AHoJ: rapid, tailored search and retrieval of apo and holo protein structures for user-defined ligands

. 2022 Dec 13 ; 38 (24) : 5452-5453.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36282546

Grantová podpora
1038120 Grant Agency of Charles University
LM2018131 ELIXIR CZ Research Infrastructure

SUMMARY: Understanding the mechanism of action of a protein or designing better ligands for it, often requires access to a bound (holo) and an unbound (apo) state of the protein. Resources for the quick and easy retrieval of such conformations are severely limited. Apo-Holo Juxtaposition (AHoJ), is a web application for retrieving apo-holo structure pairs for user-defined ligands. Given a query structure and one or more user-specified ligands, it retrieves all other structures of the same protein that feature the same binding site(s), aligns them, and examines the superimposed binding sites to determine whether each structure is apo or holo, in reference to the query. The resulting superimposed datasets of apo-holo pairs can be visualized and downloaded for further analysis. AHoJ accepts multiple input queries, allowing the creation of customized apo-holo datasets. AVAILABILITY AND IMPLEMENTATION: Freely available for non-commercial use at http://apoholo.cz. Source code available at https://github.com/cusbg/AHoJ-project. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Zobrazit více v PubMed

Amaro R.E. et al. (2018) Ensemble docking in drug discovery. Biophys. J., 114, 2271–2278. PubMed PMC

Brylinski M., Skolnick J. (2008) What is the relationship between the global structures of apo and holo proteins? Proteins, 70, 363–377. PubMed

Capitani G. et al. (2016) Understanding the fabric of protein crystals: computational classification of biological interfaces and crystal contacts. Bioinformatics, 32, 481–489. PubMed PMC

Chang D.T.-H. et al. (2012) AH-DB: collecting protein structure pairs before and after binding. Nucleic Acids Res., 40, D472–D478. PubMed PMC

Cimermancic P. et al. (2016) CryptoSite: expanding the druggable proteome by characterization and prediction of cryptic binding sites. J. Mol. Biol., 428, 709–719. PubMed PMC

Dana J.M. et al. (2019) SIFTS: updated structure integration with function, taxonomy and sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins. Nucleic Acids Res., 47, D482–D489. PubMed PMC

Dessailly B.H. et al. (2008) LigASite—a database of biologically relevant binding sites in proteins with known apo-structures. Nucleic Acids Res., 36, D667–D673. PubMed PMC

Lobanov M. et al. (2010) ComSin: database of protein structures in bound (complex) and unbound (single) states in relation to their intrinsic disorder. Nucleic Acids Res., 38, D283–D287. PubMed PMC

Ma B. et al. (2002) Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci., 11, 184–197. PubMed PMC

Morita M. et al. (2011) BUDDY-system: a web site for constructing a dataset of protein pairs between ligand-bound and unbound states. BMC Res. Notes, 4, 143. PubMed PMC

Schiebel J. et al. (2018) Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nat. Commun., 9, 3559. PubMed PMC

The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res., 45, D158–D169. PubMed PMC

Wlodawer A. et al. (2018) Detect, correct, retract: how to manage incorrect structural models. FEBS J., 285, 444–466. PubMed PMC

Zhang Y., Skolnick J. (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res., 33, 2302–2309. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...