Co-composting of cattle manure with biochar and elemental sulphur and its effects on manure quality, plant biomass and microbiological characteristics of post-harvest soil

. 2022 ; 13 () : 1004879. [epub] 20220929

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36247542

Improvement of manure by co-composting with other materials is beneficial to the quality of the amended soil. Therefore, the manure was supplied with either biochar, elemental sulphur or both prior to fermentation in 50 L barrels for a period of eight weeks. The manure products were subsequently analyzed and used as fertilizers in a short-term pot experiment with barley fodder (Hordeum vulgare L.). The experiment was carried out under controlled conditions in a growth chamber for 12 weeks. The sulphur-enriched manure showed the lowest manure pH and highest ammonium content. The co-fermentation of biochar and sulphur led to the highest sulphur content and an abundance of ammonium-oxidizing bacteria in manure. The biochar+sulphur-enriched manure led to the highest dry aboveground plant biomass in the amended soil, whose value was 98% higher compared to the unamended control, 38% higher compared to the variant with biochar-enriched manure and 23% higher compared to the manure-amended variant. Amendment of the sulphur-enriched manure types led to the highest enzyme activities and soil respirations (basal, substrate-induced). This innovative approach to improve the quality of organic fertilizers utilizes treated agricultural waste (biochar) and a biotechnological residual product (elementary sulphur from biogas desulphurization) and hence contributes to the circular economy.

Zobrazit více v PubMed

Abou Hussien E., Nada W., Elgezery M. (2020). Influence of sulphur compost application on some chemical properties of calcareous soil and consequent responses of Hordeum vulgare l. plants. Egyptian. J. Soil Sci. 60 (1), 67–82. doi: 10.21608/ejss.2019.18503.1318 DOI

Ashraf M. N., Jusheng G., Lei W., Mustafa A., Waqas A., Aziz T., et al. . (2021). Soil microbial biomass and extracellular enzyme–mediated mineralization potentials of carbon and nitrogen under long-term fertilization (> 30 years) in a rice–rice cropping system. J. Soils. Sediments. 21 (12), 3789–3800. doi: 10.1007/s11368-021-03048-0 DOI

Azeem M., Hayat R., Hussain Q., Tahir M. I., Imran M., Abbass Z., et al. . (2019). Effects of biochar and NPK on soil microbial biomass and enzyme activity during 2 years of application in the arid region. Arab. J. Geosci. 12, 13. doi: 10.1007/s12517-019-4482-1 DOI

Ben-Dov E., Brenner A., Kushmaro A. (2007). Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes. Microbial. Ecol. 54 (3), 439–451. doi: 10.1007/s00248-007-9233-2 PubMed DOI

Bouranis D. L., Venieraki A., Chorianopoulou S. N., Katinakis P. (2019). Impact of elemental sulfur on the rhizospheric bacteria of durum wheat crop cultivated on a calcareous soil. Plants 8 (10), 379. doi: 10.3390/plants8100379 PubMed DOI PMC

Brenzinger K., Dörsch P., Braker G. (2015). pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. Front. Microbiol. 6, 961. doi: 10.3389/fmicb.2015.00961 PubMed DOI PMC

Brtnicky M., Dokulilova T., Holatko J., Pecina V., Kintl A., Latal O., et al. . (2019). Long-term effects of biochar-based organic amendments on soil microbial parameters. Agronomy 9 (11), 747. doi: 10.3390/agronomy9110747 DOI

Campbell C. D., Chapman S. J., Cameron C. M., Davidson M. S., Potts J. M. (2003). A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69 (6), 3593–3599. doi: 10.1128/AEM.69.6.3593-3599.2003 PubMed DOI PMC

Castellano S. D., Dick R. P. (1991). Cropping and sulfur fertilization influence on sulfur transformations in soil. Soil Sci. Soc. America J. 55 (1), 114–121. doi: 10.2136/sssaj1991.03615995005500010020x DOI

Cayuela M. L., Sánchez-Monedero M. A., Roig A., Hanley K., Enders A., Lehmann J. (2013). Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Sci. Rep. 3 (1), 1–7. doi: 10.1038/srep01732 PubMed DOI PMC

Costello R. C., Sullivan D. M., Bryla D. R., Strik B. C., Owen J. S. (2019). Compost feedstock and compost acidification affect growth and mineral nutrition in northern highbush blueberry. HortScience 54 (6), 1067–1076. doi: 10.21273/HORTSCI13599-18 DOI

