• This record comes from PubMed

Amplified Drought Alters Leaf Litter Metabolome, Slows Down Litter Decomposition, and Modifies Home Field (Dis)Advantage in Three Mediterranean Forests

. 2022 Sep 30 ; 11 (19) : . [epub] 20220930

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
ANR-12-BSV7-0016-01 Agence Nationale de la Recherche
LTC 20063 Ministry of Education, Youth and Sports of the Czech Republic Fund-Project

In Mediterranean ecosystems, the projected rainfall reduction of up to 30% may alter plant-soil interactions, particularly litter decomposition and Home Field Advantage (HFA). We set up a litter transplant experiment in the three main forests encountered in the northern part of the Medi-terranean Basin (dominated by either Quercus ilex, Quercus pubescens, or Pinus halepensis) equipped with a rain exclusion device, allowing an increase in drought either throughout the year or concentrated in spring and summer. Senescent leaves and needles were collected under two precipitation treatments (natural and amplified drought plots) at their "home" forest and were left to decompose in the forest of origin and in other forests under both drought conditions. MS-based metabolomic analysis of litter extracts combined with multivariate data analysis enabled us to detect modifications in the composition of litter specialized metabolites, following amplified drought treatment. Amplified drought altered litter quality and metabolomes, directly slowed down litter decomposition, and induced a loss of home field (dis)advantage. No indirect effect mediated by a change in litter quality on decomposition was observed. These results may suggest major alterations of plant-soil interactions in Mediterranean forests under amplified drought conditions.

See more in PubMed

Gessner M.O., Swan C.M., Dang C.K., McKie B.G., Bardgett R.D., Wall D.H., Hättenschwiler S. Diversity meets decomposition. Trends Ecol. Evol. 2010;25:372–380. doi: 10.1016/j.tree.2010.01.010. PubMed DOI

Cebrian J. Patterns in the fate of production in plant communities. Am. Nat. 1999;154:449–468. doi: 10.1086/303244. PubMed DOI

Wall D.H., Behan-Pelletier V., Ritz K., Herrick J.E., Jones T.H., Six J., Strong D.R., van der Putten W.H. Soil Ecology and Ecosystem Services. Oxford University Press; Oxford, UK: 2012. p. 424.

García-Palacios P., Maestre F.T., Kattge J., Wall D.H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 2013;16:1045–1053. doi: 10.1111/ele.12137. PubMed DOI PMC

Hättenschwiler S., Tiunov A.V., Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 2005;36:191–218. doi: 10.1146/annurev.ecolsys.36.112904.151932. DOI

Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos. 1997;79:439. doi: 10.2307/3546886. DOI

(Ciska) Veen G.F., Sundqvist M.K., Wardle D.A. Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Funct. Ecol. 2015;29:981–991. doi: 10.1111/1365-2435.12421. DOI

Vivanco L., Austin A.T. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J. Ecol. 2008;96:727–736. doi: 10.1111/j.1365-2745.2008.01393.x. DOI

Austin A.T., Vivanco L., González-Arzac A., Pérez L.I. There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol. 2014;204:307–314. doi: 10.1111/nph.12959. PubMed DOI

Gholz H.L., Wedin D.A., Smitherman S.M., Harmon M.E., Parton W.J. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Glob. Chang. Biol. 2001;6:751–765. doi: 10.1046/j.1365-2486.2000.00349.x. DOI

Freschet G.T., Aerts R., Cornelissen J.H.C. Multiple mechanisms for trait effects on litter decomposition: Moving beyond home-field advantage with a new hypothesis: Substrate-matrix quality interactions in decay. J. Ecol. 2012;100:619–630. doi: 10.1111/j.1365-2745.2011.01943.x. DOI

Wardle D.A., Bonner K.I., Barker G.M. Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct. Ecol. 2002;16:585–595. doi: 10.1046/j.1365-2435.2002.00659.x. DOI

