Characterization of Porcine Monocyte-Derived Macrophages Cultured in Serum-Reduced Medium

. 2022 Oct 04 ; 11 (10) : . [epub] 20221004

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36290361

Grantová podpora
MZE-RO0518 Ministry of Agriculture of the Czech Republic
QK1910311 Ministry of Agriculture of the Czech Republic

The aim of this study was to establish a cell culture system for the generation of porcine monocyte-derived macrophages (MDMs) under reduced-serum conditions. Cultures based on either the Nu-Serum™ Growth Medium Supplement (NUS) or a conventional fetal bovine serum (FBS) were compared, which included the assessment of FBS from two different providers (FBS1 and FBS2). The data obtained confirmed the significant impact of culture conditions on in vitro-generated MDMs. The MDMs cultured under reduced-serum conditions showed increased levels of IL-1β and CD86 mRNA and a proinflammatory cytokine profile, characterized by the increased mRNA expression of IL-23p19, CXCL10, and CCL5. Phagocytic and respiratory burst activities were not adversely affected. Surprisingly, the difference between the two FBSs was much more pronounced than the effect of the reduced-serum supplement. The FBS1 culture conditions gave rise to macrophages with higher surface levels of CD14, CD16, and CD163, a lower CD80 mRNA expression, and an increased induction of IL-10 gene expression. In contrast, none of these trends were observed in macrophage cultures supplemented with FBS2. Instead, the FBS2 culture showed increased levels of IL-1b and CD86 mRNA. In conclusion, reduced-serum culture is a useful tool for in vitro porcine MDM generation, in line with the current research trend of reducing FBS use in biological research.

Zobrazit více v PubMed

Wynn T.A., Chawla A., Pollard J.W. Macrophage Biology in Development, Homeostasis and Disease. Nature. 2013;496:445–455. doi: 10.1038/nature12034. PubMed DOI PMC

Taciak B., Białasek M., Braniewska A., Sas Z., Sawicka P., Kiraga Ł., Rygiel T., Król M. Evaluation of Phenotypic and Functional Stability of RAW 264.7 Cell Line through Serial Passages. PLoS ONE. 2018;13:e0198943. doi: 10.1371/journal.pone.0198943. PubMed DOI PMC

Kyrova K., Stepanova H., Rychlik I., Polansky O., Leva L., Sekelova Z., Faldyna M., Volf J. The Response of Porcine Monocyte Derived Macrophages and Dendritic Cells to Salmonella Typhimurium and Lipopolysaccharide. BMC Vet. Res. 2014;10:244. doi: 10.1186/s12917-014-0244-1. PubMed DOI PMC

Stepanova H., Pavlova B., Stromerova N., Ondrackova P., Stejskal K., Slana I., Zdrahal Z., Pavlik I., Faldyna M. Different Immune Response of Pigs to Mycobacterium Avium Subsp. Avium and Mycobacterium Avium Subsp. Hominissuis Infection. Vet. Microbiol. 2012;159:343–350. doi: 10.1016/j.vetmic.2012.04.002. PubMed DOI

Kavanová L., Matiašková K., Levá L., Nedbalcová K., Matiašovic J., Faldyna M., Salát J. Concurrent Infection of Monocyte-Derived Macrophages with Porcine Reproductive and Respiratory Syndrome Virus and Haemophilus Parasuis: A Role of IFNα in Pathogenesis of Co-Infections. Vet. Microbiol. 2018;225:64–71. doi: 10.1016/j.vetmic.2018.09.016. PubMed DOI

Kavanová L., Moutelíková R., Prodělalová J., Faldyna M., Toman M., Salát J. Monocyte Derived Macrophages as an Appropriate Model for Porcine Cytomegalovirus Immunobiology Studies. Vet. Immunol. Immunopathol. 2018;197:58–62. doi: 10.1016/j.vetimm.2018.01.008. PubMed DOI

