β-glucosidase production by recombinant Pichia pastoris strain Y1433 under optimal feed profiles of fed-batch cultivation

. 2023 Apr ; 68 (2) : 245-256. [epub] 20221014

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36241938
Odkazy

PubMed 36241938
DOI 10.1007/s12223-022-01008-w
PII: 10.1007/s12223-022-01008-w
Knihovny.cz E-zdroje

Pichia pastoris, a methylotrophic yeast, is known to be an efficient host for heterologous proteins production. In this study, a recombinant P. pastoris Y11430 was found better for β-glucosidase activity in comparison with a wild type P. pastoris Y11430 strain, and thereby, subjected to methanol intermittent feed profiling for β-glucosidase production. The results showed that at 72 h of cultivation time, the cultures with 16.67% and 33.33% methanol feeding with constant rate could produce the total dry cell weight of 52.23 and 118.55 g/L, respectively, while the total mutant β-glucosidase activities were 1001.59 and 3259.82 units, respectively. The methanol feeding profile was kept at 33% with three methanol feeding strategies such as constant feed rate, linear feed rate, and exponential feed rate which were used in fed-batch fermentation. At 60 h of cultivation, the highest total mutant β-glucosidase activity was 2971.85 units for exponential feed rate culture. On the other hand, total mutant β-glucosidase activity of the constant feed rate culture and linear feed rate culture were 1682.25 and 1975.43 units, respectively. The kinetic parameters of exponential feed rate culture were specific growth rate on glycerol 0.228/h, specific growth of methanol 0.061/h, maximum total dry cell weight 196.73 g, yield coefficient biomass per methanol ([Formula: see text]) 0.57 gcell/gMeOH, methanol consumption rate ([Formula: see text]) 5.76 gMeOH/h, and enzyme productivity ([Formula: see text]) 75.96 units/h. In conclusion, higher cell mass and β- glucosidase activity were produced under exponential feed rate than constant and linear feed rates.

Zobrazit více v PubMed

Azadi S, Mahboubi A, Naghdi N, Solaimanian R, Mortazavi SA (2017) Evaluation of sorbitol-methanol co-feeding strategy on production of recombinant human growth hormone in Pichia pastoris. Iran J Pharm Res 16:1555–1564. PMID: 29552064 PubMed PMC

Beiroti A, Hosseini SN, Aghasadeghi MR, Norouzian D (2019) Comparative study of μ-stat methanol feeding control in fed-batch fermentation of Pichia pastoris producing HBsAg: an open-loop control versus recurrent artificial neural network-based feedback control. J Chem Technol Biotechnol 94:3924–3931. https://doi.org/10.1002/jctb.6192 DOI

Chang CH, Hsiung HA, Hong KL, Huang CT (2018) Enhancing the efficiency of the Pichia pastoris AOX1 promoter via the synthetic positive feedback circuit of transcription factor Mxr1. BMC Biotechnol 18:81. https://doi.org/10.1186/s12896-018-0492-4 PubMed DOI PMC

Cos O, Ramon R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17. https://doi.org/10.1186/1475-2859-5-17 PubMed DOI PMC

Gmeiner C, Saadati A, Maresch D, Krasteva S, Frank M, Altmann F, Herwig C, Spadiut O (2015) Development of a fed-batch process for a recombinant Pichia pastoris Δoch1 strain expressing a plant peroxidase. Microb Cell Fact 14:1. https://doi.org/10.1186/s12934-014-0183-3 PubMed DOI PMC

Gunes H, Boy E, Ata O, Zerze GH, Calik P, ve Ozdamar TH (2016) Methanol feeding strategy design enhances recombinant human growth hormone production by Pichia pastoris. J Chem Technol Biotechnol 91:664–671. https://doi.org/10.1002/jctb.4619 DOI

Jahic M, Rotticci-Mulder J, Martinelle M, Hult K, Enfors SO (2002) Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein. Bioprocess Biosyst Eng 24:385–393. https://doi.org/10.1007/s00449-001-0274-5 DOI

Jia L, Li T, Wu Y, Wu C, Li H, Huang A (2021) Enhanced human lysozyme production by Pichia pastoris via periodic glycerol and dissolved oxygen concentrations control. Appl Microbiol Biotechnol 105:1041–1050. https://doi.org/10.1007/s00253-021-11100-9

Karnišová Potocká E, Mastihubová M, Mastihuba V (2021) Apiose-Relevant Glycosidases Catalysts 11:1251. https://doi.org/10.3390/catal11101251 DOI

Kastilan R, Boes A, Spiegel H, Voepel N, Chudobová I, Hellwig S, Fischer R (2017) Improvement of a fermentation process for the production of two PfAMA1-DiCo-based malaria vaccine candidates in Pichia pastoris. Sci Rep 7:11991. https://doi.org/10.1038/s41598-017-11819-4 PubMed DOI PMC

Kongsaeree PT, Ratananikom K, Choengpanya K, Tongtubtima N, Sujiwattanarat P, Porncharoennop C, Onpium A, Svasti J (2010) Substrate specificity in hydrolysis and transglucosylation by family 1 β-glucosidases from cassava and Thai rosewood. J Mol Catal B Enzym 67:257–265.  https://doi.org/10.1016/j.molcatb.2010.09.003 DOI

Krause M, Neubauer A, Neubauer P (2016) The fed-batch principle for the molecular biology lab: controlled nutrient diets in ready-made media improve production of recombinant proteins in Escherichia coli. Microb Cell Fact 15:110. https://doi.org/10.1186/s12934-016-0513-8 PubMed DOI PMC