Ayres E., Steltzer H., Simmons B.L., Simpson R.T., Steinweg J.M., Wallenstein M.D., Mellor N., Parton W.J., Moore J.C., Wall D.H. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol. Biochem. 2009;41:606–610. doi: 10.1016/j.soilbio.2008.12.022. DOI

Wang Q., Zhong M., He T. Home-field advantage of litter decomposition and nitrogen release in forest ecosystems. Biol. Fertil. Soils. 2012;49:427–434. doi: 10.1007/s00374-012-0741-y. DOI

St. John M.G., Orwin K.H., Dickie I.A. No ‘home’ versus ‘away’ effects of decomposition found in a grassland–forest reciprocal litter transplant study. Soil Biol. Biochem. 2011;43:1482–1489. doi: 10.1016/j.soilbio.2011.03.022. DOI

Veen G.F.C., Freschet G.T., Ordonez A., Wardle D.A. Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos. 2015;124:187–195. doi: 10.1111/oik.01374. DOI

Liski J., Nissinen A., Erhard M., Taskinen O. Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Glob. Chang. Biol. 2003;9:575–584. doi: 10.1046/j.1365-2486.2003.00605.x. DOI

Giorgi F., Lionello P. Climate change projections for the mediterranean region. Glob. Planet. Chang. 2008;63:90–104. doi: 10.1016/j.gloplacha.2007.09.005. DOI

Aupic-Samain A., Santonja M., Chomel M., Pereira S., Quer E., Lecareux C., Limousin J.-M., Ourcival J.-M., Simioni G., Gauquelin T., et al. Soil biota response to experimental rainfall reduction depends on the dominant tree species in mature northern mediterranean forests. Soil Biol. Biochem. 2021;154:108122. doi: 10.1016/j.soilbio.2020.108122. DOI

Manzoni S., Schimel J.P., Porporato A. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology. 2012;93:930–938. doi: 10.1890/11-0026.1. PubMed DOI

Santonja M., Rancon A., Fromin N., Baldy V., Hättenschwiler S., Fernandez C., Montès N., Mirleau P. Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a mediterranean shrubland. Soil Biol. Biochem. 2017;111:124–134. doi: 10.1016/j.soilbio.2017.04.006. DOI

Criquet S., Tagger S., Vogt G., Le Petit J. Endoglucanase and β-Glycosidase activities in an evergreen oak litter: Annual variation and regulating factors. Soil Biol. Biochem. 2002;34:1111–1120. doi: 10.1016/S0038-0717(02)00045-7. DOI

Reichstein M., Tenhunen J.D., Roupsard O., Ourcival J.-M., Rambal S., Dore S., Valentini R. Ecosystem respiration in two mediterranean evergreen holm oak forests: Drought effects and decomposition dynamics. Funct. Ecol. 2002;16:27–39. doi: 10.1046/j.0269-8463.2001.00597.x. DOI

Rodriguez-Ramirez N., Santonja M., Baldy V., Ballini C., Montès N. Shrub species richness decreases negative impacts of drought in a mediterranean ecosystem. J. Veg. Sci. 2017;28:985–996. doi: 10.1111/jvs.12558. DOI

Chapman S.K., Koch G.W. What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil. 2007;299:153–162. doi: 10.1007/s11104-007-9372-8. DOI

Heimann M., Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008;451:289–292. doi: 10.1038/nature06591. PubMed DOI

Sardans J., Peñuelas J. Drought changes the dynamics of trace element accumulation in a mediterranean Quercus ilex forest. Environ. Pollut. 2007;147:567–583. doi: 10.1016/j.envpol.2006.10.008. PubMed DOI

Wright I.J., Reich P.B., Cornelissen J.H.C., Falster D.S., Groom P.K., Hikosaka K., Lee W., Lusk C.H., Niinemets Ü., Oleksyn J., et al. Modulation of leaf economic traits and trait relationships by climate: Modulation of leaf traits by climate. Glob. Ecol. Biogeogr. 2005;14:411–421. doi: 10.1111/j.1466-822x.2005.00172.x. DOI

