Accumulation of metal trace elements in different body parts of terrestrial Roman snail Helix pomatia L., 1758 on three polluted sites in Serbia
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36279051
DOI
10.1007/s11356-022-23697-z
PII: 10.1007/s11356-022-23697-z
Knihovny.cz E-zdroje
- Klíčová slova
- Bioaccumulation, Biomarker, Fly ash containment, Helix pomatia, ICP-OES, Smelting, Terrestrial snails, Urban pollution,
- MeSH
- Helix (hlemýždi) MeSH
- hlemýždi MeSH
- kovy analýza MeSH
- látky znečišťující půdu * analýza MeSH
- popel uhelný analýza MeSH
- stopové prvky * analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Srbsko MeSH
- Názvy látek
- kovy MeSH
- látky znečišťující půdu * MeSH
- popel uhelný MeSH
- stopové prvky * MeSH
Atmospheric pollution remains one of the growing concerns in the twenty-first century, with particular focus on metal trace elements (MTE) from anthropogenic sources, due to their adverse effects on biota. The concentration and type of MTE in the atmosphere and in the soil are diverse, depending on the origin of pollutants, which can cause diverse detrimental effects on organisms living in the nearby environment. Three sites in Central Serbia with different origins of MTE pollution (urban contamination, smelting, and fly ash area) were assessed, using terrestrial Roman snails (Helix pomatia) as biomarker organisms. These snails are sentinel organisms and are known for their capacities for accumulation of MTE. Snails were sampled and their body was divided in three parts: viscera, foot, and shell and concentrations of MTE were determined in each of these body parts using inductively coupled plasma optical spectrometry. Results showed contrasting MTE accumulation patterns in body parts of the snails. Of three studied sites, snails sampled in the vicinity of fly ash containment had lower concentrations of MTE compared to other two polluted sites.
Zobrazit více v PubMed
Aleksander-Kwaterczak U, Gołas-Siarzewska M (2015) Comparative analysis of Helix pomatia L. shells found in soils with varying degrees of contamination (southern Poland). Geol Geophy Environ 41:299–309. https://doi.org/10.7494/geol.2015.41.4.299 DOI
Andreev N (2006) Assessment of the status of wild populations of land snail (escargot) Helix pomatia L. in Moldova: the effect of exploitation. Biodivers Conserv 15:2957–2970. https://doi.org/10.1007/s10531-005-3433-1 DOI
Anon (2011) Local environmental action plan of the municipality of Zemun. http://www.zemun.rs/cms/sites/default/files/Lokalni%20ekoloski%20akcioni%20plan%20LEAP.pdf . Accessed 20 Oct 2022
Balzan S, Buoso MC, Ceccato D, De Poli M, Giaccone V, Moschini G, Novelli E (2001) Investigation on micronutrient elements composition of terrestrial snails belonging to the genus Helix. Atti Soc Ital Sci Vet 55:333–334
Beeby A, Richmond L (2002) Evaluating Helix aspersa as a sentinel for mapping metal pollution. Ecol Indic 1:261–270. https://doi.org/10.1016/S1470-160X(02)00022-5 DOI
Berger B, Dallinger R (1993) Terrestrial snails as quantitative indicators of environmental metal pollution. Environ Monit Assess 25:65–84. https://doi.org/10.1007/bf00549793 DOI
Berger B, Dallinger R, Felder E, Moser J (1993) Budgeting the flow of cadmium and zinc through the terrestrial gastropod, Helix pomatia L. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals in invertebrates, 1st edn. Lewis Publishers, Boca Raton, pp 291–313
