De novo transcriptome profiling unveils the regulation of phenylpropanoid biosynthesis in unripe Piper nigrum berries

. 2022 Oct 26 ; 22 (1) : 501. [epub] 20221026

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36284267
Odkazy

PubMed 36284267
PubMed Central PMC9597958
DOI 10.1186/s12870-022-03878-1
PII: 10.1186/s12870-022-03878-1
Knihovny.cz E-zdroje

BACKGROUND: Black pepper (Piper nigrum L.) is rich in bioactive compounds that make it an imperative constituent in traditional medicines. Although the unripe fruits have long been used in different Ayurvedic formulations, the mechanism of gene regulation resulting in the production of the bioactive compounds in black pepper is not much investigated. Exploring the regulatory factors favouring the production of bioactive compounds ultimately help to accumulate the medicinally important content of black pepper. The factors that enhance the biosynthesis of these compounds could be potential candidates for metabolic engineering strategies to obtain a high level production of significant biomolecules. RESULTS: Being a non-model plant, de novo sequencing technology was used to unravel comprehensive information about the genes and transcription factors that are expressed in mature unripe green berries of P. nigrum from which commercially available black pepper is prepared. In this study, the key gene regulations involved in the synthesis of bioactive principles in black pepper was brought out with a focus on the highly expressed phenylpropanoid pathway genes. Quantitative real-time PCR analysis of critical genes and transcription factors in the different developmental stages from bud to the mature green berries provides important information useful for choosing the developmental stage that would be best for the production of a particular bioactive compound. Comparison with a previous study has also been included to understand the relative position of the results obtained from this study. CONCLUSIONS: The current study uncovered significant information regarding the gene expression and regulation responsible for the bioactivity of black pepper. The key transcription factors and enzymes analyzed in this study are promising targets for achieving a high level production of significant biomolecules through metabolic engineering.

Zobrazit více v PubMed

Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, Khan T, Sharifi-Rad J, Ozleyen A, Turkdonmez E, Valussi M. Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules. 2019;24(7):1364. PubMed PMC

Srinivasan K. Black pepper (Piper nigrum) and its bioactive compound, piperine. InMolecular targets and therapeutic uses of spices: Modern uses for ancient medicine. 2009. pp. 25–64.

Thangaselvabal T, Gailce Leo Justin C, Leelamathi M. Black pepper (Piper nigrum L.)‘the king of spices’–A review. Agric Rev. 2008;29(2):89–98.

Gorgani L, Mohammadi M, Najafpour GD, Nikzad M. Piperine—the bioactive compound of black pepper: from isolation to medicinal formulations. Compr Rev Food Sci Food Saf. 2017;16(1):124–140. PubMed

Al-Baghdadi OB, Prater NI, Van der Schyf CJ, Geldenhuys WJ. Inhibition of monoamine oxidase by derivatives of piperine, an alkaloid from the pepper plant Piper nigrum, for possible use in Parkinson’s disease. Bioorg Med Chem Lett. 2012;22(23):7183–7188. PubMed

Stojanović-Radić Z, Pejčić M, Dimitrijević M, Aleksić A, V Anil Kumar N, Salehi B, C Cho W, Sharifi-Rad J. Piperine-A Major Principle of Black Pepper: a review of its bioactivity and studies. Appl Sci. 2019;9(20):4270.

Zheng J, Zhou Y, Li Y, Xu DP, Li S, Li HB. Spices for prevention and treatment of cancers. Nutrients. 2016;8(8):495. PubMed PMC

Damanhouri ZA, Ahmad A. A review on therapeutic potential of Piper nigrum L. Black Pepper): The King of Spices. Med Aromat Plants. 2014;3(3):161.

Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C, Liu S, Dontu G, Wicha MS. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat. 2010;122(3):777–785. PubMed PMC

Joy N, Asha S, Mallika V, Soniya EV. De novo transcriptome sequencing reveals a considerable bias in the incidence of simple sequence repeats towards the downstream of ‘pre-miRNAs’ of black pepper. PLoS One. 2013;8(3):e56694. PubMed PMC

Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro DK, Sensen CW, Storms R, Martin VJ. Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol. 2012;30(3):127–131. PubMed

Gu L, Zhang ZY, Quan H, Li MJ, Zhao FY, Xu YJ, Liu J, Sai M, Zheng WL, Lan XZ. Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in rotenoid biosynthesis in the medicinal plant Mirabilis himalaica. Mol Genet Genomics. 2018;293(3):635–647. PubMed PMC

Savoi S, Wong DC, Arapitsas P, Miculan M, Bucchetti B, Peterlunger E, Fait A, Mattivi F, Castellarin SD. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.) BMC Plant Biol. 2016;16(1):1–7. PubMed PMC