Czekała W., Malińska K., Cáceres R., Janczak D., Dach J., Lewicki A. (2016). Co-Composting of poultry manure mixtures amended with biochar – the effect of biochar on temperature and c-CO2 emission. Bioresour. Technol. 200, 921–927. doi: 10.1016/j.biortech.2015.11.019 PubMed DOI

de la Fuente R. G., Carrión C., Botella S., Fornes F., Noguera V., Abad M. (2007). Biological oxidation of elemental sulphur added to three composts from different feedstocks to reduce their pH for horticultural purposes. Bioresour. Technol. 98 (18), 3561–3569. doi: 10.1016/j.biortech.2006.11.008 PubMed DOI

Doi R., Ranamukhaarachchi S. L. (2009). Soil dehydrogenase in a land degradation-rehabilitation gradient: Observations from a savanna site with a wet/dry seasonal cycle. Rev. Biol. Trop. 57, 223–234. PubMed

EC, European Commission (2021). Soil and Land. EU Soil Strategy for 2030 Reaping the benefits of healthy soils for people, food, nature and climate. Document 52021DC0699. Brussels, 1–26.

Egnér H. A., Riehm H., Domingo W. R. (1960). Untersuchungen über die chemische bodenanalyse als grundlage für die beurteilung des nährstoffzustandes der böden. II. chemische extraktionsmethoden zur phosphor-und kaliumbestimmung. Kungliga. Lantbrukshögskolans. Annaler. 26, 199–215.

FAO, Food and Agriculture Organization of the United Nations (2014). World reference base for soil resources. (Rome, Italy: Food and Agriculture Organization of the United Nations).

Godlewska A. (2018. a). Assessment of the effect of NPK fertilisation and elemental sulphur on soil enzyme activity. Fresenius. Environ. Bull. 27 (1), 180–186.

Godlewska A. (2018. b). Sulphur content in test plants and arylsulfatase activity in soil after application of waste materials. Appl. Ecol. Environ. Res. 16 (1), 145–152. doi: 10.15666/aeer/1601_145152 DOI

Gu W., Zhang F., Xu P., Tang S., Xie K., Huang X., et al. . (2011). Effects of sulphur and Thiobacillus thioparus on cow manure aerobic composting. Bioresour. Technol. 102 (11), 6529–6535. doi: 10.1016/j.biortech.2011.03.049 PubMed DOI

Hagemann N., Subdiaga E., Orsetti S., de la Rosa J. M., Knicker H., Schmidt H. P., et al. . (2018). Effect of biochar amendment on compost organic matter composition following aerobic composting of manure. Sci. Total. Environ. 613, 20–29. doi: 10.1016/j.scitotenv.2017.08.161 PubMed DOI

Hammerschmiedt T., Holatko J., Sudoma M., Kintl A., Vopravil J., Ryant P., et al. . (2021). Biochar and sulphur enriched digestate: Utilization of agriculture associated waste products for improved soil carbon and nitrogen content, microbial activity, and plant growth. Agronomy 11 (10), 2041. doi: 10.3390/agronomy11102041 DOI

He X., Yin H., Sun X., Han L., Huang G. (2018). Effect of different particle-size biochar on methane emissions during pig manure/wheat straw aerobic composting: Insights into pore characterization and microbial mechanisms. Bioresour. Technol. 268, 633–637. doi: 10.1016/j.biortech.2018.08.047 PubMed DOI

Hoesly R. M., Smith S. J., Feng L., Klimont Z., Janssens-Maenhout G., Pitkanen T., et al. . (2018). Historical, (1750–2014) anthropogenic emissions of reactive gases and aerosols from the community emissions data system (CEDS). Geosci. Model. Dev. 11 (1), 369–408. doi: 10.5194/gmd-11-369-2018 DOI

Holatko J., Hammerschmiedt T., Datta R., Baltazar T., Kintl A., Latal O., et al. . (2020). Humic acid mitigates the negative effects of high rates of biochar application on microbial activity. Sustainability 12 (22), 9524. doi: 10.3390/su12229524 DOI

Holatko J., Hammerschmiedt T., Mustafa A., Kintl A., Radziemska M., Baltazar T., et al. . (2022). Carbon-enriched organic amendments differently affect the soil chemical, biological properties and plant biomass in a cultivation time-dependent manner. Chem. Biol. Technol. Agric. 9, 52. doi: 10.1186/s40538-022-00319-x DOI

Hoover N. L., Law J. Y., Long L. A., Kanwar R. S., Soupir M. L. (2019). Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. J. Environ. Manage. 252, 109582. doi: 10.1016/j.jenvman.2019.109582 PubMed DOI

Hoskins B., Wolf A., Wolf N. (2003). “Dry matter analysis,” in Recommended methods of manure analysis. Eds. Peters J., Combs S., Hoskins B., Jarman J., Kovar J., Watson M., Wolf A., Wolf N. (Madison, WI, USA: Univ. of Wisconsin Cooperative Extension Publishing; ), 14–17.