Saunier A., Greff S., Blande J.D., Lecareux C., Baldy V., Fernandez C., Ormeño E. Amplified drought and seasonal cycle modulate Quercus pubescens leaf metabolome. Metabolites. 2022;12:307. doi: 10.3390/metabo12040307. PubMed DOI PMC

Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Rivas-Ubach A., Oravec M., Vecerova K., Urban O., Jentsch A., Kreyling J., Beierkuhnlein C., et al. Opposite metabolic responses of shoots and roots to drought. Sci. Rep. 2015;4:6829. doi: 10.1038/srep06829. PubMed DOI PMC

Gargallo-Garriga A., Preece C., Sardans J., Oravec M., Urban O., Peñuelas J. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 2018;8:12696. doi: 10.1038/s41598-018-30150-0. PubMed DOI PMC

Holopainen J.K., Virjamo V., Ghimire R.P., Blande J.D., Julkunen-Tiitto R., Kivimäenpää M. Climate change effects on secondary compounds of forest trees in the northern hemisphere. Front. Plant Sci. 2018;9:1445. doi: 10.3389/fpls.2018.01445. PubMed DOI PMC

Saunier A., Ormeño E., Havaux M., Wortham H., Ksas B., Temime-Roussel B., Blande J.D., Lecareux C., Mévy J.-P., Bousquet-Mélou A., et al. Resistance of native oak to recurrent drought conditions simulating predicted climatic changes in the mediterranean region: Oak forest under several years of drought. Plant Cell Environ. 2018;41:2299–2312. doi: 10.1111/pce.13331. PubMed DOI

Ormeño E., Viros J., Mévy J.-P., Tonetto A., Saunier A., Bousquet-Mélou A., Fernandez C. Exogenous isoprene confers physiological benefits in a negligible isoprene emitter (Acer monspessulanum L.) under water deficit. Plants. 2020;9:159. doi: 10.3390/plants9020159. PubMed DOI PMC

Asplund J., Kauserud H., Bokhorst S., Lie M.H., Ohlson M., Nybakken L. Fungal communities influence decomposition rates of plant litter from two dominant tree species. Fungal Ecol. 2018;32:1–8. doi: 10.1016/j.funeco.2017.11.003. DOI

Chomel M., Fernandez C., Bousquet-Mélou A., Gers C., Monnier Y., Santonja M., Gauquelin T., Gros R., Lecareux C., Baldy V. Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. J. Ecol. 2014;102:411–424. doi: 10.1111/1365-2745.12205. DOI

Fernandez C., Santonja M., Gros R., Monnier Y., Chomel M., Baldy V., Bousquet-Mélou A. Allelochemicals of Pinus halepensis as drivers of biodiversity in mediterranean open mosaic habitats during the colonization stage of secondary succession. J. Chem. Ecol. 2013;39:298–311. doi: 10.1007/s10886-013-0239-6. PubMed DOI

Kainulainen P., Holopainen J.K. Concentrations of secondary compounds in scots pine needles at different stages of decomposition. Soil Biol. Biochem. 2002;34:37–42. doi: 10.1016/S0038-0717(01)00147-X. DOI

Kazakou E., Violle C., Roumet C., Pintor C., Gimenez O., Garnier E. Litter quality and decomposability of species from a mediterranean succession depend on leaf traits but not on nitrogen supply. Ann. Bot. 2009;104:1151–1161. doi: 10.1093/aob/mcp202. PubMed DOI PMC

Santonja M., Fernandez C., Gauquelin T., Baldy V. Climate change effects on litter decomposition: Intensive drought leads to a strong decrease of litter mixture interactions. Plant Soil. 2015;393:69–82. doi: 10.1007/s11104-015-2471-z. DOI

Barba J., Lloret F., Yuste J.C. Effects of drought-induced forest die-off on litter decomposition. Plant Soil. 2016;402:91–101. doi: 10.1007/s11104-015-2762-4. DOI

de Dios R.S., Benito-Garzón M., Sainz-Ollero H. Present and future extension of the iberian submediterranean territories as determined from the distribution of marcescent oaks. Plant Ecol. 2009;204:189–205. doi: 10.1007/s11258-009-9584-5. DOI