Morozova O, Hirst M, Marra MA. Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet. 2009;22(10):135–151. PubMed

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–12.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011;29(7):644. PubMed PMC

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–1659. PubMed

Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–3152. PubMed PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. PubMed

The UniProt Consortium, UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480–9. 10.1093/nar/gkaa1100. PubMed PMC

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35(suppl_2):W182–5. PubMed PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8. PubMed

Asha S, Sreekumar S, Soniya EV. Unravelling the complexity of microRNA-mediated gene regulation in black pepper (Piper nigrum L.) using high-throughput small RNA profiling. Plant Cell Rep. 2016;35(1):53–63. PubMed

Hu L, Hao C, Fan R, Wu B, Tan L, Wu H. De novo assembly and characterization of fruit transcriptome in black pepper (Piper nigrum) PLoS One. 2015;10(6):e0129822. PubMed PMC

Wang C, Xu N, Cui S. Comparative transcriptome analysis of roots, stems, and leaves of Pueraria lobata (Willd.) Ohwi: identification of genes involved in isoflavonoid biosynthesis. PeerJ. 2021;9:e10885. PubMed PMC

Hübner S, Hehmann M, Schreiner S, Martens S, Lukačin R, Matern U. Functional expression of cinnamate 4-hydroxylase from Ammi majus L. Phytochemistry. 2003;64(2):445–452. PubMed

Pascual MB, El-Azaz J, de la Torre FN, Cañas RA, Avila C, Cánovas FM. Biosynthesis and metabolic fate of phenylalanine in conifers. Front Plant Sci. 2016;13(7):1030. PubMed PMC

Gomez-Cano L, Gomez-Cano F, Dillon FM, Alers-Velazquez R, Doseff AI, Grotewold E, Gray J. Discovery of modules involved in the biosynthesis and regulation of maize phenolic compounds. Plant Sci. 2020;1(291):110364. PubMed

MacDonald MJ, D’Cunha GB. A modern view of phenylalanine ammonia lyase. Biochem Cell Biol. 2007;85(3):273–282. PubMed

Weisshaar B, Jenkins GI. Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol. 1998;1(3):251–257. PubMed

Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L. The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol. 2002;3(5):371–390. PubMed

Guillaumie S, Mzid R, Méchin V, Léon C, Hichri I, Destrac-Irvine A, Trossat-Magnin C, Delrot S, Lauvergeat V. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Mol Biol. 2010;72(1):215–234. PubMed

Yang L, Zhao X, Ran L, Li C, Fan D, Luo K. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Sci Rep. 2017;7(1):1–4. PubMed PMC

Hao C, Xia Z, Fan R, Tan L, Hu L, Wu B, Wu H. De novo transcriptome sequencing of black pepper (Piper nigrum L.) and an analysis of genes involved in phenylpropanoid metabolism in response to Phytophthora capsici. BMC Genomics. 2016;17(1):1–4. PubMed PMC

Vogt T. Phenylpropanoid biosynthesis. Mol Plant. 2010;3(1):2. PubMed

Qiu J, Gao F, Shen G, Li C, Han X, Zhao Q, Zhao D, Hua X, Pang Y. Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata. PLoS One. 2013;8(8):e70665. PubMed PMC

Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78. PubMed PMC

Khew CY, Harikrishna JA, Wee WY, Lau ET, Hwang SS. Transcriptional sequencing and gene expression analysis of various genes in fruit development of three different black pepper (Piper nigrum L.) varieties. Int J Genomics. 2020;2020:1540915. PubMed PMC

Joy N, Abraham Z, Soniya EV. A preliminary assessment of genetic relationships among agronomically important cultivars of black pepper. BMC Genet. 2007;8(1):1–7. PubMed PMC

Bhattacharyya D, Sinha R, Hazra S, Datta R, Chattopadhyay S. De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genomics. 2013;14(1):1–3. PubMed PMC

Farré G, Blancquaert D, Capell T, Van Der Straeten D, Christou P, Zhu C. Engineering complex metabolic pathways in plants. Annu Rev Plant Biol. 2014;29(65):187–223. PubMed

Century K, Reuber TL, Ratcliffe OJ. Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol. 2008;147(1):20–29. PubMed PMC

Higuchi T. Biochemistry and molecular biology of wood. Berlin and Heidelberg: Springer-Verlag and GmbH & Co. KG; 2011.

Zhu H, Xia R, Zhao B, An YQ, Dardick CD, Callahan AM, Liu Z. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biol. 2012;12(1):1–8. PubMed PMC

Humphreys JM, Chapple C. Rewriting the lignin roadmap. Curr Opin Plant Biol. 2002;5(3):224–229. PubMed

Hamberger B, Ellis M, Friedmann M, de Azevedo Souza C, Barbazuk B, Douglas CJ. Genome-wide analyses of phenylpropanoid-related genes in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa: the Populus lignin toolbox and conservation and diversification of angiosperm gene families. Botany. 2007;85(12):1182–1201.