Boshoff M, Jordaens K, Baguet S, Bervoets L (2015) Trace metal transfer in a soil–plant–snail microcosm field experiment and biomarker responses in snails. Ecol Indic 48:636–648. https://doi.org/10.1016/j.ecolind.2014.08.037 DOI
Boyd RS, Davis MA, Wall MA, Balkwill K (2002) Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 12:91–97. https://doi.org/10.1007/s00049-002-8331-3 DOI
Brand U, Wassenaar L, Kanip J (1986) Variation in shell chemistry of terrestrial gastropods (Cerion incanum, Cerion uva, and Tudora maculata) from the Florida Keys and Bonaire. Can J Zool 64:2399–2404. https://doi.org/10.1139/z86-358 DOI
Carbone D, Faggio C (2019) Helix aspersa as sentinel of development damage for biomonitoring purpose: a validation study. Mol Reprod Dev 86:1283–1291. https://doi.org/10.1002/mrd.23117 DOI
Coughtrey PJ, Martin MH (1977) The uptake of lead, zinc, cadmium, and copper by the pulmonate mollusc, Helix aspersa Muller, and its relevance to the monitoring of heavy metal contamination of the environment. Oecologia 27:65–74. https://doi.org/10.1007/BF00345685 DOI
Ćirić J, Cerić O, Marković R, Janjić J, Spirić D, Popović M, Pećanac B, Baltić B, Baltić MŽ (2018) Seasonal distributions of heavy metal concentrations in different snail (Helix pomatia) tissues from an urban environment in Serbia. Environ Sci Pollut R 25:33415–33422. https://doi.org/10.1007/s11356-018-3295-1 DOI
Dallinger R, Wieser W (1984) Patterns of accumulation, distribution and liberation of Zn, Cu, Cd and Pb in different organs of the land snail Helix pomatia L. Comparative Biochemistry and Physiology Part c: Comparative Pharmacology 79:117–124. https://doi.org/10.1016/0742-8413(84)90173-7 DOI
Dragovic R, Gajic B, Dragovic S, Dordevic M, Dordevic M, Mihailovic N, Onjia A (2014) Assessment of the impact of geographical factors on the spatial distribution of heavy metals in soils around the steel production facility in Smederevo (Serbia). J Clean Prod 84:550–562. https://doi.org/10.1016/j.jclepro.2014.03.060
Dutch Ministry of Housing, Spatial Planning and Environment (2020) Circular Target Values and Intervention Values for Soil Remediation. https://www.esdat.net/environmental%20standards/dutch/annexs_i2000dutch%20evironmental%20standards.pdf . Accessed 20 October 2022
Dyduch-Falniowska A, Makomaska-Juchiewicz M, Perzanowska-Sucharska J, Tworek S, Zając K (2001) Roman snail (Helix pomatia L.) – conservation and management in the Małopolska region (southern Poland). Ekol Bratislava 20:265–283
Fritsch C, Coeurdassier M, Gimbert F, Crini N, Scheifler R, de Vaufleury A (2011) Investigations of responses to metal pollution in land snail populations (Cantareus aspersus and Cepaea nemoralis) from a smelter-impacted area. Ecotoxicology 20:739–759. https://doi.org/10.1007/s10646-011-0619-z DOI
Gheoca V (2013) Can heliciculture act as a tool for edible land snails’ natural populations’ management in Romania? Manag Sustain Dev 5:21–25. https://doi.org/10.2478/msd-2013-0011 DOI
Gimbert F, de Vaufleury A, Douay F, Coeurdassier M, Scheifler R, Badot P-M (2008) Long-term responses of snails exposed to cadmium-contaminated soils in a partial life-cycle experiment. Ecotoxicol Environ Saf 70:138–146. https://doi.org/10.1016/j.ecoenv.2007.05.014 DOI
Gomot A, Pihan F (1997) Comparison of the bioaccumulation capacities of copper and zinc in two snail subspecies (Helix). Ecotoxicol Environ Saf 38:85–94. https://doi.org/10.1006/eesa.1997.1566 DOI
