Toxic Megacolon Burdened with COVID-19 Coinfection-Worsening of an Unfavorable Diagnosis: A Single-Center Retrospective Study
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NU22-C-113. All rights reserved.
Ministry of Health of the Czech Republic
PubMed
36294980
PubMed Central
PMC9604586
DOI
10.3390/life12101545
PII: life12101545
Knihovny.cz E-resources
- Keywords
- COVID-19 infection, Candida species, Clostridium difficile infection, Klebsiella species, prognosis, toxic megacolon,
- Publication type
- Journal Article MeSH
INTRODUCTION: This study primarily sought to evaluate the risk factors for toxic megacolon development and treatment outcomes in Clostridium difficile-positive COVID-19 patients, secondarily to determining predictors of survival. METHODS: During the second COVID-19 wave (May 2020 to May 2021), we identified 645 patients with confirmed COVID-19 infection, including 160 patients with a severe course in the intensive care unit. We selected patients with Clostridium difficile infection (CDI) (31 patients) and patients with toxic megacolon (9 patients) and analyzed possible risk factors. RESULTS: Patients who developed toxic megacolon had a higher incidence (without statistical significance, due to small sample size) of cancer and chronic obstructive pulmonary disease, a higher proportion of them required antibiotic treatment using cephalosporins or penicillins, and there was a higher rate of extracorporeal circulation usage. C-reactive protein (CRP) and interleukin-6 values showed significant differences between the groups (CRP [median 126 mg/L in the non-toxic megacolon cohort and 237 mg/L in the toxic megacolon cohort; p = 0.037] and interleukin-6 [median 252 ng/L in the group without toxic megacolon and 1127 ng/L in those with toxic megacolon; p = 0.016]). As possible predictors of survival, age, presence of chronic venous insufficiency, cardiac disease, mechanical ventilation, and infection with Candida species were significant for increasing the risk of death, while corticosteroid and cephalosporin treatment and current Klebsiella infection decreased this risk. CONCLUSIONS: More than ever, the COVID-19 pandemic required strong up-to-date treatment recommendations to decrease the rate of serious in-hospital complications. Further studies are required to evaluate the interplay between COVID-19 and CDI/toxic megacolon.
See more in PubMed
Olsen S.J., Chen M.-Y., Liu Y.-L., Witschi M., Ardoin A., Calba C., Mathieu P., Masserey V., Maraglino F., Marro S., et al. Early Introduction of Severe Acute Respiratory Syndrome Coronavirus 2 into Europe. Emerg. Infect. Dis. 2020;26:1567–1570. doi: 10.3201/eid2607.200359. PubMed DOI PMC
Onder G., Rezza G., Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020;323:1775–1776. doi: 10.1001/jama.2020.4683. PubMed DOI
WHO Coronavirus Disease (COVID-19) [(accessed on 24 February 2022)]. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200921-weekly-epi-update-6.pdf?sfvrsn=d9cf9496_6.
Huttner B.D., Catho G., Pano-Pardo J.R., Pulcini C., Schouten J. COVID-19: Don’t neglect antimicrobial stewardship principles. Clin. Microbiol. Infect. 2020;26:808–810. doi: 10.1016/j.cmi.2020.04.024. PubMed DOI PMC
Beović B., Doušak M., Ferreira-Coimbra J., Nadrah K., Rubulotta F., Belliato M., Berger-Estilita J., Ayoade F., Rello J., Erdem H. Antibiotic use in patients with COVID-19: A ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey. J. Antimicrob. Chemother. 2020;75:3386–33090. doi: 10.1093/jac/dkaa326. PubMed DOI PMC
Cataldo M.A., Granata G., Petrosillo N. Clostridium difficile infection: New approaches to prevention, non-antimicrobial treatment, and stewardship. Expert. Rev. Anti. Infect. Ther. 2017;15:1027–1040. doi: 10.1080/14787210.2017.1387535. PubMed DOI
Furuya-Kanamori L., Marquess J., Yakob L., Riley T.V., Paterson D.L., Foster N.F., Huber C.A., Clements A.C.A. Asymptomatic Clostridium difficile colonization: Epidemiology and clinical implications. BMC Infect. Dis. 2015;15:516. doi: 10.1186/s12879-015-1258-4. PubMed DOI PMC
Cao W., Li T. COVID-19: Towards understanding of pathogenesis. Cell Res. 2020;30:367–369. doi: 10.1038/s41422-020-0327-4. PubMed DOI PMC
Horvat S., Rupnik M. Interactions Between Clostridioides difficile and Fecal Microbiota in in Vitro Batch Model: Growth, Sporulation, and Microbiota Changes. Front. Microbiol. 2018;9:1633. doi: 10.3389/fmicb.2018.01633. PubMed DOI PMC
[(accessed on 24 February 2022)]. Available online: https://www.mdcalc.com/atlas-score-clostridium-difficile-infection#evidence.
