Enhanced Spring Steel's Strength Using Strain Assisted Tempering

. 2022 Oct 20 ; 15 (20) : . [epub] 20221020

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36295418

Grantová podpora
CZ02.1.01/0.0/0.0/16_019/0000836 European Regional Development Fund

Spring steels are typical materials where enhancement of mechanical properties can save considerable mass for transport vehicles, in this way the consumption of fuel or electric energy can be decreased. A drastic change in both the resulting microstructure and mechanical properties could be achieved due to the inclusion of strain into the tempering process after quenching. The strain assisted tempering (SAT) technology was applied, i.e., the process of quenching and following a sequence of tempering operations alternating with strain operations. After the first tempering, controlled deformation by rotary swaging was carried out with a strain of 17% (strain rate is about 120 s-1). Considerably higher strength parameters after SAT compared to conventional quenching and tempering (QT) technology were nevertheless accompanied by enhanced notch toughness at the same time by the decrease of elongation and reduction of area. However, by optimizing the process it is was also possible to achieve acceptable values for those parameters. Remarkable differences are visible in resulting microstructures of compared samples, which were revealed by metallographic analysis and X-ray diffraction measurement. While the standard microstructure of tempered martensite with transition carbides was observed after QT processing, carbideless islands with nanotwins occurred in martensitic laths after SAT processing.

Zobrazit více v PubMed

Gao Y., Wang Y. Hidden pathway during FCC to BCC/BCT transformations: Crystallographic origin of slip martensite in steels. Phys. Rev. Mater. 2018;2:093611. doi: 10.1103/PhysRevMaterials.2.093611. DOI

Sun C., Fu P., Liu H., Liu H., Du N., Cao Y. The effect of lath martensite microstructures on the strength of medium-carbon low-alloy steel. Crystals. 2020;10:232. doi: 10.3390/cryst10030232. DOI

Ganin E., Komem Y., Rosen A. Shock induced hardness in α-iron. Mater. Sci. Eng. 1978;33:1–4. doi: 10.1016/0025-5416(78)90148-9. DOI

Forsik S.A.J., Rivera-Diaz-Del-Castillo P.E.J. Encyclopedia of Iron, Steel, and Their Alloys. CRC Press; Boca Raton, FL, USA: 2016. Martensitic steels: Epsilon carbides in tempered; pp. 2169–2181. DOI

Pierce D.T., Coughlin D.R., Williamson D.L., Clarke K.D., Clarke A.J., Speer J.G., De Moor E. Characterization of transition carbides in quench and partitioned steel microstructures by Mössbauer spectroscopy and complementary techniques. Acta Mater. 2015;90:417–430. doi: 10.1016/j.actamat.2015.01.024. DOI

Jung J.-G., Jung M., Kang S., Lee Y.-K. Precipitation behaviors of carbides and Cu during continuous heating for tempering in Cu-bearing medium C martensitic steel. J. Mater. Sci. 2014;49:2204–2212. doi: 10.1007/s10853-013-7914-4. DOI

Barani A.A., Li F., Romano P., Ponge D., Raabe D. Design of high-strength steels by microalloying and thermomechanical treatment. Mater. Sci. Eng. A. 2007;463:138–146. doi: 10.1016/j.msea.2006.08.124. DOI

Properties and Selection: Irons, Steels, and High-Performance Alloys. ASM International; Almere, The Netherlands: 1990.

Radhakrishnan V.M., Baburamani P.S. Initiation and propagation of fatigue crack in pre-strained material. Int. J. Fract. 1976;12:369–380. doi: 10.1007/BF00032832. DOI

Nagase Y., Suzuki S. On the decrease of fatigue limit due to small prestrain. J. Eng. Mater. Technol. 1992;114:317–322. doi: 10.1115/1.2904179. DOI

Peng Y., Gong J., Jiang Y., Fu M., Rong D. The effect of plastic pre-strain on low-temperature surface carburization of AISI 304 austenitic stainless steel. Surf. Coatings Technol. 2016;304:16–22. doi: 10.1016/j.surfcoat.2016.05.047. DOI

Ghosh S.K., Haldar A., Chattopadhyay P.P. Effect of pre-strain on the ageing behavior of directly quenched copper containing micro-alloyed steel. Mater. Charact. 2008;59:1227–1233. doi: 10.1016/j.matchar.2007.10.001. DOI

Ungár T., Révész Á., Borbély A. Dislocations and grain size in electrodeposited nanocrystalline Ni determined by the modified williamson–hall and warren–averbach procedures. J. Appl. Crystallogr. 1998;31:554–558. doi: 10.1107/S0021889897019559. DOI

Meyers M.A., Vöhringer O., Lubarda V.A. The onset of twinning in metals: A constitutive description. Acta Mater. 2001;49:4025–4039. doi: 10.1016/S1359-6454(01)00300-7. DOI

Nnamchi P., Younes A., González S. A review on shape memory metallic alloys and their critical stress for twinning. Intermetallics. 2018;105:61–78. doi: 10.1016/j.intermet.2018.11.005. DOI

Okazaki K., Conrad H. Effects of interstitial content and grain size on the strength of titanium at low temperatures. Acta Met. 1973;21:1117–1129. doi: 10.1016/0001-6160(73)90028-X. DOI

Ogawa K., Maddin R. Transmission electron-microscopic studies of twinning in Mo-Re alloys. Acta Met. 1964;12:713–721. doi: 10.1016/0001-6160(64)90218-4. DOI

Christian J.W., Mahajan S. Deformation twinning. Prog. Mater. Sci. 1995;39:1–157. doi: 10.1016/0079-6425(94)00007-7. DOI

Oriani R. Ostwald ripening of precipitates in solid matrices. Acta Met. 1964;12:1399–1409. doi: 10.1016/0001-6160(64)90128-2. DOI

Wang Y., Denis S., Appolaire B., Archambault P. Modelling of precipitation of carbides during tempering of martensite. J. Phys. IV. 2004;120:103–110. doi: 10.1051/jp4:2004120011. DOI

Schmelzer J.W.P., Gokhman A.R., Fokin V.M. Dynamics of first-order phase transitions in multicomponent systems: A new theoretical approach. J. Colloid Interface Sci. 2004;272:109–133. doi: 10.1016/j.jcis.2003.08.038. PubMed DOI

Yen H.-W., Chen P.-Y., Huang C.-Y., Yang J.-R. Interphase precipitation of nanometer-sized carbides in a titanium—Molybdenum-bearing low-carbon steel. Acta Mater. 2011;59:6264–6274. doi: 10.1016/j.actamat.2011.06.037. DOI

Dicesare E. Influence of Tempering, Prestraining, and Retempering on the Strength and Toughness of High Strength 4340 Steel. Army Materials And Mechanics Research Center Watertown; Watertown, MA, USA: 1967.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Kinetics of Austenite Decomposition in 54SiCr6 Steel during Continuous Slow Cooling Conditions

. 2023 Jun 27 ; 16 (13) : . [epub] 20230627

Fatigue Properties of Spring Steels after Advanced Processing

. 2023 Apr 24 ; 16 (9) : . [epub] 20230424

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...