Enhanced Spring Steel's Strength Using Strain Assisted Tempering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ02.1.01/0.0/0.0/16_019/0000836
European Regional Development Fund
PubMed
36295418
PubMed Central
PMC9609946
DOI
10.3390/ma15207354
PII: ma15207354
Knihovny.cz E-zdroje
- Klíčová slova
- dilatometry, mechanical properties, medium carbon steel, microstructure, strain, tempering,
- Publikační typ
- časopisecké články MeSH
Spring steels are typical materials where enhancement of mechanical properties can save considerable mass for transport vehicles, in this way the consumption of fuel or electric energy can be decreased. A drastic change in both the resulting microstructure and mechanical properties could be achieved due to the inclusion of strain into the tempering process after quenching. The strain assisted tempering (SAT) technology was applied, i.e., the process of quenching and following a sequence of tempering operations alternating with strain operations. After the first tempering, controlled deformation by rotary swaging was carried out with a strain of 17% (strain rate is about 120 s-1). Considerably higher strength parameters after SAT compared to conventional quenching and tempering (QT) technology were nevertheless accompanied by enhanced notch toughness at the same time by the decrease of elongation and reduction of area. However, by optimizing the process it is was also possible to achieve acceptable values for those parameters. Remarkable differences are visible in resulting microstructures of compared samples, which were revealed by metallographic analysis and X-ray diffraction measurement. While the standard microstructure of tempered martensite with transition carbides was observed after QT processing, carbideless islands with nanotwins occurred in martensitic laths after SAT processing.
COMTES FHT a s Prumyslova 995 334 41 Dobrany Czech Republic
Institute of Metals and Technology Lepi pot 11 1000 Ljubljana Slovenia
South Ukrainian National Pedagogical University Staroprotfrankivska 26 65020 Odessa Ukraine
Zobrazit více v PubMed
Gao Y., Wang Y. Hidden pathway during FCC to BCC/BCT transformations: Crystallographic origin of slip martensite in steels. Phys. Rev. Mater. 2018;2:093611. doi: 10.1103/PhysRevMaterials.2.093611. DOI
Sun C., Fu P., Liu H., Liu H., Du N., Cao Y. The effect of lath martensite microstructures on the strength of medium-carbon low-alloy steel. Crystals. 2020;10:232. doi: 10.3390/cryst10030232. DOI
Ganin E., Komem Y., Rosen A. Shock induced hardness in α-iron. Mater. Sci. Eng. 1978;33:1–4. doi: 10.1016/0025-5416(78)90148-9. DOI
Forsik S.A.J., Rivera-Diaz-Del-Castillo P.E.J. Encyclopedia of Iron, Steel, and Their Alloys. CRC Press; Boca Raton, FL, USA: 2016. Martensitic steels: Epsilon carbides in tempered; pp. 2169–2181. DOI
Pierce D.T., Coughlin D.R., Williamson D.L., Clarke K.D., Clarke A.J., Speer J.G., De Moor E. Characterization of transition carbides in quench and partitioned steel microstructures by Mössbauer spectroscopy and complementary techniques. Acta Mater. 2015;90:417–430. doi: 10.1016/j.actamat.2015.01.024. DOI
Jung J.-G., Jung M., Kang S., Lee Y.-K. Precipitation behaviors of carbides and Cu during continuous heating for tempering in Cu-bearing medium C martensitic steel. J. Mater. Sci. 2014;49:2204–2212. doi: 10.1007/s10853-013-7914-4. DOI
Barani A.A., Li F., Romano P., Ponge D., Raabe D. Design of high-strength steels by microalloying and thermomechanical treatment. Mater. Sci. Eng. A. 2007;463:138–146. doi: 10.1016/j.msea.2006.08.124. DOI
Properties and Selection: Irons, Steels, and High-Performance Alloys. ASM International; Almere, The Netherlands: 1990.
Radhakrishnan V.M., Baburamani P.S. Initiation and propagation of fatigue crack in pre-strained material. Int. J. Fract. 1976;12:369–380. doi: 10.1007/BF00032832. DOI
Nagase Y., Suzuki S. On the decrease of fatigue limit due to small prestrain. J. Eng. Mater. Technol. 1992;114:317–322. doi: 10.1115/1.2904179. DOI
Peng Y., Gong J., Jiang Y., Fu M., Rong D. The effect of plastic pre-strain on low-temperature surface carburization of AISI 304 austenitic stainless steel. Surf. Coatings Technol. 2016;304:16–22. doi: 10.1016/j.surfcoat.2016.05.047. DOI
Ghosh S.K., Haldar A., Chattopadhyay P.P. Effect of pre-strain on the ageing behavior of directly quenched copper containing micro-alloyed steel. Mater. Charact. 2008;59:1227–1233. doi: 10.1016/j.matchar.2007.10.001. DOI
Ungár T., Révész Á., Borbély A. Dislocations and grain size in electrodeposited nanocrystalline Ni determined by the modified williamson–hall and warren–averbach procedures. J. Appl. Crystallogr. 1998;31:554–558. doi: 10.1107/S0021889897019559. DOI
Meyers M.A., Vöhringer O., Lubarda V.A. The onset of twinning in metals: A constitutive description. Acta Mater. 2001;49:4025–4039. doi: 10.1016/S1359-6454(01)00300-7. DOI
Nnamchi P., Younes A., González S. A review on shape memory metallic alloys and their critical stress for twinning. Intermetallics. 2018;105:61–78. doi: 10.1016/j.intermet.2018.11.005. DOI
Okazaki K., Conrad H. Effects of interstitial content and grain size on the strength of titanium at low temperatures. Acta Met. 1973;21:1117–1129. doi: 10.1016/0001-6160(73)90028-X. DOI
Ogawa K., Maddin R. Transmission electron-microscopic studies of twinning in Mo-Re alloys. Acta Met. 1964;12:713–721. doi: 10.1016/0001-6160(64)90218-4. DOI
Christian J.W., Mahajan S. Deformation twinning. Prog. Mater. Sci. 1995;39:1–157. doi: 10.1016/0079-6425(94)00007-7. DOI
Oriani R. Ostwald ripening of precipitates in solid matrices. Acta Met. 1964;12:1399–1409. doi: 10.1016/0001-6160(64)90128-2. DOI
Wang Y., Denis S., Appolaire B., Archambault P. Modelling of precipitation of carbides during tempering of martensite. J. Phys. IV. 2004;120:103–110. doi: 10.1051/jp4:2004120011. DOI
Schmelzer J.W.P., Gokhman A.R., Fokin V.M. Dynamics of first-order phase transitions in multicomponent systems: A new theoretical approach. J. Colloid Interface Sci. 2004;272:109–133. doi: 10.1016/j.jcis.2003.08.038. PubMed DOI
Yen H.-W., Chen P.-Y., Huang C.-Y., Yang J.-R. Interphase precipitation of nanometer-sized carbides in a titanium—Molybdenum-bearing low-carbon steel. Acta Mater. 2011;59:6264–6274. doi: 10.1016/j.actamat.2011.06.037. DOI
Dicesare E. Influence of Tempering, Prestraining, and Retempering on the Strength and Toughness of High Strength 4340 Steel. Army Materials And Mechanics Research Center Watertown; Watertown, MA, USA: 1967.
Kinetics of Austenite Decomposition in 54SiCr6 Steel during Continuous Slow Cooling Conditions
Fatigue Properties of Spring Steels after Advanced Processing