Bruton's Tyrosine Kinase Inhibitor Zanubrutinib Effectively Modulates Cancer Resistance by Inhibiting Anthracycline Metabolism and Efflux
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/18_069/0010046
Ministry of Education Youth and Sports
20-20414Y
Czech Academy of Sciences
315221
Charles University
SVV 260550
Charles University
PubMed
36297430
PubMed Central
PMC9611657
DOI
10.3390/pharmaceutics14101994
PII: pharmaceutics14101994
Knihovny.cz E-zdroje
- Klíčová slova
- ABC drug efflux transporter, aldo-keto reductase 1C3, anthracycline, drug resistance, zanubrutinib,
- Publikační typ
- časopisecké články MeSH
Zanubrutinib (ZAN) is a Bruton's tyrosine kinase inhibitor recently approved for the treatment of some non-Hodgkin lymphomas. In clinical trials, ZAN is often combined with standard anthracycline (ANT) chemotherapy. Although ANTs are generally effective, drug resistance is a crucial obstacle that leads to treatment discontinuation. This study showed that ZAN counteracts ANT resistance by targeting aldo-keto reductase 1C3 (AKR1C3) and ATP-binding cassette (ABC) transporters. AKR1C3 catalyses the transformation of ANTs to less potent hydroxy-metabolites, whereas transporters decrease the ANT-effective concentrations by pumping them out of the cancer cells. In our experiments, ZAN inhibited the AKR1C3-mediated inactivation of daunorubicin (DAUN) at both the recombinant and cellular levels. In the drug combination experiments, ZAN synergistically sensitised AKR1C3-expressing HCT116 and A549 cells to DAUN treatment. Gene induction studies further confirmed that ZAN did not increase the intracellular level of AKR1C3 mRNA; thus, the drug combination effect is not abolished by enzyme induction. Finally, in accumulation assays, ZAN was found to interfere with the DAUN efflux mediated by the ABCB1, ABCG2, and ABCC1 transporters, which might further contribute to the reversal of ANT resistance. In summary, our data provide the rationale for ZAN inclusion in ANT-based therapy and suggest its potential for the treatment of tumours expressing AKR1C3 and/or the above-mentioned ABC transporters.
Zobrazit více v PubMed
Uckun F.M., Tibbles H.E., Vassilev A.O. Bruton’s tyrosine kinase as a new therapeutic target. Anticancer Agents Med. Chem. 2007;7:624–632. doi: 10.2174/187152007784111331. PubMed DOI
Mano H. Tec family of protein-tyrosine kinases: An overview of their structure and function. Cytokine Growth Factor Rev. 1999;10:267–280. doi: 10.1016/S1359-6101(99)00019-2. PubMed DOI
Niemann C.U., Wiestner A. B-cell receptor signaling as a driver of lymphoma development and evolution. Semin. Cancer Biol. 2013;23:410–421. doi: 10.1016/j.semcancer.2013.09.001. PubMed DOI PMC
Buggy J.J., Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int. Rev. Immunol. 2012;31:119–132. doi: 10.3109/08830185.2012.664797. PubMed DOI
Davis R.E., Ngo V.N., Lenz G., Tolar P., Young R.M., Romesser P.B., Kohlhammer H., Lamy L., Zhao H., Yang Y., et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92. doi: 10.1038/nature08638. PubMed DOI PMC
Honigberg L.A., Smith A.M., Sirisawad M., Verner E., Loury D., Chang B., Li S., Pan Z., Thamm D.H., Miller R.A., et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. USA. 2010;107:13075–13080. doi: 10.1073/pnas.1004594107. PubMed DOI PMC
Herman S.E., Gordon A.L., Hertlein E., Ramanunni A., Zhang X., Jaglowski S., Flynn J., Jones J., Blum K.A., Buggy J.J., et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117:6287–6296. doi: 10.1182/blood-2011-01-328484. PubMed DOI PMC
FDA (US Food and Drug Administration) FDA Approves Imbruvica. [(accessed on 8 July 2022)]; Available online: https://www.drugs.com/newdrugs/fda-approves-imbruvica-ibrutinib-mantle-cell-lymphoma-3960.html.
FDA (US Food and Drug Administration) FDA Approves New Treatment for Adults with Mantle Cell Lymphoma. [(accessed on 8 July 2022)]; Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-adults-mantle-cell-lymphoma.
