Gradients of Orientation, Composition, and Hydration of Proteins for Efficient Light Collection by the Cornea of the Horseshoe Crab
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
286895536
German Research Foundation
PubMed
36251923
PubMed Central
PMC9685478
DOI
10.1002/advs.202203371
Knihovny.cz E-zdroje
- Klíčová slova
- biomaterials, chitin-based materials, optical materials, optical modeling, protein composition, structure-function relationships, vision,
- MeSH
- fotoreceptory MeSH
- ostrorepi * chemie metabolismus MeSH
- proteiny * metabolismus MeSH
- rohovka MeSH
- zrak MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny * MeSH
The lateral eyes of the horseshoe crab, Limulus polyphemus, are the largest compound eyes within recent Arthropoda. The cornea of these eyes contains hundreds of inward projecting elongated cuticular cones and concentrate light onto proximal photoreceptor cells. Although this visual system has been extensively studied before, the precise mechanism allowing vision has remained controversial. Correlating high-resolution quantitative refractive index (RI) mapping and structural analysis, it is demonstrated how gradients of RI in the cornea stem from structural and compositional gradients in the cornea. In particular, these RI variations result from the chitin-protein fibers architecture, heterogeneity in protein composition, and bromine doping, as well as spatial variation in water content resulting from matrix cross-linking on the one hand and cuticle porosity on the other hand. Combining the realistic cornea structure and measured RI gradients with full-wave optical modeling and ray tracing, it is revealed that the light collection mechanism switches from refraction-based graded index (GRIN) optics at normal light incidence to combined GRIN and total internal reflection mechanism at high incident angles. The optical properties of the cornea are governed by different mechanisms at different hierarchical levels, demonstrating the remarkable versatility of arthropod cuticle.
Adolphe Merkle Institute University of Fribourg Chemin des Verdiers 4 Fribourg 1700 Switzerland
B CUBE Center for Molecular Bioengineering Technische Universität Dresden 01307 Dresden Germany
Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
European Synchrotron Radiation Facility 71 avenue des Martyrs CS 40220 Grenoble Cedex 9 38043 France
Humboldt University Berlin Institute of Biology Philippstraße 13 10115 Berlin Germany
Institute for Globally Distributed Open Research and Education Ribeirão Preto 14091 310 Brazil
Zobrazit více v PubMed
Exner S., Die Physiologie der facettierten Augen von Krebsen und Insecten, Leipzig und Wien, Franz Deuticke: 1891.
Dai B., Zhang L., Zhao C., Bachman H., Becker R., Mai J., Jiao Z., Li W., Zheng L., Wan X., Huang T. J., Zhuang S., Zhang D., Nat. Commun. 2021, 12, 6458. PubMed PMC
Land M. F., Nilsson D.‐E., Animal Eyes, Oxford University Press, New York, USA: 2012.
Nilsson D.‐E., in Facets of Vision (Eds: Stavenga D. G., Hardie R. C.), Springer, Berlin Heidelberg, Germany: 1989, Ch. 3.
Barlow R. B., in Biology and Conservation of Horseshoe Crabs (Eds: Tanacredi J. T., Botton M. L., Eds., Smith D. R.), Springer, Boston, USA: 2009, Vision in Horseshoe Crabs.
Fahrenbach W. H., Int. Rev. Cytol. 1975, 41, 285. PubMed
Hartline H. K., Wagner H. G., Ratliff F., J. Gen. Physiol. 1956, 39, 651. PubMed PMC
Land M. F., Nature 1979, 280, 396.
Levi‐Setti R., Park D. A., Winston R., Nature 1975, 253, 115. PubMed
Scholtz G., Staude A., Dunlop J. A., Nat. Commun. 2019, 10, 2503. PubMed PMC
Politi Y., Bar‐On B., Fabritius H. O., in Architectured Materials in Nature and Engineering (Eds: Estrin Y., Bréchet Y., Dunlop J., Fratzl P.), Springer, Cham, Switzerland: 2019, Ch. 10.
Sikorski P., Hori R., Wada M., Biomacromolecules 2009, 10, 1100. PubMed
Blackwell J., Weih M. A., J. Mol. Biol. 1980, 137, 49. PubMed
Rudall K. M., Kenchington W., Biol. Rev. Cambridge Philos. Soc. 1973, 48, 597.