Iocoli G. A., Zabaloy M. C., Pasdevicelli G., Gómez M. A. (2019). Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers: Characterization, soil biological activity and growth dynamic of Lactuca sativa l. Sci. Total. Environ. 647, 11–19. doi: 10.1016/j.scitotenv.2018.07.444 PubMed DOI

Janczak D., Malińska K., Czekała W., Cáceres R., Lewicki A., Dach J. (2017). Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste. Manage. 66, 36–45. doi: 10.1016/j.wasman.2017.04.033 PubMed DOI

Jiang T., Schuchardt F., Li G., Guo R., Zhao Y. (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. J. Environ. Sci. (China) 23, 1754–1760. PubMed

Jindo K., Suto K., Matsumoto K., García C., Sonoki T., Sanchez-Monedero M. A. (2012). Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresour. Technol. 110, 396–404. doi: 10.1016/j.biortech.2012.01.120 PubMed DOI

Kandeler E., Deiglmayr K., Tscherko D., Bru D., Philippot L. (2006). Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol. 72 (9), 5957–5962. doi: 10.1128/AEM.00439-06 PubMed DOI PMC

Katkar R. N., Sonune B. A., Kadu P. R. (2011). Long-term effect of fertilization on soil chemical and biological characteristics and productivity under sorghum (Sorghum bicolor)-wheat (Triticum aestivum) system in vertisol. Indian J. Agric. Sci. 81 (8), 734.

Khadem A., Besharati H., Khalaj M. A. (2019). Biochar application changed arylsulfatase activity, kinetic and thermodynamic aspects. Eur. J. Soil Biol. 95, 103134. doi: 10.1016/j.ejsobi.2019.103134 DOI

Kirchmann H., Thorvaldsson G. (2000). Challenging targets for future agriculture. Eur. J. Agron. 12 (3-4), 145–161. doi: 10.1016/S1161-0301(99)00053-2 DOI

Kulhánek M., Černý J., Balík J., Sedlář O., Suran P. (2018). Potential of Mehlich 3 method for extracting plant available sulfur in the Czech agricultural soils. Plant Soil Environ. 64, 455–462. doi: 10.17221/372/2018-PSE DOI

Lal R. (2009). Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 60, 158–169. doi: 10.1111/j.1365-2389.2008.01114.x DOI

Lal R. (2020). Managing soils for resolving the conflict between agriculture and nature: The hard talk. Eur. J. Soil Sci. 71, 1–9. doi: 10.1111/ejss.12857 DOI

Lemanowicz J., Brzezińska M., Siwik-Ziomek A., Koper J. (2020). Activity of selected enzymes and phosphorus content in soils of former sulphur mines. Sci. Total. Environ. 708, 134545. doi: 10.1016/j.scitotenv.2019.134545 PubMed DOI

Li Y. F., Hu S. D., Chen J. H., Müller K., Li Y. C., Fu W. J., et al. . (2018). Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. J. Soil. Sediment. 18, 546–563. doi: 10.1007/s11368-017-1906-y DOI

Lin J. C., Cheng A. C., Shiu Y. L., Wong Y. C., Yeh S. P., Simangunsong T., et al. . (2021). Using the biochar produced from spend mushroom substrate to improve the environmental condition of aquaculture pond. Aquac. Res. 52, 3532–3539. doi: 10.1111/are.15194 DOI

Liu X., Herbert S. J., Hashemi A. M., Zhang X., Ding G. (2011). Effects of agricultural management on soil organic matter and carbon transformation - A review. Plant. Soil Environ. 52, 531–543. doi: 10.17221/3544-PSE DOI

Lovley D. R., Phillips E. J. (1994). Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl. Environ. Microbiol. 60 (7), 2394–2399. doi: 10.1128/aem.60.7.2394-2399.1994 PubMed DOI PMC

Lu H., Lashari M. S., Liu X., Ji H., Li L., Zheng J., et al. . (2015). Changes in soil microbial community structure and enzyme activity with amendment of biochar-manure compost and pyroligneous solution in a saline soil from central China. Eur. J. Soil Biol. 70, 67–76. doi: 10.1016/j.ejsobi.2015.07.005 DOI

Mahimairaja S., Bolan N. S., Hedley M. J. (1994. a). Dissolution of phosphate rock during the composting of poultry manure: An incubation experiment. Fertilizer. Res. 40 (2), 93–104.