De Rigo D., Caudullo G. Quercus ilex in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., De Rigo D., Caudullo G., Houston Durrant T., Mauri A., editors. European Atlas of Forest Tree Species. 1st ed. European Commission; Luxembourg: 2016. pp. 152–153. DOI

Şöhretoğlu D., Renda G. The polyphenolic profile of oak (Quercus) species: A phytochemical and pharmacological overview. Phytochem. Rev. 2020;19:1379–1426. doi: 10.1007/s11101-020-09707-3. DOI

Michel T., Khlif I., Kanakis P., Termentzi A., Allouche N., Halabalaki M., Skaltsounis A.-L. UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of koroneiki and chetoui varieties. Phytochem. Lett. 2015;11:424–439. doi: 10.1016/j.phytol.2014.12.020. DOI

Burlacu E., Nisca A., Tanase C. A comprehensive review of phytochemistry and biological activities of Quercus species. Forests. 2020;11:904. doi: 10.3390/f11090904. DOI

Bursal E., Boğa R. Polyphenols analysed by UHPLC-ESI-MS/MS and antioxidant activities of molasses, acorn and leaves of oak (Quercus robur Subsp. pedunculiflora) Prog. Nutr. 2018;20:167–175. doi: 10.23751/pn.v20i1-S.5311. DOI

Rivas-Ubach A., Gargallo-Garriga A., Sardans J., Oravec M., Mateu-Castell L., Pérez-Trujillo M., Parella T., Ogaya R., Urban O., Peñuelas J. Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytol. 2014;202:874–885. doi: 10.1111/nph.12687. PubMed DOI

Huang J., Wang Y., Li C., Wang X., He X. Anti-inflammatory oleanolic triterpenes from chinese acorns. Molecules. 2016;21:669. doi: 10.3390/molecules21050669. PubMed DOI PMC

Gammacurta M., Waffo-Teguo P., Winstel D., Cretin B.N., Sindt L., Dubourdieu D., Marchal A. Triterpenoids from Quercus petraea: Identification in wines and spirits and sensory assessment. J. Nat. Prod. 2019;82:265–275. doi: 10.1021/acs.jnatprod.8b00682. PubMed DOI

Mai Y., Wang Z., Wang Y., Xu J., He X. Anti-neuroinflammatory triterpenoids from the seeds of Quercus serrata Thunb. Fitoterapia. 2020;142:104523. doi: 10.1016/j.fitote.2020.104523. PubMed DOI

Bowers J.J., Gunawardena H.P., Cornu A., Narvekar A.S., Richieu A., Deffieux D., Quideau S., Tharayil N. Rapid screening of ellagitannins in natural sources via targeted reporter ion triggered tandem mass spectrometry. Sci. Rep. 2018;8:10399. doi: 10.1038/s41598-018-27708-3. PubMed DOI PMC

Frost S., Lerno L., Zweigenbaum J., Heymann H., Ebeler S. Characterization of red wine proanthocyanidins using a putative proanthocyanidin database, amide hydrophilic interaction liquid chromatography (HILIC), and time-of-flight mass spectrometry. Molecules. 2018;23:2687. doi: 10.3390/molecules23102687. PubMed DOI PMC

Yuzuak S., Ballington J., Xie D.-Y. HPLC-QTOF-MS/MS-based profiling of flavan-3-ols and dimeric proanthocyanidins in berries of two muscadine grape hybrids FLH 13-11 and FLH 17-66. Metabolites. 2018;8:57. doi: 10.3390/metabo8040057. PubMed DOI PMC

Fioretto A., Papa S., Pellegrino A., Fuggi A. Decomposition dynamics of Myrtus communis and Quercus ilex leaf litter: Mass loss, microbial activity and quality change. Appl. Soil Ecol. 2007;36:32–40. doi: 10.1016/j.apsoil.2006.11.006. DOI

