Modeling and Simulation of Mechanical Performance in Textile Structural Concrete Composites Reinforced with Basalt Fibers

. 2022 Sep 30 ; 14 (19) : . [epub] 20220930

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36236056

Grantová podpora
2022:31140/1312/3111 Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague, Nu-merical modelling and computational analysis of lightweight composite structures in automotive components, (no. 2022:31140/1312/3111).

This investigation deals with the prediction of mechanical behavior in basalt-fiber-reinforced concrete using the finite element method (FEM). The use of fibers as reinforcement in concrete is a relatively new concept which results in several advantages over steel-reinforced concrete with respect to mechanical performance. Glass and polypropylene (PP) fibers have been extensively used for reinforcing concrete for decades, but basalt fibers have gained popularity in recent years due to their superior mechanical properties and compatibility with concrete. In this study, the mechanical properties of basalt-fiber-reinforced concrete are predicted using FEM analysis, and the model results are validated by conducting experiments. The effect of fiber-volume fraction on the selected mechanical performance of concrete is evaluated in detail. Significant improvement is observed when the loading is increased. There are superior mechanical properties, e.g., load bearing and strain energy in basalt-fiber-reinforced concrete as compared to conventional concrete slabs reinforced with gravel or stones. The results of the simulations are correlated with experimental samples and show a very high similarity. Basalt-fiber-reinforced concrete (BFRC) offers a lightweight construction material as compared to steel-fiber-reinforced concrete (SFRC). Further, the problem of corrosion is overcome by using this novel fiber material in concrete composites.

Zobrazit více v PubMed

Sun X., Gao Z., Cao P., Zhou C. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete. Constr. Build. Mater. 2019;202:58–72. doi: 10.1016/j.conbuildmat.2019.01.018. DOI

Mishra R., Tiwari R., Marsalkova M., Behera B.K. Effect of TiO2 nanoparticles on basalt/polysiloxane composites: Mechanical and thermal characterization. J. Text. Inst. 2012;103:1361–1368. doi: 10.1080/00405000.2012.685270. DOI

Jamshaid H., Mishra R., Hussain S. Basalt hybrid woven textile materials for advanced thermal applications. Ind. J. Fibre Text. Res. 2019;44:56–64.

Zhao R.Y., Wang L., Lei Z.K., Han X.F., Shi J.N. Study on bending damage and failure of basalt fiber reinforced concrete under freeze-thaw cycles. Constr. Build. Mater. 2018;163:460–470. doi: 10.1016/j.conbuildmat.2017.12.096. DOI

Mishra R., Jamshaid H. Thermo-mechanical characteristics of basalt hybrid & non-hybrid woven fabric reinforced epoxy composites. Polym. Compos. 2016;37:2982–2994. doi: 10.1002/pc.23495. DOI

Lago B.D., Taylor S.E., Deegan P., Ferrara L., Sonebi M., Crosset P., Pattarini A. Full-scale testing and numerical analysis of a precast fibre reinforced self-compacting concrete slab pre-stressed with basalt fibre reinforced polymer bars. Compos. Part B: Eng. 2017;128:120–133. doi: 10.1016/j.compositesb.2017.07.004. DOI

Jamshaid H., Mishra R. Interfacial performance and durability of textile reinforced concrete. J. Text. Inst. 2018;109:879–890. doi: 10.1080/00405000.2017.1381394. DOI

Li Y., Zhang J., He Y., Huang G., Li J., Niu Z., Gao B. A review on durability of basalt fiber reinforced concrete. Compos. Sci. Technol. 2022;225:109519. doi: 10.1016/j.compscitech.2022.109519. DOI

Haido J.H. Flexural behavior of basalt fiber reinforced concrete beams: Finite element simulation with new constitutive relationships. Structures. 2020;27:1876–1889. doi: 10.1016/j.istruc.2020.08.005. DOI

Behera B.K., Pattanayak A.K., Mishra R. Prediction of fabric drape behavior using finite element method. J. Text. Eng. 2008;54:103–110. doi: 10.4188/jte.54.103. DOI

