Amplified Drought Alters Leaf Litter Metabolome, Slows Down Litter Decomposition, and Modifies Home Field (Dis)Advantage in Three Mediterranean Forests
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
ANR-12-BSV7-0016-01
Agence Nationale de la Recherche
LTC 20063
Ministry of Education, Youth and Sports of the Czech Republic Fund-Project
PubMed
36235447
PubMed Central
PMC9571106
DOI
10.3390/plants11192582
PII: plants11192582
Knihovny.cz E-resources
- Keywords
- Home Field Advantage (HFA), Mediterranean forest, experimental drought, litter quality, metabolomics,
- Publication type
- Journal Article MeSH
In Mediterranean ecosystems, the projected rainfall reduction of up to 30% may alter plant-soil interactions, particularly litter decomposition and Home Field Advantage (HFA). We set up a litter transplant experiment in the three main forests encountered in the northern part of the Medi-terranean Basin (dominated by either Quercus ilex, Quercus pubescens, or Pinus halepensis) equipped with a rain exclusion device, allowing an increase in drought either throughout the year or concentrated in spring and summer. Senescent leaves and needles were collected under two precipitation treatments (natural and amplified drought plots) at their "home" forest and were left to decompose in the forest of origin and in other forests under both drought conditions. MS-based metabolomic analysis of litter extracts combined with multivariate data analysis enabled us to detect modifications in the composition of litter specialized metabolites, following amplified drought treatment. Amplified drought altered litter quality and metabolomes, directly slowed down litter decomposition, and induced a loss of home field (dis)advantage. No indirect effect mediated by a change in litter quality on decomposition was observed. These results may suggest major alterations of plant-soil interactions in Mediterranean forests under amplified drought conditions.
Aix Marseille University Avignon University CNRS IRD IMBE 13397 Marseille France
CNRS EPHE IRD CEFE University Paul Valéry Montpellier 34090 Montpellier France
CNRS Nice Institute of Chemistry UMR 7272 Parc Valrose University of Côte d'Azur 06108 Nice France
Crop Research Institute Drnovska 507 16106 Praha Czech Republic
INRAE Ecologie des Forêts Méditerranéennes Domaine Saint Paul Site Agroparc 84914 Avignon France
See more in PubMed
Gessner M.O., Swan C.M., Dang C.K., McKie B.G., Bardgett R.D., Wall D.H., Hättenschwiler S. Diversity meets decomposition. Trends Ecol. Evol. 2010;25:372–380. doi: 10.1016/j.tree.2010.01.010. PubMed DOI
Cebrian J. Patterns in the fate of production in plant communities. Am. Nat. 1999;154:449–468. doi: 10.1086/303244. PubMed DOI
Wall D.H., Behan-Pelletier V., Ritz K., Herrick J.E., Jones T.H., Six J., Strong D.R., van der Putten W.H. Soil Ecology and Ecosystem Services. Oxford University Press; Oxford, UK: 2012. p. 424.