Mahimairaja S., Bolan N. S., Hedley M. J., Macgregor A. N. (1994. b). Losses and transformation of nitrogen during composting of poultry manure with different amendments: An incubation experiment. Bioresour. Technol. 47 (3), 265–273. doi: 10.1016/0960-8524(94)90190-2 DOI

Malik K. M., Khan K. S., Billah M., Akhtar M. S., Rukh S., Alam S., et al. . (2021). Organic amendments and elemental sulfur stimulate microbial biomass and sulfur oxidation in alkaline subtropical soils. Agronomy-Basel 11 (12), 2514. doi: 10.3390/agronomy11122514 DOI

Maurer D. L., Koziel J. A., Kalus K., Andersen D. S., Opalinski S. (2017). Pilot-scale testing of non-activated biochar for swine manure treatment and mitigation of ammonia, hydrogen sulfide, odorous volatile organic compounds (VOCs), and greenhouse gas emissions. Sustainability 6), 929. doi: 10.3390/su9060929 DOI

Mustafa A., Hu X., Abrar M. M., Shah S. A., Nan S., Saeed Q., et al. . (2021). Long-term fertilization enhanced carbon mineralization and maize biomass through physical protection of organic carbon in fractions under continuous maize cropping. Appl. Soil Ecol. 165, 103971. doi: 10.1016/j.apsoil.2021.103971 DOI

Mustafa A., Minggang X., Shah S. A., Abrar M. M., Nan S., Baoren W., et al. . (2020). Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manage. 270, 110894. doi: 10.1016/j.jenvman.2020.110894 PubMed DOI

Naveed M., Ditta A., Ahmad M., Mustafa A., Ahmad Z., Conde-Cid M., et al. . (2021). Processed animal manure improves morpho-physiological and biochemical characteristics of Brassica napus l. under nickel and salinity stress. Environ. Sci. pollut. Res. 28 (33), 45629–45645. doi: 10.1007/s11356-021-14004-3 PubMed DOI

Nguyen M. K., Lin C., Hoang H. G., Sanderson P., Dang B. T., Bui X. T., et al. . (2022). Evaluate the role of biochar during the organic waste composting process: A critical review. Chemosphere 299, 134488. doi: 10.1016/j.chemosphere.2022.134488 PubMed DOI

Penn C. J., Camberato J. J. (2019). A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9 (6), 120. doi: 10.3390/agriculture9060120 DOI

Qaswar M., Ahmed W., Jing H., Hongzhu F., Xiaojun S., Xianjun J., et al. . (2019). Soil carbon (C), nitrogen (N) and phosphorus (P) stoichiometry drives phosphorus lability in paddy soil under long-term fertilization: A fractionation and path analysis study. PloS One 14 (6), 0218195. doi: 10.1371/journal.pone.0218195 PubMed DOI PMC

Rogovska N., Laird D., Cruse R., Fleming P., Parkin T., Meek D. (2011). Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Sci. Soc. Am. J. 75, 871–879.

Roig A., Cayuela M. L., Sánchez-Monedero M. A. (2004). The use of elemental sulphur as organic alternative to control pH during composting of olive mill wastes. Chemosphere 57 (9), 1099–1105. doi: 10.1016/j.chemosphere.2004.08.024 PubMed DOI

Rotthauwe J. H., Witzel K. P., Liesack W. (1997). The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63 (12), 4704–4712. doi: 10.1128/aem.63.12.4704-4712.1997 PubMed DOI PMC

Skwierawska M., Benedycka Z., Jankowski K., Skwierawski A. (2016). Sulphur as a fertiliser component determining crop yield and quality. J. Elementol. 21 (2), 209–223. doi: 10.5601/jelem.2015.20.3.992 DOI

Skwierawska M., Zawartka L., Zawadzki B. (2008). The effect of different rates and forms of sulphur applied on changes of soil agrochemical properties. Plant Soil Environ. 54 (4), 171–177. doi: 10.17221/391-PSE DOI

Soaud A. A., Saleh M. E., El-Tarabily K. A., Sofian-Azirun M., Rahman M. M. (2011). Effect of elemental sulfur application on ammonia volatilization from surface applied urea fertilizer to calcareous sandy soils. Aust. J. Crop Sci. 5 (5), 611–619.