Tu L., Hu H., Chen G., Peng Y., Xiao Y., Hu T., Zhang J., Li X., Liu L., Tang Y. Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition. PLoS ONE. 2014;9:e88752. doi: 10.1371/journal.pone.0088752. PubMed DOI PMC

Sardans J., Peñuelas J., Prieto P., Estiarte M. Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a mediterranean shrubland. Plant Soil. 2008;306:261–271. doi: 10.1007/s11104-008-9583-7. DOI

Uscola M., Villar-Salvador P., Oliet J., Warren C.R. Foliar absorption and root translocation of nitrogen from different chemical forms in seedlings of two mediterranean trees. Environ. Exp. Bot. 2014;104:34–43. doi: 10.1016/j.envexpbot.2014.03.004. DOI

Sardans J., Peñuelas J. Drought decreases soil enzyme activity in a mediterranean Quercus ilex L. forest. Soil Biol. Biochem. 2005;37:455–461. doi: 10.1016/j.soilbio.2004.08.004. DOI

Ottow E.A., Brinker M., Teichmann T., Fritz E., Kaiser W., Brosché M., Kangasjärvi J., Jiang X., Polle A. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol. 2005;139:1762–1772. doi: 10.1104/pp.105.069971. PubMed DOI PMC

Herms D.A., Mattson W.J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 1992;67:283–335. doi: 10.1086/417659. DOI

Laoué J., Fernandez C., Ormeño E. Plant flavonoids in mediterranean species: A focus on flavonols as protective metabolites under climate stress. Plants. 2022;11:172. doi: 10.3390/plants11020172. PubMed DOI PMC

Cárdenas P.D., Almeida A., Bak S. Evolution of structural diversity of triterpenoids. Front. Plant Sci. 2019;10:1523. doi: 10.3389/fpls.2019.01523. PubMed DOI PMC

Wang C.-M., Chen H.-T., Li T.-C., Weng J.-H., Jhan Y.-L., Lin S.-X., Chou C.-H. The role of pentacyclic triterpenoids in the allelopathic effects of Alstonia scholaris. J. Chem. Ecol. 2014;40:90–98. doi: 10.1007/s10886-013-0376-y. PubMed DOI

Moreno M., Simioni G., Cailleret M., Ruffault J., Badel E., Carrière S., Davi H., Gavinet J., Huc R., Limousin J.-M., et al. Consistently Lower Sap Velocity and Growth over Nine Years of Rainfall Exclusion in a Mediterranean Mixed Pine-Oak Forest. Agric. For. Meteorol. 2021;108472:308–309. doi: 10.1016/j.agrformet.2021.108472. DOI

Hoffmann W.A., Franco A.C., Moreira M.Z., Haridasan M. Specific Leaf Area explains differences in leaf traits between congeneric savanna and forest trees. Funct. Ecol. 2005;19:932–940. doi: 10.1111/j.1365-2435.2005.01045.x. DOI

McDonald P.G., Fonseca C.R., Overton J.M., Westoby M. Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Funct. Ecol. 2003;17:50–57. doi: 10.1046/j.1365-2435.2003.00698.x. DOI

Fernandez C., Monnier Y., Santonja M., Gallet C., Weston L.A., Prévosto B., Saunier A., Baldy V., Bousquet-Mélou A. The impact of competition and allelopathy on the trade-off between plant defense and growth in two contrasting tree species. Front. Plant. Sci. 2016;27:357–365. doi: 10.3389/fpls.2016.00594. PubMed DOI PMC

Gobat J.-M., Aragno M., Matthey W. Le sol Vivant: Bases de Pédologie, Biologie des Sols. 3rd ed. Presses polytechniques et Universitaires Romandes; Lausanne, Switzerland: 2013. p. 848.