Gomot de Vaufleury A, Pihan F (2000) Growing snails used as sentinels to evaluate terrestrial environment contamination by trace elements. Chemosphere 40:275–284. https://doi.org/10.1016/S0045-6535(99)00246-5 DOI
Hammermeister AM, Naeth MA, Chanasyk DS (1998) Implications of fly ash application to soil for plant growth and feed quality. Environ Technol 19:143–152. https://doi.org/10.1080/09593331908616666 DOI
Haynes RJ (2009) Reclamation and revegetation of fly ash disposal sites – challenges and research needs. J Environ Manag 90:43–53. https://doi.org/10.1016/j.jenvman.2008.07.003 DOI
IPHB-Institute for Public Health Belgrade (2009) Report on the soil pollution in the territory of Pozarevac in 2009. https://pozarevac.rs/fajlovi/zivotna_sredina/Godisnji_izvestaj_zemljista_Pozarevac_209.pdf . Accessed 20 Oct 2022
IPHB-Institute for Public Health Belgrade (2013) Report on the implementation of land monitoring in the Smederevo in 2013. http://www.grad.smederevo.org.rs/cms/mestoZaUploadFajlove/Godisnji%20izvestaj20zemljiste%20Smederevo%202013.pdf . Accessed 20 Oct 2022
Johansson C, Norman M, Burman L (2009) Road traffic emission factors for heavy metals. Atmos Environ 43:4681–4688. https://doi.org/10.1016/j.atmosenv.2008.10.024 DOI
Kapička A, Petrovský E, Ustjak S, Macháčková K (1999) Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. J Geochem Explor 66:291–297. https://doi.org/10.1016/S0375-6742(99)00008-4 DOI
Laskowski R, Hopkin SP (1996) Effect of Zn, Cu, Pb, and Cd on fitness in snails (Helix aspersa). Ecotoxicol Environ Saf 34:59–69. https://doi.org/10.1006/eesa.1996.0045 DOI
Ligaszewski M, Łysak A, Mach-Paluszkiewicz Z (2007) Reproductive performance of Helix pomatia (Gastropoda: Pulmonata: Helicidae) and survival of its hatchlings under farm conditions. Am Malacol Bull 22(1–6):6. https://doi.org/10.4003/0740-2783-22.1.1 DOI
Madejón P, Arrébola J, Madejón E, Burgos P, López-Garrido R, Cárcaba A, Cabrera F, Murillo JM (2013) The snail Theba pisana as an indicator of soil contamination by trace elements: potential exposure for animals and humans. J Sci Food Agric 93:2259–2266. https://doi.org/10.1002/jsfa.6035 DOI
Massadeh AM, Alomary AA, Mir S, Momani FA, Haddad HI, Hadad YA (2016) Analysis of Zn, Cd, As, Cu, Pb, and Fe in snails as bioindicators and soil samples near traffic road by ICP-OES. Environ Sci Pollut R 23:13424–13431. https://doi.org/10.1007/s11356-016-6499-2 DOI
Maurer A-F, Galer SJG, Knipper C, Beierlein L, Nunn EV, Peters D, Tütken T, Alt KW, Schöne BR (2012) Bioavailable DOI
Mitrović BM, Vranješ BR, Kostić OA, Perović VS, Mitrović MM, Pavlović PŽ (2019) Radionuclides and heavy metals in soil, vegetables, and medicinal plants in suburban areas of the cities of Belgrade and Pančevo, Serbia. Nucl Technol Radiat 34:278–284. https://doi.org/10.2298/NTRP190307026M DOI
Moser H, Wieser W (1979) Copper and nutrition in Helix pomatia (L.). Oecologia 42:241–251. https://doi.org/10.1007/BF00344860 DOI
Nesterkov AV (2013) Reaction of mollusk population to emissions from the Middle Ural Copper Smelter. Contemp Probl Ecol 6:667–673. https://doi.org/10.1134/S1995425513060085 DOI
Nica DV, Bura M, Gergen I, Harmanescu M, Bordean D-M (2012) Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain. Chem Cent J 6:55. https://doi.org/10.1186/1752-153X-6-55 DOI
Nica DV, Filimon MN, Bordean D-M, Harmanescu M, Draghici GA, Dragan S, Gergen II (2015) Impact of soil cadmium on land snails: a two-stage exposure approach under semi-field conditions using bioaccumulative and conchological end-points of exposure. PLoS ONE 10:e0116397. https://doi.org/10.1371/journal.pone.0116397 DOI