García-Palacios P., Maestre F.T., Kattge J., Wall D.H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 2013;16:1045–1053. doi: 10.1111/ele.12137. PubMed DOI PMC
Hättenschwiler S., Tiunov A.V., Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 2005;36:191–218. doi: 10.1146/annurev.ecolsys.36.112904.151932. DOI
Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos. 1997;79:439. doi: 10.2307/3546886. DOI
(Ciska) Veen G.F., Sundqvist M.K., Wardle D.A. Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Funct. Ecol. 2015;29:981–991. doi: 10.1111/1365-2435.12421. DOI
Vivanco L., Austin A.T. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J. Ecol. 2008;96:727–736. doi: 10.1111/j.1365-2745.2008.01393.x. DOI
Austin A.T., Vivanco L., González-Arzac A., Pérez L.I. There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol. 2014;204:307–314. doi: 10.1111/nph.12959. PubMed DOI
Gholz H.L., Wedin D.A., Smitherman S.M., Harmon M.E., Parton W.J. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Glob. Chang. Biol. 2001;6:751–765. doi: 10.1046/j.1365-2486.2000.00349.x. DOI
Freschet G.T., Aerts R., Cornelissen J.H.C. Multiple mechanisms for trait effects on litter decomposition: Moving beyond home-field advantage with a new hypothesis: Substrate-matrix quality interactions in decay. J. Ecol. 2012;100:619–630. doi: 10.1111/j.1365-2745.2011.01943.x. DOI
Wardle D.A., Bonner K.I., Barker G.M. Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct. Ecol. 2002;16:585–595. doi: 10.1046/j.1365-2435.2002.00659.x. DOI
Ayres E., Steltzer H., Simmons B.L., Simpson R.T., Steinweg J.M., Wallenstein M.D., Mellor N., Parton W.J., Moore J.C., Wall D.H. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol. Biochem. 2009;41:606–610. doi: 10.1016/j.soilbio.2008.12.022. DOI
Wang Q., Zhong M., He T. Home-field advantage of litter decomposition and nitrogen release in forest ecosystems. Biol. Fertil. Soils. 2012;49:427–434. doi: 10.1007/s00374-012-0741-y. DOI
St. John M.G., Orwin K.H., Dickie I.A. No ‘home’ versus ‘away’ effects of decomposition found in a grassland–forest reciprocal litter transplant study. Soil Biol. Biochem. 2011;43:1482–1489. doi: 10.1016/j.soilbio.2011.03.022. DOI
Veen G.F.C., Freschet G.T., Ordonez A., Wardle D.A. Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos. 2015;124:187–195. doi: 10.1111/oik.01374. DOI
Liski J., Nissinen A., Erhard M., Taskinen O. Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Glob. Chang. Biol. 2003;9:575–584. doi: 10.1046/j.1365-2486.2003.00605.x. DOI
Giorgi F., Lionello P. Climate change projections for the mediterranean region. Glob. Planet. Chang. 2008;63:90–104. doi: 10.1016/j.gloplacha.2007.09.005. DOI
Aupic-Samain A., Santonja M., Chomel M., Pereira S., Quer E., Lecareux C., Limousin J.-M., Ourcival J.-M., Simioni G., Gauquelin T., et al. Soil biota response to experimental rainfall reduction depends on the dominant tree species in mature northern mediterranean forests. Soil Biol. Biochem. 2021;154:108122. doi: 10.1016/j.soilbio.2020.108122. DOI
Manzoni S., Schimel J.P., Porporato A. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology. 2012;93:930–938. doi: 10.1890/11-0026.1. PubMed DOI
Santonja M., Rancon A., Fromin N., Baldy V., Hättenschwiler S., Fernandez C., Montès N., Mirleau P. Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a mediterranean shrubland. Soil Biol. Biochem. 2017;111:124–134. doi: 10.1016/j.soilbio.2017.04.006. DOI
Criquet S., Tagger S., Vogt G., Le Petit J. Endoglucanase and β-Glycosidase activities in an evergreen oak litter: Annual variation and regulating factors. Soil Biol. Biochem. 2002;34:1111–1120. doi: 10.1016/S0038-0717(02)00045-7. DOI