Byrd J.C., Furman R.R., Coutre S.E., Burger J.A., Blum K.A., Coleman M., Wierda W.G., Jones J.A., Zhao W., Heerema N.A., et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125:2497–2506. doi: 10.1182/blood-2014-10-606038. PubMed DOI PMC
Castillo J.J., Meid K., Gustine J.N., Leventoff C., White T., Flynn C.A., Sarosiek S., Demos M.G., Guerrera M.L., Kofides A., et al. Long-term follow-up of ibrutinib monotherapy in treatment-naive patients with Waldenstrom macroglobulinemia. Leukemia. 2022;36:532–539. doi: 10.1038/s41375-021-01417-9. PubMed DOI PMC
Rusconi C., Cheah C.Y., Eyre T.A., Tucker D.L., Klener P., Gine E., Crucitti L., Muzi C., Iadecola S., Infante G., et al. Ibrutinib improves survival compared to chemotherapy in mantle cell lymphoma with central nervous system relapse. Blood. :2022. doi: 10.1182/blood.2022015560. in press. PubMed DOI
Noy A., de Vos S., Coleman M., Martin P., Flowers C.R., Thieblemont C., Morschhauser F., Collins G.P., Ma S., Peles S., et al. Durable ibrutinib responses in relapsed/refractory marginal zone lymphoma: Long-term follow-up and biomarker analysis. Blood Adv. 2020;4:5773–5784. doi: 10.1182/bloodadvances.2020003121. PubMed DOI PMC
Byrd J.C., Hillmen P., O’Brien S., Barrientos J.C., Reddy N.M., Coutre S., Tam C.S., Mulligan S.P., Jaeger U., Barr P.M., et al. Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood. 2019;133:2031–2042. doi: 10.1182/blood-2018-08-870238. PubMed DOI PMC
Pan Z., Scheerens H., Li S.J., Schultz B.E., Sprengeler P.A., Burrill L.C., Mendonca R.V., Sweeney M.D., Scott K.C., Grothaus P.G., et al. Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem. 2007;2:58–61. doi: 10.1002/cmdc.200600221. PubMed DOI
Barf T., Covey T., Izumi R., van de Kar B., Gulrajani M., van Lith B., van Hoek M., de Zwart E., Mittag D., Demont D., et al. Acalabrutinib (ACP-196): A Covalent Bruton Tyrosine Kinase Inhibitor with a Differentiated Selectivity and In Vivo Potency Profile. J. Pharmacol. Exp. Ther. 2017;363:240–252. doi: 10.1124/jpet.117.242909. PubMed DOI
Von Hundelshausen P., Siess W. Bleeding by Bruton Tyrosine Kinase-Inhibitors: Dependency on Drug Type and Disease. Cancers. 2021;13:1103. doi: 10.3390/cancers13051103. PubMed DOI PMC
Ahn I.E. Cardiovascular adverse events of ibrutinib. Blood. 2019;134:1881–1882. doi: 10.1182/blood.2019002805. PubMed DOI PMC
Woyach J.A., Furman R.R., Liu T.M., Ozer H.G., Zapatka M., Ruppert A.S., Xue L., Li D.H., Steggerda S.M., Versele M., et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 2014;370:2286–2294. doi: 10.1056/NEJMoa1400029. PubMed DOI PMC
Burger J.A., Landau D.A., Taylor-Weiner A., Bozic I., Zhang H., Sarosiek K., Wang L., Stewart C., Fan J., Hoellenriegel J., et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat. Commun. 2016;7:11589. doi: 10.1038/ncomms11589. PubMed DOI PMC
Bond D.A., Woyach J.A. Targeting BTK in CLL: Beyond Ibrutinib. Curr. Hematol. Malig. Rep. 2019;14:197–205. doi: 10.1007/s11899-019-00512-0. PubMed DOI
Byrd J.C., Smith S., Wagner-Johnston N., Sharman J., Chen A.I., Advani R., Augustson B., Marlton P., Renee Commerford S., Okrah K., et al. First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL. Oncotarget. 2018;9:13023–13035. doi: 10.18632/oncotarget.24310. PubMed DOI PMC
FDA (US Food and Drug Administration) FDA Approves Therapy to Treat Patients with Relapsed and Refractory Mantle Cell Lymphoma Supported by Clinical Trial Results Showing High Response Rate of Tumor Shrinkage. [(accessed on 8 July 2022)]; Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-therapy-treat-patients-relapsed-and-refractory-mantle-cell-lymphoma-supported-clinical.
FDA (US Food and Drug Administration) FDA Approves Zanubrutinib for Waldenström’s Macroglobulinemia. [(accessed on 8 July 2022)]; Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-zanubrutinib-waldenstroms-macroglobulinemia.