Erko M., Hartmann M. A., Zlotnikov I., Valverde Serrano C., Fratzl P., Politi Y., J. Struct. Biol. 2013, 183, 172. PubMed
Guerette P. A., Hoon S., Ding D., Amini S., Masic A., Ravi V., Venkatesh B., Weaver J. C., Miserez A., ACS Nano 2014, 8, 7170. PubMed
Azulay D. N., Spaeker O., Ghrayeb M., Wilsch‐Bräuninger M., Scoppola E., Burghammer M., Zizak I., Bertinetti L., Politi Y., Chai L., Stem Cells Int. 2022, 119, e2118107119. PubMed PMC
Sviben S., Spaeker O., Bennet M., Albéric M., Albéric M., Dirks J. H., Dirks J. H., Moussian B., Fratzl P., Bertinetti L., Politi Y., ACS Appl. Mater. Interfaces 2020, 12, 25581. PubMed PMC
Valverde Serrano C., Leemreize H., Bar‐On B., Barth F. G., Fratzl P., Zolotoyabko E., Politi Y., J. Struct. Biol. 2016, 193, 124. PubMed
Movasaghi Z., Rehman S., Rehman I. U., Appl. Spectrosc. Rev. 2007, 42, 493.
Freire P. T., Barboza F. M., Lima J. A., Melo F. E. A., Filho J. M., in Raman Spectroscopy, and Applications (Ed: Maaz K.), IntechOpen, London, UK: 2017, Ch. 10.
Tadayon M., Younes‐Metzler O., Shelef Y., Zaslansky P., Rechels A., Berner A., Zolotoyabko E., Barth F. G., Fratzl P., Bar‐On B., Politi Y., Adv. Funct. Mater. 2020, 30, 2000400.
Gierlinger N., Appl. Spectrosc. Rev. 2018, 53, 517. PubMed PMC
Sugumaran M., Adv. Insect Physiol. 2022, 62, 111.
Andersen S. O., Insect Biochem. Mol. Biol. 2010, 40, 166. PubMed
Tan Y. P., Hoon S., Guerette P. A., Wei W., Hao C., Ghadban A., Miserez A., Waite J. H., Nat. Chem. Biol. 2015, 11, 488. PubMed
Weyda F., Z. Mikrosk.‐Anat. Forsch. 1982, 96, 79. PubMed
Slabý T., Kolman P., Dostál Z., Antoš M., Lošťák M., Chmelík R., Opt. Express 2013, 21, 14747. PubMed
Dardikman G., Shaked N. T., Opt. Commun. 2018, 422, 8.
Mendoza‐Galván A., Muñoz‐Pineda E., Järrendahl K., Arwin H., Opt. Mater. Express 2016, 6, 671.
Work R. W., Text. Res. J. 1977, 47, 650.
Honda R., Ryu M., Li J. L., Mizeikis V., Juodkazis S., Sci. Rep. 2018, 8, 17652. PubMed PMC
Minns R. A., Gaudiana R. A., J. Macromol. Sci., Part A: Pure Appl. Chem. 1992, 29, 19.
Schofield R. M. S., Niedbala J. C., Nesson M. H., Tao Y., Shokes J. E., Scott R. A., Latimer M. J., J. Struct. Biol. 2009, 166, 272. PubMed PMC
Welinder B. S., Biochim. Biophys. Acta. 1972, 279, 491. PubMed
Taylor G. J., Ribi W., Bech M., Bodey A. J., Rau C., Steuwer A., Warrant E. J., Baird E., Curr. Biol. 2016, 26, 1319. PubMed
Palmer B. A., Taylor G. J., Brumfeld V., Gur D., Shemesh M., Elad N., Osherov A., Oron D., Weiner S., Addadi L., Science 2017, 358, 1172. PubMed
Wilts B. D., Michielsen K., Raedt H. D., Stavenga D. G., Proc. Natl. Acad. Sci. USA 2014, 11, 4363. PubMed PMC
Barlow R. B., Chamberlain S. C., Levinson J. Z., Science 1980, 210, 1037. PubMed
Bundesgesetzblatt, Teil 1 Nr. 47 2013 Bundesanzeiger Verlag GmbH, Amsterdamer Str. 192, 50735 Köln; https://www.bgbl.de/index.html.
Hoch H. C., Galvani C. D., Szarowski D. H., Turner J. N., Mycologia 2005, 97, 580. PubMed
Boothe T., Hilbert L., Heide M., Berninger L., Huttner W. B., Zaburdaev V., Vastenhouw N. L., Myers E. W., Drechsel D. N., Rink J. C., Elife 2017, 6, e27240. PubMed PMC
Schindelin J., Arganda‐Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J. Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., Nat. Methods 2012, 9, 676. PubMed PMC
Benecke G., Wagermaier W., Li C., Schwartzkopf M., Flucke G., Hoerth R., Zizak I., Burghammer M., Metwalli E., Müller‐Buschbaum P., Trebbin M., Förster S., Paris O., Roth S. V., Fratzl P., J. Appl. Crystallogr. 2014, 47, 1797. PubMed PMC
Nishidate Y., Nagata T., Morita S. Y., Yamagata Y., Appl. Opt. 2011, 50, 5192. PubMed
Sharma A., Kumar D. V., Ghatak A. K., Appl. Opt. 1982, 21, 984. PubMed
Chamberlain S. C., Barlow R. B., J. Neurosci. 1987, 7, 2135. PubMed PMC