Mishra R. Meso-scale finite element modeling of triaxial woven fabrics for composite in-plane reinforcement properties. Text. Res. J. 2013;83:1836–1845. doi: 10.1177/0040517512474369. DOI

Wang Y., Hu S., Sun X. Experimental investigation on the elastic modulus and fracture properties of basalt fiber–reinforced fly ash geopolymer concrete. Constr. Build. Mater. 2022;338:127570. doi: 10.1016/j.conbuildmat.2022.127570. DOI

Xie H., Yang L., Zhang Q., Huang C., Chen M., Zhao K. Research on energy dissipation and damage evolution of dynamic splitting failure of basalt fiber reinforced concrete. Constr. Build. Mater. 2022;330:127292. doi: 10.1016/j.conbuildmat.2022.127292. DOI

Mishra R. Impact tolerance of 3D woven nanocomposites: A simulation approach. J. Text. Inst. 2013;104:562–570. doi: 10.1080/00405000.2012.752123. DOI

An H., Song Y., Liu L., Meng X. Experimental Study of the Compressive Strengths of Basalt Fiber-Reinforced Concrete after Various High-Temperature Treatments and Cooling in Open Air and Water. Appl. Sci. 2021;11:8729. doi: 10.3390/app11188729. DOI

Deng Z., Liu X., Liang N., de la Fuente A., Peng H. Flexural Performance of a New Hybrid Basalt-Polypropylene Fiber-Reinforced Concrete Oriented to Concrete Pipelines. Fibers. 2021;9:43. doi: 10.3390/fib9070043. DOI

Mishra R., Gupta N., Pachauri R., Behera B.K. Modeling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B-Eng. 2015;81:91–97. doi: 10.1016/j.compositesb.2015.07.008. DOI

Mohammad Jani N., Shakir Nasif M., Shafiq N., Holt I. Experimental Investigation on the Effect of Varying Fiber Mix Proportion on the Mechanical and Thermal Performances of Fiber-Reinforced Self-Compacting Concrete under Hydrocarbon Fire Condition. Appl. Sci. 2020;10:4586. doi: 10.3390/app10134586. DOI

Dvorkin L., Bordiuzhenko O., Tekle B.H., Ribakov Y. A Method for the Design of Concrete with Combined Steel and Basalt Fiber. Appl. Sci. 2021;11:8850. doi: 10.3390/app11198850. DOI

Bakis C., Bank L.C., Brown V., Cosenza E., Davalos J.F., Lesko J.J., Triantafillou T.C. Fiber-reinforced polymer composites for construction-state-of-the-art review. J. Compos. Constr. 2002;6:73–87. doi: 10.1061/(ASCE)1090-0268. DOI

Jiang C., Fan K., Wu F., Chen D. Experimental study on the mechanical properties and microstructure of chopped basalt fiber reinforced concrete. Mater. Des. 2014;58:187–193. doi: 10.1016/j.matdes.2014.01.056. DOI

Ayub T., Shafiq N., Nuruddin M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014;77:131–139. doi: 10.1016/j.proeng.2014.07.029. DOI

Ludovico M.D., Prota A., Manfredi G. Structural upgrade using basalt fibers for concrete confinement. J. Compos. Constr. 2010;14:541–552. doi: 10.1061/(ASCE)CC.1943-5614.0000114. DOI

Lopresto V., Leone C., Iorio I.D. Mechanical characterization of basalt fiber reinforced plastic. Compos. Part B-Eng. 2011;42:717–723. doi: 10.1016/j.compositesb.2011.01.030. DOI

Kabay N. Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 2014;50:95–101. doi: 10.1016/j.conbuildmat.2013.09.040. DOI

Manikandan V., Jappes J.W., Kumar S.S., Amuthakkannan P. Investigation of the effect of surface modifications on the mechanical properties of basalt fiber reinforced polymer composites. Compos. Part B-Eng. 2012;43:812–818. doi: 10.1016/j.compositesb.2011.11.009. DOI