Khanna S., Kraft C.S. The interplay of SARS-CoV-2 and Clostridioides difficile infection. Future Microbiol. 2021;16:439–443. doi: 10.2217/fmb-2020-0275. PubMed DOI PMC
Stokes E.K., Zambrano L.D., Anderson K.N., Marder E.P., Raz K.M., El Burai Felix S. Coronavirus disease 2019 case surveillance—United States, January 22–May 30, 2020. MMWR Morb. Mortal. Wkly Rep. 2020;69:759–765. doi: 10.15585/mmwr.mm6924e2. PubMed DOI PMC
Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus—Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585. PubMed DOI PMC
Han C., Duan C., Zhang S., Spiegel B., Shi H., Wang W., Zhang L., Lin R., Liu J., Ding Z., et al. Digestive Symptoms in COVID-19 Patients With Mild Disease Severity: Clinical Presentation, Stool Viral RNA Testing, and Outcomes. Am. J. Gastroenterol. 2020;115:916–923. doi: 10.14309/ajg.0000000000000664. PubMed DOI PMC
Leffler D.A., Lamont J.T. Clostridium difficile infection. N. Engl. J. Med. 2015;372:1539–1548. doi: 10.1056/NEJMra1403772. PubMed DOI
Pérez-Cobas A.E., Moya A., Gosalbes M.J., Latorre A. Colonization Resistance of the Gut Microbiota against Clostridium difficile. Antibiotics. 2015;4:337–357. doi: 10.3390/antibiotics4030337. PubMed DOI PMC
Smits W.K., Lyras D., Lacy D.B. Clostridium difficile infection. Nat. Rev. Dis. Primer. 2016;2:16020. doi: 10.1038/nrdp.2016.20. PubMed DOI PMC
Brown K.A., Khanafer N., Daneman N., Fisman D.N. Meta-Analysis of Antibiotics and the Risk of Community-Associated Clostridium difficile Infection. Antimicrob. Agents Chemother. 2013;57:2326–2332. doi: 10.1128/AAC.02176-12. PubMed DOI PMC
Desai J., Elnaggar M., Hanfy A.A., Doshi R. Toxic Megacolon: Background, Pathophysiology, Management Challenges and Solutions. Clin. Exp. Gastroenterol. 2020;13:203–210. doi: 10.2147/CEG.S200760. Erratum in Clin. Exp. Gastroenterol. 2021, 19, 309–310. PubMed DOI PMC
Trudel J.L., Deschênes M., Mayrand S., Barkun A.N. Toxic megacolon complicating pseudomembranous enterocolitis. Dis. Colon Rectum. 1995;38:1033–1038. doi: 10.1007/BF02133974. PubMed DOI
Rubin M.S., Bodenstein L.E., Kent K.C. Severe Clostridium difficile colitis. Dis. Colon. Rectum. 1995;38:350–354. doi: 10.1007/BF02054220. PubMed DOI
Shetler K., Nieuwenhuis R., Wren S.M., Triadafilopoulos G. Decompressive colonoscopy with intracolonic vancomycin administration for the treatment of severe pseudomembranous colitis. Surg. Endosc. 2001;15:653–659. doi: 10.1007/s004640080104. PubMed DOI
Granata G., Bartoloni A., Codeluppi M., Contadini I., Cristini F., Fantoni M., Ferraresi A., Fornabaio C., Grasselli S., Lagi F., et al. The Burden of Clostridioides Difficile Infection during the COVID-19 Pandemic: A Retrospective Case-Control Study in Italian Hospitals (CloVid) J. Clin. Med. 2020;9:3855. doi: 10.3390/jcm9123855. PubMed DOI PMC