Reichstein M., Tenhunen J.D., Roupsard O., Ourcival J.-M., Rambal S., Dore S., Valentini R. Ecosystem respiration in two mediterranean evergreen holm oak forests: Drought effects and decomposition dynamics. Funct. Ecol. 2002;16:27–39. doi: 10.1046/j.0269-8463.2001.00597.x. DOI
Rodriguez-Ramirez N., Santonja M., Baldy V., Ballini C., Montès N. Shrub species richness decreases negative impacts of drought in a mediterranean ecosystem. J. Veg. Sci. 2017;28:985–996. doi: 10.1111/jvs.12558. DOI
Chapman S.K., Koch G.W. What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil. 2007;299:153–162. doi: 10.1007/s11104-007-9372-8. DOI
Heimann M., Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008;451:289–292. doi: 10.1038/nature06591. PubMed DOI
Sardans J., Peñuelas J. Drought changes the dynamics of trace element accumulation in a mediterranean Quercus ilex forest. Environ. Pollut. 2007;147:567–583. doi: 10.1016/j.envpol.2006.10.008. PubMed DOI
Wright I.J., Reich P.B., Cornelissen J.H.C., Falster D.S., Groom P.K., Hikosaka K., Lee W., Lusk C.H., Niinemets Ü., Oleksyn J., et al. Modulation of leaf economic traits and trait relationships by climate: Modulation of leaf traits by climate. Glob. Ecol. Biogeogr. 2005;14:411–421. doi: 10.1111/j.1466-822x.2005.00172.x. DOI
Saunier A., Greff S., Blande J.D., Lecareux C., Baldy V., Fernandez C., Ormeño E. Amplified drought and seasonal cycle modulate Quercus pubescens leaf metabolome. Metabolites. 2022;12:307. doi: 10.3390/metabo12040307. PubMed DOI PMC
Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Rivas-Ubach A., Oravec M., Vecerova K., Urban O., Jentsch A., Kreyling J., Beierkuhnlein C., et al. Opposite metabolic responses of shoots and roots to drought. Sci. Rep. 2015;4:6829. doi: 10.1038/srep06829. PubMed DOI PMC
Gargallo-Garriga A., Preece C., Sardans J., Oravec M., Urban O., Peñuelas J. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 2018;8:12696. doi: 10.1038/s41598-018-30150-0. PubMed DOI PMC
Holopainen J.K., Virjamo V., Ghimire R.P., Blande J.D., Julkunen-Tiitto R., Kivimäenpää M. Climate change effects on secondary compounds of forest trees in the northern hemisphere. Front. Plant Sci. 2018;9:1445. doi: 10.3389/fpls.2018.01445. PubMed DOI PMC
Saunier A., Ormeño E., Havaux M., Wortham H., Ksas B., Temime-Roussel B., Blande J.D., Lecareux C., Mévy J.-P., Bousquet-Mélou A., et al. Resistance of native oak to recurrent drought conditions simulating predicted climatic changes in the mediterranean region: Oak forest under several years of drought. Plant Cell Environ. 2018;41:2299–2312. doi: 10.1111/pce.13331. PubMed DOI
Ormeño E., Viros J., Mévy J.-P., Tonetto A., Saunier A., Bousquet-Mélou A., Fernandez C. Exogenous isoprene confers physiological benefits in a negligible isoprene emitter (Acer monspessulanum L.) under water deficit. Plants. 2020;9:159. doi: 10.3390/plants9020159. PubMed DOI PMC
Asplund J., Kauserud H., Bokhorst S., Lie M.H., Ohlson M., Nybakken L. Fungal communities influence decomposition rates of plant litter from two dominant tree species. Fungal Ecol. 2018;32:1–8. doi: 10.1016/j.funeco.2017.11.003. DOI
Chomel M., Fernandez C., Bousquet-Mélou A., Gers C., Monnier Y., Santonja M., Gauquelin T., Gros R., Lecareux C., Baldy V. Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. J. Ecol. 2014;102:411–424. doi: 10.1111/1365-2745.12205. DOI
Fernandez C., Santonja M., Gros R., Monnier Y., Chomel M., Baldy V., Bousquet-Mélou A. Allelochemicals of Pinus halepensis as drivers of biodiversity in mediterranean open mosaic habitats during the colonization stage of secondary succession. J. Chem. Ecol. 2013;39:298–311. doi: 10.1007/s10886-013-0239-6. PubMed DOI
