Characterization of Porcine Monocyte-Derived Macrophages Cultured in Serum-Reduced Medium
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO0518
Ministry of Agriculture of the Czech Republic
QK1910311
Ministry of Agriculture of the Czech Republic
PubMed
36290361
PubMed Central
PMC9598231
DOI
10.3390/biology11101457
PII: biology11101457
Knihovny.cz E-zdroje
- Klíčová slova
- in vitro, monocyte-derived macrophages, pig, porcine, serum reduction,
- Publikační typ
- časopisecké články MeSH
The aim of this study was to establish a cell culture system for the generation of porcine monocyte-derived macrophages (MDMs) under reduced-serum conditions. Cultures based on either the Nu-Serum™ Growth Medium Supplement (NUS) or a conventional fetal bovine serum (FBS) were compared, which included the assessment of FBS from two different providers (FBS1 and FBS2). The data obtained confirmed the significant impact of culture conditions on in vitro-generated MDMs. The MDMs cultured under reduced-serum conditions showed increased levels of IL-1β and CD86 mRNA and a proinflammatory cytokine profile, characterized by the increased mRNA expression of IL-23p19, CXCL10, and CCL5. Phagocytic and respiratory burst activities were not adversely affected. Surprisingly, the difference between the two FBSs was much more pronounced than the effect of the reduced-serum supplement. The FBS1 culture conditions gave rise to macrophages with higher surface levels of CD14, CD16, and CD163, a lower CD80 mRNA expression, and an increased induction of IL-10 gene expression. In contrast, none of these trends were observed in macrophage cultures supplemented with FBS2. Instead, the FBS2 culture showed increased levels of IL-1b and CD86 mRNA. In conclusion, reduced-serum culture is a useful tool for in vitro porcine MDM generation, in line with the current research trend of reducing FBS use in biological research.
Zobrazit více v PubMed
Wynn T.A., Chawla A., Pollard J.W. Macrophage Biology in Development, Homeostasis and Disease. Nature. 2013;496:445–455. doi: 10.1038/nature12034. PubMed DOI PMC
Taciak B., Białasek M., Braniewska A., Sas Z., Sawicka P., Kiraga Ł., Rygiel T., Król M. Evaluation of Phenotypic and Functional Stability of RAW 264.7 Cell Line through Serial Passages. PLoS ONE. 2018;13:e0198943. doi: 10.1371/journal.pone.0198943. PubMed DOI PMC
Kyrova K., Stepanova H., Rychlik I., Polansky O., Leva L., Sekelova Z., Faldyna M., Volf J. The Response of Porcine Monocyte Derived Macrophages and Dendritic Cells to Salmonella Typhimurium and Lipopolysaccharide. BMC Vet. Res. 2014;10:244. doi: 10.1186/s12917-014-0244-1. PubMed DOI PMC
Stepanova H., Pavlova B., Stromerova N., Ondrackova P., Stejskal K., Slana I., Zdrahal Z., Pavlik I., Faldyna M. Different Immune Response of Pigs to Mycobacterium Avium Subsp. Avium and Mycobacterium Avium Subsp. Hominissuis Infection. Vet. Microbiol. 2012;159:343–350. doi: 10.1016/j.vetmic.2012.04.002. PubMed DOI
Kavanová L., Matiašková K., Levá L., Nedbalcová K., Matiašovic J., Faldyna M., Salát J. Concurrent Infection of Monocyte-Derived Macrophages with Porcine Reproductive and Respiratory Syndrome Virus and Haemophilus Parasuis: A Role of IFNα in Pathogenesis of Co-Infections. Vet. Microbiol. 2018;225:64–71. doi: 10.1016/j.vetmic.2018.09.016. PubMed DOI