Kytidou K, Artola KM, Overkleeft HS, Aerts JMFG (2020) Plant glycosides and glycosidases: a treasure-trove for therapeutics. Front Plant Sci 11:357. https://doi.org/10.3389/fpls.2020.00357 PubMed DOI PMC

Li T, Zhang W, Hao J, Sun M, Lin SX (2018) Cold-active extracellular lipase: expression in Sf9 insect cells, purification, and catalysis. Biotechnol Rep (amst) 21:e00295. https://doi.org/10.1016/j.btre.2018.e00295 PubMed DOI

Liu W, Gong T, Wang QH, Liang X, Chen JJ, Zhu P (2016) Scaling-up fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Sci Rep 6:18439. https://doi.org/10.1038/srep18439 PubMed DOI PMC

Liu W, Xiang H, Zhang T, Pang X, Su J, Liu H, Ma B, Yu L (2020) Development of a new high-cell density fermentation strategy for enhanced production of a fungus β-glucosidase in Pichia pastoris. Front Microbiol 11:1988. https://doi.org/10.3389/fmicb.2020.0198 PubMed DOI PMC

Liu W, Sarah I, Ting G, Ashish S, Li-Yan Y, Ping Z (2019) Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 39:258–271. https://doi.org/10.1080/07388551.2018.1554620

Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K (2015) Cultivation strategies to enhance productivity of Pichia pastoris. A Review Biotechnol Adv 33:1177–1193. https://doi.org/10.1016/j.biotechadv.2015.05.008 PubMed DOI

Mastropietro G, Aw R, Polizzi KM (2021) Expression of proteins in Pichia pastoris. Methods Enzymol 660:53–80. https://doi.org/10.1016/bs.mie.2021.07.004 PubMed DOI

Nguyen S, Nguyen H, Truong K (2020) Comparative cytotoxic effects of methanol, ethanol and DMSO on human cancer cell lines. Biomed Res Ther 7:3855–3859. https://doi.org/10.15419/bmrat.v7i7.614

Nieto-Taype MA, Garcia-Ortega X, Albiol J, Montesinos-Seguí JL, Valero F (2020) Continuous cultivation as a tool toward the rational bioprocess development with Pichia pastoris cell factory. Front Bioeng Biotechnol 8:632. https://doi.org/10.3389/fbioe.2020.00632 PubMed DOI PMC

Paul L, Mudogo C, Mtei K, Machunda R, Ntie-Kang F (2020) A computer-based approach for developing linamarase inhibitory agents. Phys Sci Rev 5:20190098. https://doi.org/10.1515/psr-2019-0098 DOI

Poontawee R, Limtong S (2020) Feeding strategies of two-stage fed-batch cultivation processes for microbial lipid production from sugarcane top hydrolysate and crude glycerol by the oleaginous red yeast Rhodosporidiobolus fluvialis. Microorganisms 8:151. https://doi.org/10.3390/microorganisms8020151 PubMed DOI PMC

Ratananikom K, Choengpanya K, Tongtubtim N, Charoenrat T, Withers SG, Kongsaeree PT (2013) Mutational analysis in the glycone binding pocket of Dalbergia cochinchinensis β-glucosidase to increase catalytic efficiency toward mannosides. Carbohydr Res 373:35–41. https://doi.org/10.1016/j.carres.2012.10.018 PubMed DOI

Sultan IN, Keawsompong S, Kongsaeree P, Parakulsuksatid P (2020) Formulation of an efficient combinatorial cellulase cocktail by comparative analysis of gibson assembly and NEBuilder HiFi DNA assembly modus operandi. Int J Emerging Technol 11:490–495

Tissopi T, Kumar S, Sadhu A, Mutturi S (2022) Surface display of novel transglycosylating α-glucosidase from Aspergillus neoniger on Pichia pastoris for synthesis of isomaltooligosaccharides. Biochem Eng J 181:108400. https://doi.org/10.1016/j.bej.2022.108400 DOI

Toonkool P, Metheenukul P, Sugiwattanrat P, Paiboon P, Tongtubtim N, Ketudat-Cairns M, Ketudat-Cairsns J, Svasti J (2006) Expression and purification of dalcochinase, a β-glucosidase from Dalbergia cochinchinesis Pierre, in yeast and bacteria hosts. Protein Expr Purif 48:195–204. https://doi.org/10.1016/j.pep.2006.05.011 PubMed DOI

Torres P, Saa PA, Albiol J, Ferrer P, Agosin E (2019) Contextualized genome-scale model unveils high-order metabolic effects of the specific growth rate and oxygenation level in recombinant Pichia pastoris. Metab Eng Commun 9:e00103. https://doi.org/10.1016/j.mec.2019.e00103 PubMed DOI PMC

Türkanoğlu Özçelik A, Yılmaz S, Inan M (2019) Pichia pastoris promoters. Methods Mol Biol 1923:97–112. https://doi.org/10.1007/978-1-4939-9024-5_3 PubMed DOI

Wang J, Wang X, Shi L, Qi F, Zhang P, Zhang Y, Zhou X, Song Z, Cai M (2017) Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Sci Rep 7:41850. https://doi.org/10.1038/srep41850 PubMed DOI PMC

Wollborn D, Müller RL, Munkler LP, Horstmann R, Germer A, Blank LM, Büchs J (2022) Auto-induction screening protocol for ranking clonal libraries of Pichia pastoris MutS strains. Biotechnol Bioproc E 27:572–585. https://doi.org/10.1007/s12257-022-0006-z DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...