Kavanová L., Matiašková K., Levá L., Štěpánová H., Nedbalcová K., Matiašovic J., Faldyna M., Salát J. Concurrent Infection with Porcine Reproductive and Respiratory Syndrome Virus and Haemophilus Parasuis in Two Types of Porcine Macrophages: Apoptosis, Production of ROS and Formation of Multinucleated Giant Cells. Vet. Res. 2017;48:28. doi: 10.1186/s13567-017-0433-6. PubMed DOI PMC

Vicenova M., Nechvatalova K., Chlebova K., Kucerova Z., Leva L., Stepanova H., Faldyna M. Evaluation of in Vitro and in Vivo Anti-Inflammatory Activity of Biologically Active Phospholipids with Anti-Neoplastic Potential in Porcine Model. BMC Complement. Altern. Med. 2014;14:339. doi: 10.1186/1472-6882-14-339. PubMed DOI PMC

Zemankova N., Chlebova K., Matiasovic J., Prodelalova J., Gebauer J., Faldyna M. Bovine Lactoferrin Free of Lipopolysaccharide Can Induce a Proinflammatory Response of Macrophages. BMC Vet. Res. 2016;12:251. doi: 10.1186/s12917-016-0878-2. PubMed DOI PMC

Gao J., Scheenstra M.R., van Dijk A., Veldhuizen E.J.A., Haagsman H.P. A New and Efficient Culture Method for Porcine Bone Marrow-Derived M1- and M2-Polarized Macrophages. Vet. Immunol. Immunopathol. 2018;200:7–15. doi: 10.1016/j.vetimm.2018.04.002. PubMed DOI

Chamorro S., Revilla C., Álvarez B., Alonso F., Ezquerra Á., Domínguez J. Phenotypic and Functional Heterogeneity of Porcine Blood Monocytes and Its Relation with Maturation. Immunology. 2005;114:63–71. doi: 10.1111/j.1365-2567.2004.01994.x. PubMed DOI PMC

Franzoni G., Bonelli P., Graham S.P., Anfossi A.G., Dei Giudici S., Pilo G., Pittau M., Nicolussi P., Oggiano A. Comparative Phenotypic and Functional Analyses of the Effects of Autologous Plasma and Recombinant Human Macrophage-Colony Stimulating Factor (M-CSF) on Porcine Monocyte to Macrophage Differentiation. Vet. Immunol. Immunopathol. 2017;187:80–88. doi: 10.1016/j.vetimm.2017.04.006. PubMed DOI

van der Valk J., Bieback K., Buta C., Cochrane B., Dirks W.G., Fu J., Hickman J.J., Hohensee C., Kolar R., Liebsch M., et al. Fetal Bovine Serum (FBS): Past–Present–Future. ALTEX. 2018;35:99–118. doi: 10.14573/altex.1705101. PubMed DOI

Ham R.G. Clonal Growth of Mammalian Cells In A Chemically Defined, Synthetic Medium. Proc. Natl. Acad. Sci. USA. 1965;53:288–293. doi: 10.1073/pnas.53.2.288. PubMed DOI PMC

Gstraunthaler G. Alternatives to the Use of Fetal Bovine Serum: Serum-Free Cell Culture. ALTEX Altern. Anim. Exp. 2003;20:275–281. doi: 10.14573/altex.2003.4.257. PubMed DOI

Pavlova B., Volf J., Ondrackova P., Matiasovic J., Stepanova H., Crhanova M., Karasova D., Faldyna M., Rychlik I. SPI-1-Encoded Type III Secretion System of Salmonella Enterica Is Required for the Suppression of Porcine Alveolar Macrophage Cytokine Expression. Vet. Res. 2011;42:16. doi: 10.1186/1297-9716-42-16. PubMed DOI PMC

Kyrova K., Stepanova H., Rychlik I., Faldyna M., Volf J. SPI-1 Encoded Genes of Salmonella Typhimurium Influence Differential Polarization of Porcine Alveolar Macrophages in Vitro. BMC Vet. Res. 2012;8:115. doi: 10.1186/1746-6148-8-115. PubMed DOI PMC