Labeeuw L, Martone PT, Boucher Y, Case RJ. Ancient origin of the biosynthesis of lignin precursors. Biol Direct. 2015;10(1):1–21. PubMed PMC

Xu H, Park NI, Li X, Kim YK, Lee SY, Park SU. Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis. Biores Technol. 2010;101(24):9715–9722. PubMed

Croteau R, Kutchan TM, Lewis NG. Natural products (secondary metabolites) Biochem Mol Biol Plants. 2000;24:1250–1319.

Shen H, Mazarei M, Hisano H, Escamilla-Trevino L, Fu C, Pu Y, Rudis MR, Tang Y, Xiao X, Jackson L, Li G. A genomics approach to deciphering lignin biosynthesis in switchgrass. Plant Cell. 2013;25(11):4342–4361. PubMed PMC

Wu J, Wang D, Liu Y, Wang L, Qiao X, Zhang S. Identification of miRNAs involved in pear fruit development and quality. BMC Genomics. 2014;15(1):1–9. PubMed PMC

Hidalgo D, Georgiev M, Marchev A, Bru-Martínez R, Cusido RM, Corchete P, Palazon J. Tailoring tobacco hairy root metabolism for the production of stilbenes. Sci Rep. 2017;7(1):1–1. PubMed PMC

Tiwari M, Sharma D, Trivedi PK. Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol. 2014;86(1):1–8. PubMed

Ibánez AM, Martinelli F, Reagan RL, Uratsu SL, Vo A, Tinoco MA, Phu ML, Chen Y, Rocke DM, Dandekar AM. Transcriptome and metabolome analysis of citrus fruit to elucidate puffing disorder. Plant Sci. 2014;1(217):87–98. PubMed

Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol. 2006;2(57):761–780. PubMed

Xie DY, Sharma SB, Wright E, Wang ZY, Dixon RA. Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J. 2006;45(6):895–907. PubMed

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15(10):573–581. PubMed

Zhou M, Zhang K, Sun Z, Yan M, Chen C, Zhang X, Tang Y, Wu Y. LNK1 and LNK2 corepressors interact with the MYB3 transcription factor in phenylpropanoid biosynthesis. Plant Physiol. 2017;174(3):1348–1358. PubMed PMC

Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST. Micro R 828 regulates lignin and H 2 O 2 accumulation in sweet potato on wounding. New Phytol. 2012;196(2):427–440. PubMed

Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science. 2008;320(5880):1185–1190. PubMed

Cavallini E, Matus JT, Finezzo L, Zenoni S, Loyola R, Guzzo F, Schlechter R, Ageorges A, Arce-Johnson P, Tornielli GB. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiol. 2015;167(4):1448–1470. PubMed PMC

Flores FP, Singh RK, Kerr WL, Pegg RB, Kong F. Antioxidant and enzyme inhibitory activities of blueberry anthocyanins prepared using different solvents. J Agric Food Chem. 2013;61(18):4441–4447. PubMed

Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DG, Wang H, Jackson L, Tang Y, Neal Stewart Jr C, Chen F. Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol. 2012;193(1):121–136. PubMed

Ma D, Reichelt M, Yoshida K, Gershenzon J, Constabel CP. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. Plant J. 2018;96(5):949–965. PubMed

Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol. 1999;41(5):577–585. PubMed

Chen L, Xin X, Yuan Q, Su D, Liu W. Phytochemical properties and antioxidant capacities of various colored berries. J Sci Food Agric. 2014;94(2):180–188. PubMed

Payyavula RS, Singh RK, Navarre DA. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. J Exp Bot. 2013;64(16):5115–5131. PubMed PMC

Eulgem T, Somssich IE. Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol. 2007;10(4):366–371. PubMed

Tuteja N, Gill SS, Tiburcio AF, Tuteja R, editors. Improving crop resistance to abiotic stress. U.S.: Wiley; 2012.

Chanwala J, Satpati S, Dixit A, Parida A, Giri MK, Dey N. Genome-wide identification and expression analysis of WRKY transcription factors in pearl millet (Pennisetum glaucum) under dehydration and salinity stress. BMC Genomics. 2020;21(1):1–6. PubMed PMC

Kawaoka A, Kaothien P, Yoshida K, Endo S, Yamada K, Ebinuma H. Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis. Plant J. 2000;22(4):289–301. PubMed

Hu L, Xu Z, Wang M, Fan R, Yuan D, Wu B, Wu H, Qin X, Yan L, Tan L, Sim S. The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis. Nat Commun. 2019;10(1):1–1. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...