Kainulainen P., Holopainen J.K. Concentrations of secondary compounds in scots pine needles at different stages of decomposition. Soil Biol. Biochem. 2002;34:37–42. doi: 10.1016/S0038-0717(01)00147-X. DOI
Kazakou E., Violle C., Roumet C., Pintor C., Gimenez O., Garnier E. Litter quality and decomposability of species from a mediterranean succession depend on leaf traits but not on nitrogen supply. Ann. Bot. 2009;104:1151–1161. doi: 10.1093/aob/mcp202. PubMed DOI PMC
Santonja M., Fernandez C., Gauquelin T., Baldy V. Climate change effects on litter decomposition: Intensive drought leads to a strong decrease of litter mixture interactions. Plant Soil. 2015;393:69–82. doi: 10.1007/s11104-015-2471-z. DOI
Barba J., Lloret F., Yuste J.C. Effects of drought-induced forest die-off on litter decomposition. Plant Soil. 2016;402:91–101. doi: 10.1007/s11104-015-2762-4. DOI
de Dios R.S., Benito-Garzón M., Sainz-Ollero H. Present and future extension of the iberian submediterranean territories as determined from the distribution of marcescent oaks. Plant Ecol. 2009;204:189–205. doi: 10.1007/s11258-009-9584-5. DOI
De Rigo D., Caudullo G. Quercus ilex in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., De Rigo D., Caudullo G., Houston Durrant T., Mauri A., editors. European Atlas of Forest Tree Species. 1st ed. European Commission; Luxembourg: 2016. pp. 152–153. DOI
Şöhretoğlu D., Renda G. The polyphenolic profile of oak (Quercus) species: A phytochemical and pharmacological overview. Phytochem. Rev. 2020;19:1379–1426. doi: 10.1007/s11101-020-09707-3. DOI
Michel T., Khlif I., Kanakis P., Termentzi A., Allouche N., Halabalaki M., Skaltsounis A.-L. UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of koroneiki and chetoui varieties. Phytochem. Lett. 2015;11:424–439. doi: 10.1016/j.phytol.2014.12.020. DOI
Burlacu E., Nisca A., Tanase C. A comprehensive review of phytochemistry and biological activities of Quercus species. Forests. 2020;11:904. doi: 10.3390/f11090904. DOI
Bursal E., Boğa R. Polyphenols analysed by UHPLC-ESI-MS/MS and antioxidant activities of molasses, acorn and leaves of oak (Quercus robur Subsp. pedunculiflora) Prog. Nutr. 2018;20:167–175. doi: 10.23751/pn.v20i1-S.5311. DOI
Rivas-Ubach A., Gargallo-Garriga A., Sardans J., Oravec M., Mateu-Castell L., Pérez-Trujillo M., Parella T., Ogaya R., Urban O., Peñuelas J. Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytol. 2014;202:874–885. doi: 10.1111/nph.12687. PubMed DOI
Huang J., Wang Y., Li C., Wang X., He X. Anti-inflammatory oleanolic triterpenes from chinese acorns. Molecules. 2016;21:669. doi: 10.3390/molecules21050669. PubMed DOI PMC
Gammacurta M., Waffo-Teguo P., Winstel D., Cretin B.N., Sindt L., Dubourdieu D., Marchal A. Triterpenoids from Quercus petraea: Identification in wines and spirits and sensory assessment. J. Nat. Prod. 2019;82:265–275. doi: 10.1021/acs.jnatprod.8b00682. PubMed DOI
Mai Y., Wang Z., Wang Y., Xu J., He X. Anti-neuroinflammatory triterpenoids from the seeds of Quercus serrata Thunb. Fitoterapia. 2020;142:104523. doi: 10.1016/j.fitote.2020.104523. PubMed DOI
Bowers J.J., Gunawardena H.P., Cornu A., Narvekar A.S., Richieu A., Deffieux D., Quideau S., Tharayil N. Rapid screening of ellagitannins in natural sources via targeted reporter ion triggered tandem mass spectrometry. Sci. Rep. 2018;8:10399. doi: 10.1038/s41598-018-27708-3. PubMed DOI PMC
Frost S., Lerno L., Zweigenbaum J., Heymann H., Ebeler S. Characterization of red wine proanthocyanidins using a putative proanthocyanidin database, amide hydrophilic interaction liquid chromatography (HILIC), and time-of-flight mass spectrometry. Molecules. 2018;23:2687. doi: 10.3390/molecules23102687. PubMed DOI PMC