Volf J., Boyen F., Faldyna M., Pavlova B., Navratilova J., Rychlik I. Cytokine Response of Porcine Cell Lines to Salmonella Enterica Serovar Typhimurium and Its HilA and SsrA Mutants. Zoonoses Public Health. 2007;54:286–293. doi: 10.1111/j.1863-2378.2007.01064.x. PubMed DOI

Andersen C.L., Jensen J.L., Ørntoft T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004;64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496. PubMed DOI

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Oida T., Weiner H.L. Depletion of TGF-β from Fetal Bovine Serum. J. Immunol. Methods. 2010;362:195–198. doi: 10.1016/j.jim.2010.09.008. PubMed DOI PMC

Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J. Immunol. 2000;164:6166–6173. doi: 10.4049/jimmunol.164.12.6166. PubMed DOI

Daigneault M., Preston J.A., Marriott H.M., Whyte M.K.B., Dockrell D.H. The Identification of Markers of Macrophage Differentiation in PMA-Stimulated THP-1 Cells and Monocyte-Derived Macrophages. PLoS ONE. 2010;5:e8668. doi: 10.1371/journal.pone.0008668. PubMed DOI PMC

McCullough K.C., Basta S., Knötig S., Gerber H., Schaffner R., Kim Y.B., Saalmüller A., Summerfield A. Intermediate Stages in Monocyte-Macrophage Differentiation Modulate Phenotype and Susceptibility to Virus Infection. Immunology. 1999;98:203–212. doi: 10.1046/j.1365-2567.1999.00867.x. PubMed DOI PMC

Kapetanovic R., Fairbairn L., Beraldi D., Sester D.P., Archibald A.L., Tuggle C.K., Hume D.A. Pig Bone Marrow-Derived Macrophages Resemble Human Macrophages in Their Response to Bacterial Lipopolysaccharide. J. Immunol. 2012;188:3382–3394. doi: 10.4049/jimmunol.1102649. PubMed DOI

Brunner D., Frank J., Appl H., Schöffl H., Pfaller W., Gstraunthaler G. Serum-Free Cell Culture: The Serum-Free Media Interactive Online Database. ALTEX Altern. Anim. Exp. 2010;27:53–62. doi: 10.14573/altex.2010.1.53. PubMed DOI

Rey-Giraud F., Hafner M., Ries C.H. In Vitro Generation of Monocyte-Derived Macrophages under Serum-Free Conditions Improves Their Tumor Promoting Functions. PLoS ONE. 2012;7:e42656. doi: 10.1371/journal.pone.0042656. PubMed DOI PMC

Eske K., Breitbach K., Köhler J., Wongprompitak P., Steinmetz I. Generation of Murine Bone Marrow Derived Macrophages in a Standardised Serum-Free Cell Culture System. J. Immunol. Methods. 2009;342:13–19. doi: 10.1016/j.jim.2008.11.011. PubMed DOI

Flesch I., Ferber E. Growth Requirements of Murine Bone Marrow Macrophages in Serum-Free Cell Culture. Immunobiology. 1986;171:14–26. doi: 10.1016/S0171-2985(86)80014-6. PubMed DOI

Calvert J.G., Slade D.E., Shields S.L., Jolie R., Mannan R.M., Ankenbauer R.G., Welch S.-K.W. CD163 Expression Confers Susceptibility to Porcine Reproductive and Respiratory Syndrome Viruses. J. Virol. 2007;81:7371–7379. doi: 10.1128/JVI.00513-07. PubMed DOI PMC

Patton J.B., Rowland R.R., Yoo D., Chang K.O. Modulation of CD163 Receptor Expression and Replication of Porcine Reproductive and Respiratory Syndrome Virus in Porcine Macrophages. Virus Res. 2009;140:161–171. doi: 10.1016/j.virusres.2008.12.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...