi-Infinite Gold Nanoparticle Chains to Defined Plasmonic Oligomers. ACS Nano. 2017;11:8871–8880. doi: 10.1021/acsnano.7b03087. PubMed DOI
Böhm M., Uhlig T., Derenko S., Eng L.M. Mechanical Tuning of Plasmon Resonances in Elastic, Two-Dimensional Gold-Nanorod Arrays. Opt. Mater. Express. 2017;7:1882–1897. doi: 10.1364/OME.7.001882. DOI
Gaiser P., Binz J., Gompf B., Berrier A., Dressel M. Tuning the Dielectric Properties of Metallic-Nanoparticle/Elastomer Composites by Strain. Nanoscale. 2015;7:4566–4571. doi: 10.1039/C4NR06690A. PubMed DOI
Krajcar R., Siegel J., Slepička P., Fitl P., Švorčík V. Silver nanowires prepared on PET structured by laser irradiation. Mater. Lett. 2014;117:184–187. doi: 10.1016/j.matlet.2013.11.112. DOI
Slepicka P., Siegel J., Lyutakov O., Kasalkova N.S., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Semerádtová A., Štofík M., Neděla O., Staněk O., Slepička P., Kolská Z., Malý J. A simple approach for fabrication of optical affinity-based bioanalytical microsystem on polymeric PEN foils. Colloids Surf. B. 2018;165:28–36. doi: 10.1016/j.colsurfb.2018.01.048. PubMed DOI
Tavkhelidze A., Jangidze L., Taliashvili Z., Gorji N.E. G-Doping-Based Metal-Semiconductor Junction. Coatings. 2021;11:945. doi: 10.3390/coatings11080945. DOI
Hsiao H.H., Chu C.H., Tsai D.P. Fundamentals and applications of metasurfaces. Small Methods. 2017;1:1600064. doi: 10.1002/smtd.201600064. DOI
Zhu X., Shi L., Liu X., Zi J., Wang Z.A. Mechanically Tunable Plasmonic Structure Composed of a Monolayer Array of Metal-Capped Colloidal Spheres on an Elastomeric Substrate. Nano Res. 2010;3:807–812. doi: 10.1007/s12274-010-0048-y. DOI
Liu J., He H., Xiao D., Yin S., Ji W., Jiang S., Luo D., Wang B., Liu Y. Recent advances of plasmonic nanoparticles and their applications. Materials. 2018;11:1833. doi: 10.3390/ma11101833. PubMed DOI PMC
Maksymov I.S., Greentree A.D. Acoustically Tunable Optical Transmission through a Subwavelength Hole with a Bubble. Phys. Rev. A. 2017;95:033811. doi: 10.1103/PhysRevA.95.033811. DOI
Nishiyama H., Saito Y. Electrostatically Tunable Plasmonic Devices Fabricated on Multi-Photon Polymerized Three-Dimensional Microsprings. Opt. Express. 2016;24:637–644. doi: 10.1364/OE.24.000637. PubMed DOI
Svanda J., Kalachyova Y., Slepicka P., Svorcik V., Lyutakov O. Smart Component for Switching of Plasmon Resonance by External Electric Field. Appl. Mater. Interfaces. 2016;8:225–231. doi: 10.1021/acsami.5b08334. PubMed DOI
Guselnikova O., Svanda J., Postnikov P., Kalachyova Y., Svorcik V., Lyutakov O. Fast and Reproducible Wettability Switching on Functionalized PVDF/PMMA Surface Controlled by External Electric Field. Adv. Mater. Interfaces. 2017;4:1600886. doi: 10.1002/admi.201600886. DOI
Guselnikova O., Postnikov P., Chehimi M.M., Kalachyova Y., Svorcik V., Lyutakov O. Surface Plasmon-Polariton: A Novel Way To Initiate Azide-Alkyne Cycloaddition. Langmuir. 2019;35:2023–2032. doi: 10.1021/acs.langmuir.8b03041. PubMed DOI