Yuzuak S., Ballington J., Xie D.-Y. HPLC-QTOF-MS/MS-based profiling of flavan-3-ols and dimeric proanthocyanidins in berries of two muscadine grape hybrids FLH 13-11 and FLH 17-66. Metabolites. 2018;8:57. doi: 10.3390/metabo8040057. PubMed DOI PMC
Fioretto A., Papa S., Pellegrino A., Fuggi A. Decomposition dynamics of Myrtus communis and Quercus ilex leaf litter: Mass loss, microbial activity and quality change. Appl. Soil Ecol. 2007;36:32–40. doi: 10.1016/j.apsoil.2006.11.006. DOI
Tu L., Hu H., Chen G., Peng Y., Xiao Y., Hu T., Zhang J., Li X., Liu L., Tang Y. Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition. PLoS ONE. 2014;9:e88752. doi: 10.1371/journal.pone.0088752. PubMed DOI PMC
Sardans J., Peñuelas J., Prieto P., Estiarte M. Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a mediterranean shrubland. Plant Soil. 2008;306:261–271. doi: 10.1007/s11104-008-9583-7. DOI
Uscola M., Villar-Salvador P., Oliet J., Warren C.R. Foliar absorption and root translocation of nitrogen from different chemical forms in seedlings of two mediterranean trees. Environ. Exp. Bot. 2014;104:34–43. doi: 10.1016/j.envexpbot.2014.03.004. DOI
Sardans J., Peñuelas J. Drought decreases soil enzyme activity in a mediterranean Quercus ilex L. forest. Soil Biol. Biochem. 2005;37:455–461. doi: 10.1016/j.soilbio.2004.08.004. DOI
Ottow E.A., Brinker M., Teichmann T., Fritz E., Kaiser W., Brosché M., Kangasjärvi J., Jiang X., Polle A. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol. 2005;139:1762–1772. doi: 10.1104/pp.105.069971. PubMed DOI PMC
Herms D.A., Mattson W.J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 1992;67:283–335. doi: 10.1086/417659. DOI
Laoué J., Fernandez C., Ormeño E. Plant flavonoids in mediterranean species: A focus on flavonols as protective metabolites under climate stress. Plants. 2022;11:172. doi: 10.3390/plants11020172. PubMed DOI PMC
Cárdenas P.D., Almeida A., Bak S. Evolution of structural diversity of triterpenoids. Front. Plant Sci. 2019;10:1523. doi: 10.3389/fpls.2019.01523. PubMed DOI PMC
Wang C.-M., Chen H.-T., Li T.-C., Weng J.-H., Jhan Y.-L., Lin S.-X., Chou C.-H. The role of pentacyclic triterpenoids in the allelopathic effects of Alstonia scholaris. J. Chem. Ecol. 2014;40:90–98. doi: 10.1007/s10886-013-0376-y. PubMed DOI
Moreno M., Simioni G., Cailleret M., Ruffault J., Badel E., Carrière S., Davi H., Gavinet J., Huc R., Limousin J.-M., et al. Consistently Lower Sap Velocity and Growth over Nine Years of Rainfall Exclusion in a Mediterranean Mixed Pine-Oak Forest. Agric. For. Meteorol. 2021;108472:308–309. doi: 10.1016/j.agrformet.2021.108472. DOI
Hoffmann W.A., Franco A.C., Moreira M.Z., Haridasan M. Specific Leaf Area explains differences in leaf traits between congeneric savanna and forest trees. Funct. Ecol. 2005;19:932–940. doi: 10.1111/j.1365-2435.2005.01045.x. DOI
McDonald P.G., Fonseca C.R., Overton J.M., Westoby M. Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Funct. Ecol. 2003;17:50–57. doi: 10.1046/j.1365-2435.2003.00698.x. DOI
Fernandez C., Monnier Y., Santonja M., Gallet C., Weston L.A., Prévosto B., Saunier A., Baldy V., Bousquet-Mélou A. The impact of competition and allelopathy on the trade-off between plant defense and growth in two contrasting tree species. Front. Plant. Sci. 2016;27:357–365. doi: 10.3389/fpls.2016.00594. PubMed DOI PMC
Gobat J.-M., Aragno M., Matthey W. Le sol Vivant: Bases de Pédologie, Biologie des Sols. 3rd ed. Presses polytechniques et Universitaires Romandes; Lausanne, Switzerland: 2013. p. 848.