Santonja M., Pereira S., Gauquelin T., Quer E., Simioni G., Limousin J.-M., Ourcival J.-M., Reiter I.M., Fernandez C., Baldy V. Experimental precipitation reduction slows down litter decomposition but exhibits weak to no effect on soil organic carbon and nitrogen stocks in three mediterranean forests of southern france. Forests. 2022;13:1485. doi: 10.3390/f13091485. DOI

Cotrufo M.F., Raschi A., Lanini M., Ineson P. Decomposition and nutrient dynamics of Quercus pubescens leaf litter in a naturally enriched CO2 mediterranean ecosystem. Funct. Ecol. 1999;13:343–351. doi: 10.1046/j.1365-2435.1999.00328.x. DOI

Garcia-Pausas J., Casals P., Romanyà J. Litter decomposition and faunal activity in mediterranean forest soils: Effects of N content and the moss layer. Soil Biol. Biochem. 2004;36:989–997. doi: 10.1016/j.soilbio.2004.02.016. DOI

Kaushal R., Verma K.S., Chaturvedi O.P., Alam N.M. Leaf litter decomposition and nutrient dynamics in four multipurpose tree species. Range Manag. Agrofor. 2012;33:20–27.

Pereira S., Burešová A., Kopecky J., Mádrová P., Aupic-Samain A., Fernandez C., Baldy V., Sagova-Mareckova M. Litter traits and rainfall reduction alter microbial litter decomposers: The evidence from three mediterranean forests. FEMS Microbiol. Ecol. 2019;95:fiz168. doi: 10.1093/femsec/fiz168. PubMed DOI

Aponte C., García L.V., Marañón T. Tree species effect on litter decomposition and nutrient release in mediterranean oak forests changes over time. Ecosystems. 2012;15:1204–1218. doi: 10.1007/s10021-012-9577-4. DOI

Santonja M., Rodríguez-Pérez H., Le Bris N., Piscart C. Leaf nutrients and macroinvertebrates control litter mixing effects on decomposition in temperate streams. Ecosystems. 2020;23:400–416. doi: 10.1007/s10021-019-00410-9. DOI

Makkonen M., Berg M.P., van Logtestijn R.S.P., van Hal J.R., Aerts R. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos. 2013;122:987–997. doi: 10.1111/j.1600-0706.2012.20750.x. DOI

Almagro M., Maestre F.T., Martínez-López J., Valencia E., Rey A. Climate change may reduce litter decomposition while enhancing the contribution of photodegradation in dry perennial mediterranean grasslands. Soil Biol. Biochem. 2015;90:214–223. doi: 10.1016/j.soilbio.2015.08.006. DOI

Thakur M.P., Reich P.B., Hobbie S.E., Stefanski A., Rich R., Rice K.E., Eddy W.C., Eisenhauer N. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Chang. 2018;8:75–78. doi: 10.1038/s41558-017-0032-6. PubMed DOI PMC

Larcher W. Temperature stress and survival ability of mediterranean sclerophyllous plants. Plant Biosyst. 2000;134:279–295. doi: 10.1080/11263500012331350455. DOI

Yuste J.C., Peñuelas J., Estiarte M., Garcia-Mas J., Mattana S., Ogaya R., Pujol M., Sardans J. Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob. Chang. Biol. 2011;17:1475–1486. doi: 10.1111/j.1365-2486.2010.02300.x. DOI

Zheng Z., Mamuti M., Liu H., Shu Y., Hu S., Wang X., Li B., Lin L., Li X. Effects of nutrient additions on litter decomposition regulated by phosphorus-induced changes in litter chemistry in a subtropical forest, China. For. Ecol. Manag. 2017;400:123–128. doi: 10.1016/j.foreco.2017.06.002. DOI

Strickland M.S., Osburn E., Lauber C., Fierer N., Bradford M.A. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Funct. Ecol. 2009;23:627–636. doi: 10.1111/j.1365-2435.2008.01515.x. DOI

Foudyl-Bey S., Brais S., Drouin P. Litter heterogeneity modulates fungal activity, C mineralization and N retention in the Boreal forest floor. Soil Biol. Biochem. 2016;100:264–275. doi: 10.1016/j.soilbio.2016.06.017. DOI