Kavanová L., Moutelíková R., Prodělalová J., Faldyna M., Toman M., Salát J. Monocyte Derived Macrophages as an Appropriate Model for Porcine Cytomegalovirus Immunobiology Studies. Vet. Immunol. Immunopathol. 2018;197:58–62. doi: 10.1016/j.vetimm.2018.01.008. PubMed DOI
Kavanová L., Matiašková K., Levá L., Štěpánová H., Nedbalcová K., Matiašovic J., Faldyna M., Salát J. Concurrent Infection with Porcine Reproductive and Respiratory Syndrome Virus and Haemophilus Parasuis in Two Types of Porcine Macrophages: Apoptosis, Production of ROS and Formation of Multinucleated Giant Cells. Vet. Res. 2017;48:28. doi: 10.1186/s13567-017-0433-6. PubMed DOI PMC
Vicenova M., Nechvatalova K., Chlebova K., Kucerova Z., Leva L., Stepanova H., Faldyna M. Evaluation of in Vitro and in Vivo Anti-Inflammatory Activity of Biologically Active Phospholipids with Anti-Neoplastic Potential in Porcine Model. BMC Complement. Altern. Med. 2014;14:339. doi: 10.1186/1472-6882-14-339. PubMed DOI PMC
Zemankova N., Chlebova K., Matiasovic J., Prodelalova J., Gebauer J., Faldyna M. Bovine Lactoferrin Free of Lipopolysaccharide Can Induce a Proinflammatory Response of Macrophages. BMC Vet. Res. 2016;12:251. doi: 10.1186/s12917-016-0878-2. PubMed DOI PMC
Gao J., Scheenstra M.R., van Dijk A., Veldhuizen E.J.A., Haagsman H.P. A New and Efficient Culture Method for Porcine Bone Marrow-Derived M1- and M2-Polarized Macrophages. Vet. Immunol. Immunopathol. 2018;200:7–15. doi: 10.1016/j.vetimm.2018.04.002. PubMed DOI
Chamorro S., Revilla C., Álvarez B., Alonso F., Ezquerra Á., Domínguez J. Phenotypic and Functional Heterogeneity of Porcine Blood Monocytes and Its Relation with Maturation. Immunology. 2005;114:63–71. doi: 10.1111/j.1365-2567.2004.01994.x. PubMed DOI PMC
Franzoni G., Bonelli P., Graham S.P., Anfossi A.G., Dei Giudici S., Pilo G., Pittau M., Nicolussi P., Oggiano A. Comparative Phenotypic and Functional Analyses of the Effects of Autologous Plasma and Recombinant Human Macrophage-Colony Stimulating Factor (M-CSF) on Porcine Monocyte to Macrophage Differentiation. Vet. Immunol. Immunopathol. 2017;187:80–88. doi: 10.1016/j.vetimm.2017.04.006. PubMed DOI
van der Valk J., Bieback K., Buta C., Cochrane B., Dirks W.G., Fu J., Hickman J.J., Hohensee C., Kolar R., Liebsch M., et al. Fetal Bovine Serum (FBS): Past–Present–Future. ALTEX. 2018;35:99–118. doi: 10.14573/altex.1705101. PubMed DOI
Ham R.G. Clonal Growth of Mammalian Cells In A Chemically Defined, Synthetic Medium. Proc. Natl. Acad. Sci. USA. 1965;53:288–293. doi: 10.1073/pnas.53.2.288. PubMed DOI PMC
Gstraunthaler G. Alternatives to the Use of Fetal Bovine Serum: Serum-Free Cell Culture. ALTEX Altern. Anim. Exp. 2003;20:275–281. doi: 10.14573/altex.2003.4.257. PubMed DOI
Pavlova B., Volf J., Ondrackova P., Matiasovic J., Stepanova H., Crhanova M., Karasova D., Faldyna M., Rychlik I. SPI-1-Encoded Type III Secretion System of Salmonella Enterica Is Required for the Suppression of Porcine Alveolar Macrophage Cytokine Expression. Vet. Res. 2011;42:16. doi: 10.1186/1297-9716-42-16. PubMed DOI PMC