Soltanaeva A., Suleimenov B., Saparov G., Vassilina T. (2018). Effect of sulfur-containing fertilizers on the chemical properties of soil and winter wheat yield. Bulgarian. J. Agric. Sci. 24 (4), 586–591.

Song Y. Z., Li Y. F., Cai Y. J., Fu S. L., Luo Y., Wang H. L., et al. . (2019). Biochar decreases soil N2O emissions in moso bamboo plantations through decreasing labile n concentrations, n-cycling enzyme activities and nitrification/denitrification rates. Geoderma 348, 135–145. doi: 10.1016/j.geoderma.2019.04.025 DOI

Sundberg C. (2005). Improving compost process efficiency by controlling aeration, temperature and pH. Uppsala, Sveriges lantbruksuniv. Acta Universitatis Agriculturae Sueciae 103, 1652–6880.

Tetteh R. N. (2015). Chemical soil degradation as a result of contamination: A review. J. Soil Sci. Environ. Manage. 6 (11), 301–308. doi: 10.5897/JSSEM15.0499 DOI

Turk A., Sakalis E., Rago O., Karamitsos H. (1992). Activated carbon systems for removal of light gasesa. Ann. N. Y. Acad. Sci. 661 (1), 221–228. doi: 10.1111/j.1749-6632.1992.tb26043.x DOI

Virto I., Imaz M. J., Fernández-Ugalde O., Gartzia-Bengoetxea N., Enrique A., Bescansa P. (2014). Soil degradation and soil quality in Western Europe: Current situation and future perspectives. Sustainability 7 (1), 313–365. doi: 10.3390/su7010313 DOI

Vlek P. L., Stumpe J. M. (1978). Effects of solution chemistry and environmental conditions on ammonia volatilization losses from aqueous systems. Soil Sci. Soc. America J. 42 (3), 416–421. doi: 10.2136/sssaj1978.03615995004200030008x DOI

Wang Q., Awasthi M. K., Ren X., Zhao J., Li R., Wang Z., et al. . (2018). Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation. Waste. Manage. 74, 221–230. doi: 10.1016/j.wasman.2018.01.015 PubMed DOI

Wang X., Jia Z., Liang L., Yang B., Ding R., Nie J., et al. . (2016). Impacts of manure application on soil environment, rainfall use efficiency and crop biomass under dryland farming. Sci. Rep. 6 (1), 1–8. doi: 10.1038/srep20994 PubMed DOI PMC

Wutzler T., Zaehle S., Schrumpf M., Ahrens B., Reichstein M. (2017). Adaptation of microbial resource allocation affects modelled long term soil organic matter and nutrient cycling. Soil Biol. Biochem. 115, 322–336. doi: 10.1016/j.soilbio.2017.08.031 DOI

Xu X., Cao X., Zhao L., Sun T. (2014). Comparison of sewage sludge-and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere 111, 296–303. doi: 10.1016/j.chemosphere.2014.04.014 PubMed DOI

Yilmaz I. F., Ergun Y. A. (2019). Impact of biochar and animal manure on some biological and chemical properties of soil. Appl. Ecol. Environ. Res. 17 (4), 8865–8876. doi: 10.15666/aeer/1704_88658876 DOI

Yu L., Lu X., He Y., Brookes B. C., Liao H., Xu J. M. (2017). Combined biochar and nitrogen fertilizer reduces soil acidity and promotes nutrient use efficiency by soybean crop. J. Soils Sediments 17, 599–610.

Zhang H., Voroney R. P., Price G. W., White A. J. (2016). Sulfur-enriched biochar as a potential soil amendment and fertiliser. Soil Res. 55 (1), 93–99. doi: 10.1071/sr15256 DOI

Zhang H., Wang S., Zhang J., Tian C., Luo S. (2021). Biochar application enhances microbial interactions in mega-aggregates of farmland black soil. Soil Tillage. Res. 213, 105145. doi: 10.1016/j.still.2021.105145 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...