Isidorov V., Tyszkiewicz Z., Pirożnikow E. Fungal succession in relation to volatile organic compounds emissions from scots pine and Norway spruce leaf litter-decomposing fungi. Atmos. Environ. 2016;131:301–306. doi: 10.1016/j.atmosenv.2016.02.015. DOI

Caldwell B.A. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia. 2005;49:637–644. doi: 10.1016/j.pedobi.2005.06.003. DOI

Coûteaux M.-M., Bottner P., Berg B. Litter decomposition, climate and liter quality. Trends Eco. Evol. 1995;10:63–66. doi: 10.1016/S0169-5347(00)88978-8. PubMed DOI

Voříšková J., Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 2013;7:477–486. doi: 10.1038/ismej.2012.116. PubMed DOI PMC

Gartner T.B., Cardon Z.G. Decomposition dynamics in mixed-species leaf litter. Oikos. 2004;104:230–246. doi: 10.1111/j.0030-1299.2004.12738.x. DOI

Allison S.D., Lu Y., Weihe C., Goulden M.L., Martiny A.C., Treseder K.K., Martiny J.B.H. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology. 2013;94:714–725. doi: 10.1890/12-1243.1. PubMed DOI

IPCC . Climate Change 2014: Synthesis report. In: Core Writing TeamPachauri R.K., Meyer L.A., editors. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC; Geneva, Switzerland: 2014. p. 151.

Swift M.J., Heal O.W., Anderson J.M. Decomposition in Terrestrial Ecosystems. Volume 5. University of California Press; Berkeley, CA, USA: 1979. p. 372.

Van Soest P.J., Wine R.H. Determination of lignin and cellulose in acid-detergent fiber with permanganate. J. Assoc. Off. Anal. Chem. 1968;51:780–785. doi: 10.1093/jaoac/51.4.780. DOI

Allen S.E., Grimshaw H.M., Parkinson J.A., Quarmby C. Chemical Analysis of Ecological Materials. Blackwell Scientific Publications; Oxford, UK: 1989. p. 521.

Peñuelas J., Estiarte M., Kimball B.A., Idso S.B., Pinter P.J., Wall G.M., Garcia R.L., Hansaker D.J., LaMorte R.L., Hensrik D.L. Variety of responses of plant phenolic concentration to CO2 enrichment. J. Exp. Bot. 1996;47:1463–1467. doi: 10.1093/jxb/47.9.1463. DOI

Folin O., Denis W. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J. Biol. Chem. 1915;22:305–308. doi: 10.1016/S0021-9258(18)87648-7. DOI

Smith C.A., Want E.J., O’Maille G., Abagyan R., Siuzdak G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006;78:779–787. doi: 10.1021/ac051437y. PubMed DOI

R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL. 2019. [(accessed on 8 August 2022)]. Available online: http://www.R-project.org/

Patti G.J., Yanes O., Siuzdak G. Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012;13:263–269. doi: 10.1038/nrm3314. PubMed DOI PMC

Brakni R., Ali Ahmed M., Burger P., Schwing A., Michel G., Pomares C., Hasseine L., Boyer L., Fernandez X., Landreau A., et al. UHPLC-HRMS/MS based profiling of algerian lichens and their antimicrobial activities. Chem. Biodivers. 2018;15:e1800031. doi: 10.1002/cbdv.201800031. PubMed DOI

Wolfender J.-L., Marti G., Thomas A., Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A. 2015;1382:136–164. doi: 10.1016/j.chroma.2014.10.091. PubMed DOI

Dixon P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003;14:927–930. doi: 10.1111/j.1654-1103.2003.tb02228.x. DOI

Kassambara A., Mundt F., Package ’factoextra’ The Comprehensive R Archive Network (CRAN) 2017. [(accessed on 8 August 2022)]. Available online: https://cran.r-project.org/web/packages/factoextra/index.html.

Venables W.N., Ripley B.D. Modern Applied Statistics with S-PLUS. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013. p. 504.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...