Notten MJM, Oosthoek AJP, Rozema J, Aerts R (2005) Heavy metal concentrations in a soil–plant–snail food chain along a terrestrial soil pollution gradient. Environ Pollut 138:178–190. https://doi.org/10.1016/j.envpol.2005.01.011 DOI
Nowakowska A, Łaciak T, Caputa M (2012) Heavy metals accumulation and antioxidant defence system in Helix pomatia (Pulmonata: Helicidae). Molluscan Res 32:16–20
Oehlmann J, Schulte-Oehlmann U (2003) Molluscs as bioindicators. In: Markert BA, Breure AM, Zechmeister HG (eds) Trace metals and other contaminants in the environment, vol 6, 1
Pech P, Fric ZF (2013) Malacofauna on coal - ash settling basins comparison of a functional basin to a basin abandoned for 26 years. Environ Prot Eng 39:73–85. https://doi.org/10.5277/epe130306 DOI
Pihan F, de Vaufleury A (2000) The snail as a target organism for the evaluation of industrial waste dump contamination and the efficiency of its remediation. Ecotoxicol Environ Saf 46:137–147. https://doi.org/10.1006/eesa.1999.1891 DOI
Poleksić V, Stojnić B, Topisirović G (2004) Farming snails in Serbia - concepts and initial experiences. Biotechnol Anim Husb 20(5–6):333–340
Poleksić V, Stojnić B, Dajić-Stevanović Z, Topisirović G, Zarić V (2005) Edible snail farming in Serbia: present and future. Contemp Agric 54:42–46
Rabitsch WB (1996) Metal accumulation in terrestrial pulmonates at a lead/zinc smelter site in Arnoldstein, Austria. Bull Environ Contam Toxicol 56:734–741. https://doi.org/10.1007/s001289900108 DOI
Regoli F, Gorbi S, Fattorini D, Tedesco S, Notti A, Machella N, Bocchetti R, Benedetti M, Piva F (2006) Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. Environ Health Perspect 114:63–69. https://doi.org/10.1289/ehp.8397 DOI
Sakan S, Dević G, Relić D, Anđelković I, Sakan N, Đorđević D (2015) Evaluation of sediment contamination with heavy metals: the importance of determining appropriate background content and suitable element for normalization. Environ Geochem Health 37:97–113. https://doi.org/10.1007/s10653-014-9633-4 DOI
Salih AHSH, Hama AA, Hawrami KAM, Ditta A (2021) The land snail, Eobania vermiculata, as a bioindicator of the heavy metal pollution in the urban areas of Sulaimani Iraq. Sustainability 13:13719. https://doi.org/10.3390/su132413719 DOI
Viard B, Pihan F, Promeyrat S, Pihan J-C (2004) Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere 55:1349–1359. https://doi.org/10.1016/j.chemosphere.2004.01.003 DOI
Wang Q-R, Cui Y-S, Liu X-M, Dong Y-T, Christie P (2003) Soil contamination and plant uptake of heavy metals at polluted sites in China. J Environ Sci Heal A 38:823–838. https://doi.org/10.1081/ESE-120018594 DOI
Włostowski T, Kozłowski P, Łaszkiewicz-Tiszczenko B, Oleńska E (2016) Cadmium accumulation and pathological alterations in the midgut gland of terrestrial snail Helix pomatia L. from a zinc smelter area: role of soil pH. Bull Environ Contam Toxicol 96:484–489. https://doi.org/10.1007/s00128-016-1748-0 DOI
Yuan G-L, Sun T-H, Han P, Li J (2013) Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: capital Iron & Steel Factory, Beijing, China. J Geochem Explor 130:15–21. https://doi.org/10.1016/j.gexplo.2013.02.010 DOI
Zucaro A, Forte A, De Vico G, Fierro A (2016) Environmental loading of Italian semi-intensive snail farming system evaluated by means of life cycle assessment. J Clean Prod 125:56–67. https://doi.org/10.1016/j.jclepro.2016.03.045 DOI