Kyrova K., Stepanova H., Rychlik I., Faldyna M., Volf J. SPI-1 Encoded Genes of Salmonella Typhimurium Influence Differential Polarization of Porcine Alveolar Macrophages in Vitro. BMC Vet. Res. 2012;8:115. doi: 10.1186/1746-6148-8-115. PubMed DOI PMC
Volf J., Boyen F., Faldyna M., Pavlova B., Navratilova J., Rychlik I. Cytokine Response of Porcine Cell Lines to Salmonella Enterica Serovar Typhimurium and Its HilA and SsrA Mutants. Zoonoses Public Health. 2007;54:286–293. doi: 10.1111/j.1863-2378.2007.01064.x. PubMed DOI
Andersen C.L., Jensen J.L., Ørntoft T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004;64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496. PubMed DOI
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Oida T., Weiner H.L. Depletion of TGF-β from Fetal Bovine Serum. J. Immunol. Methods. 2010;362:195–198. doi: 10.1016/j.jim.2010.09.008. PubMed DOI PMC
Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J. Immunol. 2000;164:6166–6173. doi: 10.4049/jimmunol.164.12.6166. PubMed DOI
Daigneault M., Preston J.A., Marriott H.M., Whyte M.K.B., Dockrell D.H. The Identification of Markers of Macrophage Differentiation in PMA-Stimulated THP-1 Cells and Monocyte-Derived Macrophages. PLoS ONE. 2010;5:e8668. doi: 10.1371/journal.pone.0008668. PubMed DOI PMC
McCullough K.C., Basta S., Knötig S., Gerber H., Schaffner R., Kim Y.B., Saalmüller A., Summerfield A. Intermediate Stages in Monocyte-Macrophage Differentiation Modulate Phenotype and Susceptibility to Virus Infection. Immunology. 1999;98:203–212. doi: 10.1046/j.1365-2567.1999.00867.x. PubMed DOI PMC
Kapetanovic R., Fairbairn L., Beraldi D., Sester D.P., Archibald A.L., Tuggle C.K., Hume D.A. Pig Bone Marrow-Derived Macrophages Resemble Human Macrophages in Their Response to Bacterial Lipopolysaccharide. J. Immunol. 2012;188:3382–3394. doi: 10.4049/jimmunol.1102649. PubMed DOI
Brunner D., Frank J., Appl H., Schöffl H., Pfaller W., Gstraunthaler G. Serum-Free Cell Culture: The Serum-Free Media Interactive Online Database. ALTEX Altern. Anim. Exp. 2010;27:53–62. doi: 10.14573/altex.2010.1.53. PubMed DOI
Rey-Giraud F., Hafner M., Ries C.H. In Vitro Generation of Monocyte-Derived Macrophages under Serum-Free Conditions Improves Their Tumor Promoting Functions. PLoS ONE. 2012;7:e42656. doi: 10.1371/journal.pone.0042656. PubMed DOI PMC
Eske K., Breitbach K., Köhler J., Wongprompitak P., Steinmetz I. Generation of Murine Bone Marrow Derived Macrophages in a Standardised Serum-Free Cell Culture System. J. Immunol. Methods. 2009;342:13–19. doi: 10.1016/j.jim.2008.11.011. PubMed DOI
Flesch I., Ferber E. Growth Requirements of Murine Bone Marrow Macrophages in Serum-Free Cell Culture. Immunobiology. 1986;171:14–26. doi: 10.1016/S0171-2985(86)80014-6. PubMed DOI
Calvert J.G., Slade D.E., Shields S.L., Jolie R., Mannan R.M., Ankenbauer R.G., Welch S.-K.W. CD163 Expression Confers Susceptibility to Porcine Reproductive and Respiratory Syndrome Viruses. J. Virol. 2007;81:7371–7379. doi: 10.1128/JVI.00513-07. PubMed DOI PMC
Patton J.B., Rowland R.R., Yoo D., Chang K.O. Modulation of CD163 Receptor Expression and Replication of Porcine Reproductive and Respiratory Syndrome Virus in Porcine Macrophages. Virus Res. 2009;140:161–171. doi: 10.1016/j.virusres.2008.12.002. PubMed DOI