Carmisciano S., Rosa I.M.D., Sarasini F., Tamburrano A., Valente M. Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties. Mater. Des. 2011;32:337–342. doi: 10.1016/j.matdes.2010.06.042. DOI

Sim J., Park C. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B-Eng. 2005;36:504–512. doi: 10.1016/j.compositesb.2005.02.002. DOI

Urbanski M., Lapko A., Garbacz A. Investigation on concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures. Procedia Eng. 2013;57:1183–1191. doi: 10.1016/j.proeng.2013.04.149. DOI

Colombo C., Vergani L., Burman M. Static and fatigue characterization of new basalt fiber reinforced composites. Compos. Struct. 2012;94:1165–1174. doi: 10.1016/j.compstruct.2011.10.007. DOI

Wei B., Cao H., Song S. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater. Des. 2010;31:4244–4250. doi: 10.1016/j.matdes.2010.04.009. DOI

Wei B., Cao H., Song S. Degradation of basalt fiber and glass fiber/epoxy resin composites in seawater. Corros. Sci. 2011;53:426–431. doi: 10.1016/j.corsci.2010.09.053. DOI

Mishra R., Jamshaid H. A green material from rock: Basalt fiber- a Review. J. Text. Inst. 2016;107:923–937. doi: 10.1080/00405000.2015.1071940. DOI

Mishra R., Behera B.K., Banthia V. Modeling and simulation of 3D orthogonal fabrics for composite applications. J. Text. Inst. 2012;103:1255–1261. doi: 10.1080/00405000.2012.675682. DOI

Zhou H., Jia B., Huang H., Mou Y. Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete. Materials. 2020;13:1362. doi: 10.3390/ma13061362. PubMed DOI PMC

Stephens D. Natural fiber reinforced concrete blocks; Proceedings of the 20th WEDC Conference Affordable Water Supply and Sanitation; Colombo, Sri Lanka. 22–26 August 1994; pp. 317–321.

Mishra R., Behera B., Bhagti V. Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films. Fiber Polym. 2014;15:1500–1506. doi: 10.1007/s12221-014-1500-5. DOI

Feng J., Sun W., Zhai H., Wang L., Dong H., Wu Q. Experimental study on hybrid effect evaluation of fiber reinforced concrete subjected to drop weight impacts. Materials. 2018;11:2563. doi: 10.3390/ma11122563. PubMed DOI PMC

Marar K., Eren O., Çelik T. Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Mater. Lett. 2001;47:297–304. doi: 10.1016/S0167-577X(00)00253-6. DOI

Mishra R. FEM based prediction of 3D woven fabric reinforced concrete under mechanical load. J. Build. Eng. 2018;18:95–106. doi: 10.1016/j.jobe.2018.03.003. DOI

Standard Test Method for Obtaining Average Residual-Strength of Fiber-Reinforced Concrete. ASTM international; West Conshohocken, PA, USA: 2015.

Alyousef R., Ali B., Mohammed A., Kurda R., Alabduljabbar H., Riaz S. Evaluation of Mechanical and Permeability Characteristics of Microfiber-Reinforced Recycled Aggregate Concrete with Different Potential Waste Mineral Admixtures. Materials. 2021;14:5933. doi: 10.3390/ma14205933. PubMed DOI PMC

Raza S., Amir M., Azab M., Ali B., Abdallah M., Ouni M., Elhag A. Effect of micro-silica on the physical, tensile, and load-deflection characteristics of micro fiber-reinforced high-performance concrete (HPC) Case Stud. Constr. Mater. 2022;17:e01380. doi: 10.1016/j.cscm.2022.e01380. DOI

Khan M., Cao M., Ali M. Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete. Constr. Build. Mater. 2018;192:742–753. doi: 10.1016/j.conbuildmat.2018.10.159. DOI

Khan M., Cao M., Xie C., Ali M. Hybrid fiber concrete with different basalt fiber length and content. Struct. Concr. 2022;23:346–364. doi: 10.1002/suco.202000472. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...