Santonja M., Pereira S., Gauquelin T., Quer E., Simioni G., Limousin J.-M., Ourcival J.-M., Reiter I.M., Fernandez C., Baldy V. Experimental precipitation reduction slows down litter decomposition but exhibits weak to no effect on soil organic carbon and nitrogen stocks in three mediterranean forests of southern france. Forests. 2022;13:1485. doi: 10.3390/f13091485. DOI
Cotrufo M.F., Raschi A., Lanini M., Ineson P. Decomposition and nutrient dynamics of Quercus pubescens leaf litter in a naturally enriched CO2 mediterranean ecosystem. Funct. Ecol. 1999;13:343–351. doi: 10.1046/j.1365-2435.1999.00328.x. DOI
Garcia-Pausas J., Casals P., Romanyà J. Litter decomposition and faunal activity in mediterranean forest soils: Effects of N content and the moss layer. Soil Biol. Biochem. 2004;36:989–997. doi: 10.1016/j.soilbio.2004.02.016. DOI
Kaushal R., Verma K.S., Chaturvedi O.P., Alam N.M. Leaf litter decomposition and nutrient dynamics in four multipurpose tree species. Range Manag. Agrofor. 2012;33:20–27.
Pereira S., Burešová A., Kopecky J., Mádrová P., Aupic-Samain A., Fernandez C., Baldy V., Sagova-Mareckova M. Litter traits and rainfall reduction alter microbial litter decomposers: The evidence from three mediterranean forests. FEMS Microbiol. Ecol. 2019;95:fiz168. doi: 10.1093/femsec/fiz168. PubMed DOI
Aponte C., García L.V., Marañón T. Tree species effect on litter decomposition and nutrient release in mediterranean oak forests changes over time. Ecosystems. 2012;15:1204–1218. doi: 10.1007/s10021-012-9577-4. DOI
Santonja M., Rodríguez-Pérez H., Le Bris N., Piscart C. Leaf nutrients and macroinvertebrates control litter mixing effects on decomposition in temperate streams. Ecosystems. 2020;23:400–416. doi: 10.1007/s10021-019-00410-9. DOI
Makkonen M., Berg M.P., van Logtestijn R.S.P., van Hal J.R., Aerts R. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos. 2013;122:987–997. doi: 10.1111/j.1600-0706.2012.20750.x. DOI
Almagro M., Maestre F.T., Martínez-López J., Valencia E., Rey A. Climate change may reduce litter decomposition while enhancing the contribution of photodegradation in dry perennial mediterranean grasslands. Soil Biol. Biochem. 2015;90:214–223. doi: 10.1016/j.soilbio.2015.08.006. DOI
Thakur M.P., Reich P.B., Hobbie S.E., Stefanski A., Rich R., Rice K.E., Eddy W.C., Eisenhauer N. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Chang. 2018;8:75–78. doi: 10.1038/s41558-017-0032-6. PubMed DOI PMC
Larcher W. Temperature stress and survival ability of mediterranean sclerophyllous plants. Plant Biosyst. 2000;134:279–295. doi: 10.1080/11263500012331350455. DOI
Yuste J.C., Peñuelas J., Estiarte M., Garcia-Mas J., Mattana S., Ogaya R., Pujol M., Sardans J. Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob. Chang. Biol. 2011;17:1475–1486. doi: 10.1111/j.1365-2486.2010.02300.x. DOI
Zheng Z., Mamuti M., Liu H., Shu Y., Hu S., Wang X., Li B., Lin L., Li X. Effects of nutrient additions on litter decomposition regulated by phosphorus-induced changes in litter chemistry in a subtropical forest, China. For. Ecol. Manag. 2017;400:123–128. doi: 10.1016/j.foreco.2017.06.002. DOI
Strickland M.S., Osburn E., Lauber C., Fierer N., Bradford M.A. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Funct. Ecol. 2009;23:627–636. doi: 10.1111/j.1365-2435.2008.01515.x. DOI
Foudyl-Bey S., Brais S., Drouin P. Litter heterogeneity modulates fungal activity, C mineralization and N retention in the Boreal forest floor. Soil Biol. Biochem. 2016;100:264–275. doi: 10.1016/j.soilbio.2016.06.017. DOI