FDA (US Food and Drug Administration) FDA Grants Accelerated Approval to Zanubrutinib for Marginal Zone Lymphoma. [(accessed on 8 July 2022)]; Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-zanubrutinib-marginal-zone-lymphoma.
Younes A., Thieblemont C., Morschhauser F., Flinn I., Friedberg J.W., Amorim S., Hivert B., Westin J., Vermeulen J., Bandyopadhyay N., et al. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B-cell non-Hodgkin lymphoma: A non-randomised, phase 1b study. Lancet Oncol. 2014;15:1019–1026. doi: 10.1016/S1470-2045(14)70311-0. PubMed DOI
Younes A., Sehn L.H., Johnson P., Zinzani P.L., Hong X., Zhu J., Patti C., Belada D., Samoilova O., Suh C., et al. Randomized Phase III Trial of Ibrutinib and Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Non-Germinal Center B-Cell Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2019;37:1285–1295. doi: 10.1200/JCO.18.02403. PubMed DOI PMC
Davies A., Caddy J., Mercer K., Saunders G.N., Stanton L., Collins G.P., Cummin T.E.C., Schuh A., Ardeshna K.M., McMillan A., et al. Acalabrutinib in Combination with Rituximab, Cyclophosphamide, Doxorubicin, Vincristine and Prednisolone (R-CHOP) As First Line Therapy for Patients with Diffuse Large B-Cell Lymphoma (DLBCL): The Accept Phase Ib/II Single Arm Study. Blood. 2020;136:38–39. doi: 10.1182/blood-2020-134546. DOI
Zhu H., Sha Y., Wu W., Chen R., Yang Y., Qiu J., Mi H., Peng C., Ding C., Wang Z., et al. Zanubrutinib, Lenalidomide Plus R-CHOP (ZR2-CHOP) as the Treatment for Diffused Large B-Cell Lymphoma (DLBCL) Hematol. Oncol. 2021;39:425–427. doi: 10.1002/hon.49_2881. DOI
Xiao H., Zheng Y., Ma L., Tian L., Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front. Pharmacol. 2021;12:648407. doi: 10.3389/fphar.2021.648407. PubMed DOI PMC
Bains O.S., Grigliatti T.A., Reid R.E., Riggs K.W. Naturally occurring variants of human aldo-keto reductases with reduced in vitro metabolism of daunorubicin and doxorubicin. J. Pharmacol. Exp. Ther. 2010;335:533–545. doi: 10.1124/jpet.110.173179. PubMed DOI
Bains O.S., Szeitz A., Lubieniecka J.M., Cragg G.E., Grigliatti T.A., Riggs K.W., Reid R.E. A correlation between cytotoxicity and reductase-mediated metabolism in cell lines treated with doxorubicin and daunorubicin. J. Pharmacol. Exp. Ther. 2013;347:375–387. doi: 10.1124/jpet.113.206805. PubMed DOI
Penning T.M., Jonnalagadda S., Trippier P.C., Rizner T.L. Aldo-Keto Reductases and Cancer Drug Resistance. Pharmacol. Rev. 2021;73:1150–1171. doi: 10.1124/pharmrev.120.000122. PubMed DOI PMC
Morell A., Cermakova L., Novotna E., Lastovickova L., Haddad M., Haddad A., Portillo R., Wsol V. Bruton’s Tyrosine Kinase Inhibitors Ibrutinib and Acalabrutinib Counteract Anthracycline Resistance in Cancer Cells Expressing AKR1C3. Cancers. 2020;12:3731. doi: 10.3390/cancers12123731. PubMed DOI PMC
Wang B., Gu Y., Hui K., Huang J., Xu S., Wu S., Li L., Fan J., Wang X., Hsieh J.T., et al. AKR1C3, a crucial androgenic enzyme in prostate cancer, promotes epithelial-mesenchymal transition and metastasis through activating ERK signaling. Urol. Oncol. 2018;36 doi: 10.1016/j.urolonc.2018.07.005. PubMed DOI
Yamashita N., Kanno Y., Saito N., Terai K., Sanada N., Kizu R., Hiruta N., Park Y., Bujo H., Nemoto K. Aryl hydrocarbon receptor counteracts pharmacological efficacy of doxorubicin via enhanced AKR1C3 expression in triple negative breast cancer cells. Biochem. Biophys. Res. Commun. 2019;516:693–698. doi: 10.1016/j.bbrc.2019.06.119. PubMed DOI
