Fatigue Properties of Spring Steels after Advanced Processing

. 2023 Apr 24 ; 16 (9) : . [epub] 20230424

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37176208

Grantová podpora
No. CZ02.1.01/0.0/0.0/16_019/0000836 ERDF Research of advanced steels with unique properties

This article deals with the effect of strain-assisted tempering (SAT) on the fatigue properties of 54SiCr6 steel used for spring steel wires in a wide variety of automotive applications, including coil springs. This steel spring wire is extremely strong, having a high elastic limit and yield point, giving the steel excellent energy accumulation and fatigue properties. This combination opens up new possibilities in helical and cylindrical coil spring design, resulting in the reduction of both size and weight. Lightweight coil springs lead to improvements in fuel consumption, stability and vehicle traction. A large plastic deformation and SAT were applied to enhance the yield point of the study material. Improvements in the static and cyclic properties of steel springs were investigated using tensile tests and 3PB fatigue tests at ambient temperature. In addition, an advanced laser shock peening (LSP) process was employed to increase the fatigue resistance of the SAT material. The results presented here show great improvements in the static and fatigue properties over commercial steel treatment. The material quality of the wires was evaluated to be insufficient for further processing with cold coiling.

Zobrazit více v PubMed

Salvetr P., Gokhman A., Nový Z., Motyčka P., Kotous J. Effect of 1.5 wt% Copper Addition and Various Contents of Silicon on Mechanical Properties of 1.7102 Medium Carbon Steel. Materials. 2021;14:5244. doi: 10.3390/ma14185244. PubMed DOI PMC

Nový Z., Salvetr P., Kotous J., Motyčka P., Gokhman A., Donik Č., Džugan J. Enhanced Spring Steel’s Strength Using Strain Assisted Tempering. Materials. 2022;15:7354. doi: 10.3390/ma15207354. PubMed DOI PMC

Yang M., Gao C., Pang J., Li S., Hu D., Li X., Zhang Z. High-Cycle Fatigue Behavior and Fatigue Strength Prediction of Differently Heat-Treated 35CrMo Steels. Metals. 2022;12:688. doi: 10.3390/met12040688. DOI

Yamada Y. Materials for Springs. 1st ed. Springer; Heidelberg/Berlin, Germany: 2007. Fatigue Characteristics; pp. 22–25.

Murakami Y., Kawakami K., Duckworth W.E. Quantitative evaluation of effects of shape and size of artificially introduced alumina particles on the fatigue strength of 1.5Ni–Cr–Mo (En24) steel. Int. J. Fatigue. 1991;13:489–499. doi: 10.1016/0142-1123(91)90485-H. DOI

Du H., Karasev A., Sundqvist O., Jönsson P.G. Modification of Non-Metallic Inclusions in Stainless Steel by Addition of CaSi. Metals. 2019;9:74. doi: 10.3390/met9010074. DOI

Furuya Y., Hirukawa H., Takeuchi E. Gigacycle fatigue in high strength steels. Sci. Technol. Adv. Mater. 2019;20:1610904. doi: 10.1080/14686996.2019.1610904. PubMed DOI PMC

Guo Y., Chen F., Liu B., Yu H., Deng H. Effect of Stress Ratio and Evaluation of Crack Sizes on Very-High-Cycle-Fatigue Crack Propagation Life Prediction of Carburized Cr-Ni Steel. Metals. 2022;12:1485. doi: 10.3390/met12091485. DOI

Ding K., Ye L. Laser Shock Peening. 1st ed. Woodhead; Derbyshire, UK: 2006.

Hackel L., Rankin J.R., Rubenchik A., King W.E., Matthews M. Laser peening: A tool for additive manufacturing post-processing. Addit. Manuf. 2018;24:67–75. doi: 10.1016/j.addma.2018.09.013. DOI

Kaufman J., Racek J., Cieslar M., Minárik P., Steiner M.A., Mannava S.R., Vasudevan V.K., Sharma A., Böhm M., Brajer J., et al. The effect of laser shock peening with and without protective coating on intergranular corrosion of sensitized AA5083. Corros. Sci. 2021;194:109925. doi: 10.1016/j.corsci.2021.109925. DOI

Powęzka A., Szulej J., Ogrodnik P. Effect of high temperatures on the impact strength of concrete based on recycled aggregate made of heat-resistant cullet. Materials. 2020;13:465. doi: 10.3390/ma13020465. PubMed DOI PMC

Standard Practice for Presentation of Constant Amplitude Fatigue Test Results for Metallic Materials. ASTM International; West Conshohocken, PA, USA: 2018. DOI

Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. European Standards; Prague, Czech Republic: 2020.

Tiryakioğlu M., Campbell J., Nyahumwa C. Fracture Surface Facets and Fatigue Life Potential of Castings. Metal. Mater. Trans. B. 2011;42:1098–1103. doi: 10.1007/s11663-011-9577-3. DOI

Miao G., Sun T., Wang X. Effect of inclusion defect on fatigue failure of FGH96 superalloy at 600°C. J. Phys. Conf. Ser. 2020;1605:12145. doi: 10.1088/1742-6596/1605/1/012145. DOI

Saberifar S., Mashreghi A.R., Mosalaeepur M., Ghasemi S.S. The interaction between non-metallic inclusions and surface roughness in fatigue failure and their influence on fatigue strength. Mater. Des. 2012;35:720–724. doi: 10.1016/j.matdes.2011.10.028. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...