Isidorov V., Tyszkiewicz Z., Pirożnikow E. Fungal succession in relation to volatile organic compounds emissions from scots pine and Norway spruce leaf litter-decomposing fungi. Atmos. Environ. 2016;131:301–306. doi: 10.1016/j.atmosenv.2016.02.015. DOI
Caldwell B.A. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia. 2005;49:637–644. doi: 10.1016/j.pedobi.2005.06.003. DOI
Coûteaux M.-M., Bottner P., Berg B. Litter decomposition, climate and liter quality. Trends Eco. Evol. 1995;10:63–66. doi: 10.1016/S0169-5347(00)88978-8. PubMed DOI
Voříšková J., Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 2013;7:477–486. doi: 10.1038/ismej.2012.116. PubMed DOI PMC
Gartner T.B., Cardon Z.G. Decomposition dynamics in mixed-species leaf litter. Oikos. 2004;104:230–246. doi: 10.1111/j.0030-1299.2004.12738.x. DOI
Allison S.D., Lu Y., Weihe C., Goulden M.L., Martiny A.C., Treseder K.K., Martiny J.B.H. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology. 2013;94:714–725. doi: 10.1890/12-1243.1. PubMed DOI
IPCC . Climate Change 2014: Synthesis report. In: Core Writing TeamPachauri R.K., Meyer L.A., editors. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC; Geneva, Switzerland: 2014. p. 151.
Swift M.J., Heal O.W., Anderson J.M. Decomposition in Terrestrial Ecosystems. Volume 5. University of California Press; Berkeley, CA, USA: 1979. p. 372.
Van Soest P.J., Wine R.H. Determination of lignin and cellulose in acid-detergent fiber with permanganate. J. Assoc. Off. Anal. Chem. 1968;51:780–785. doi: 10.1093/jaoac/51.4.780. DOI
Allen S.E., Grimshaw H.M., Parkinson J.A., Quarmby C. Chemical Analysis of Ecological Materials. Blackwell Scientific Publications; Oxford, UK: 1989. p. 521.
Peñuelas J., Estiarte M., Kimball B.A., Idso S.B., Pinter P.J., Wall G.M., Garcia R.L., Hansaker D.J., LaMorte R.L., Hensrik D.L. Variety of responses of plant phenolic concentration to CO2 enrichment. J. Exp. Bot. 1996;47:1463–1467. doi: 10.1093/jxb/47.9.1463. DOI
Folin O., Denis W. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J. Biol. Chem. 1915;22:305–308. doi: 10.1016/S0021-9258(18)87648-7. DOI
Smith C.A., Want E.J., O’Maille G., Abagyan R., Siuzdak G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006;78:779–787. doi: 10.1021/ac051437y. PubMed DOI
R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL. 2019. [(accessed on 8 August 2022)]. Available online: http://www.R-project.org/
Patti G.J., Yanes O., Siuzdak G. Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012;13:263–269. doi: 10.1038/nrm3314. PubMed DOI PMC
Brakni R., Ali Ahmed M., Burger P., Schwing A., Michel G., Pomares C., Hasseine L., Boyer L., Fernandez X., Landreau A., et al. UHPLC-HRMS/MS based profiling of algerian lichens and their antimicrobial activities. Chem. Biodivers. 2018;15:e1800031. doi: 10.1002/cbdv.201800031. PubMed DOI
Wolfender J.-L., Marti G., Thomas A., Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A. 2015;1382:136–164. doi: 10.1016/j.chroma.2014.10.091. PubMed DOI
Dixon P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003;14:927–930. doi: 10.1111/j.1654-1103.2003.tb02228.x. DOI
Kassambara A., Mundt F., Package ’factoextra’ The Comprehensive R Archive Network (CRAN) 2017. [(accessed on 8 August 2022)]. Available online: https://cran.r-project.org/web/packages/factoextra/index.html.
Venables W.N., Ripley B.D. Modern Applied Statistics with S-PLUS. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013. p. 504.