Miller V.L., Lin H.K., Murugan P., Fan M., Penning T.M., Brame L.S., Yang Q., Fung K.M. Aldo-keto reductase family 1 member C3 (AKR1C3) is expressed in adenocarcinoma and squamous cell carcinoma but not small cell carcinoma. Int. J. Clin. Exp. Pathol. 2012;5:278–289. PubMed PMC
Bortolozzi R., Bresolin S., Rampazzo E., Paganin M., Maule F., Mariotto E., Boso D., Minuzzo S., Agnusdei V., Viola G., et al. AKR1C enzymes sustain therapy resistance in paediatric T-ALL. Br. J. Cancer. 2018;118:985–994. doi: 10.1038/s41416-018-0014-0. PubMed DOI PMC
Bernardini N., Giannessi F., Bianchi F., Dolfi A., Lupetti M., Zaccaro L., Malvaldi G., Del Tacca M. Comparative activity of doxorubicin and its major metabolite, doxorubicinol, on fibroblasts: A morphofunctional study. Exp. Mol. Pathol. 1991;55:238–250. doi: 10.1016/0014-4800(91)90004-H. PubMed DOI
Heibein A.D., Guo B., Sprowl J.A., Maclean D.A., Parissenti A.M. Role of aldo-keto reductases and other doxorubicin pharmacokinetic genes in doxorubicin resistance, DNA binding, and subcellular localization. BMC Cancer. 2012;12:381. doi: 10.1186/1471-2407-12-381. PubMed DOI PMC
Zhang H., Patel A., Ma S.L., Li X.J., Zhang Y.K., Yang P.Q., Kathawala R.J., Wang Y.J., Anreddy N., Fu L.W., et al. In vitro, in vivo and ex vivo characterization of ibrutinib: A potent inhibitor of the efflux function of the transporter MRP1. Br. J. Pharmacol. 2014;171:5845–5857. doi: 10.1111/bph.12889. PubMed DOI PMC
Kosztyu P., Bukvova R., Dolezel P., Mlejnek P. Resistance to daunorubicin, imatinib, or nilotinib depends on expression levels of ABCB1 and ABCG2 in human leukemia cells. Chem. Biol. Interact. 2014;219:203–210. doi: 10.1016/j.cbi.2014.06.009. PubMed DOI
Hofman J., Malcekova B., Skarka A., Novotna E., Wsol V. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3. Toxicol. Appl. Pharmacol. 2014;278:238–248. doi: 10.1016/j.taap.2014.04.027. PubMed DOI
Skarydova L., Tomanova R., Havlikova L., Stambergova H., Solich P., Wsol V. Deeper insight into the reducing biotransformation of bupropion in the human liver. Drug Metab. Pharmacokinet. 2014;29:177–184. doi: 10.2133/dmpk.DMPK-13-RG-051. PubMed DOI
Bukum N., Novotna E., Morell A., Zelazkova J., Lastovickova L., Cermakova L., Portillo R., Solich P., Wsol V. Inhibition of AKR1B10-mediated metabolism of daunorubicin as a novel off-target effect for the Bcr-Abl tyrosine kinase inhibitor dasatinib. Biochem. Pharmacol. 2021;192:114710. doi: 10.1016/j.bcp.2021.114710. PubMed DOI
Tavares T.S., Hofman J., Lekesova A., Zelazkova J., Wsol V. Olaparib Synergizes the Anticancer Activity of Daunorubicin via Interaction with AKR1C3. Cancers. 2020;12:3127. doi: 10.3390/cancers12113127. PubMed DOI PMC
Chou T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–446. doi: 10.1158/0008-5472.CAN-09-1947. PubMed DOI
Chou T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI
Zhang H., Patel A., Wang Y.J., Zhang Y.K., Kathawala R.J., Qiu L.H., Patel B.A., Huang L.H., Shukla S., Yang D.H., et al. The BTK Inhibitor Ibrutinib (PCI-32765) Overcomes Paclitaxel Resistance in ABCB1- and ABCC10-Overexpressing Cells and Tumors. Mol. Cancer Ther. 2017;16:1021–1030. doi: 10.1158/1535-7163.MCT-16-0511. PubMed DOI PMC
Juan-Carlos P.M., Perla-Lidia P.P., Stephanie-Talia M.M., Monica-Griselda A.M., Luz-Maria T.E. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol. Biol. Rep. 2021;48:1883–1901. doi: 10.1007/s11033-021-06155-w. PubMed DOI
Shi B., Xu F.F., Xiang C.P., Jia R., Yan C.H., Ma S.Q., Wang N., Wang A.J., Fan P. Effect of sodium butyrate on ABC transporters in lung cancer A549 and colorectal cancer HCT116 cells. Oncol. Lett. 2020;20:148. doi: 10.3892/ol.2020.12011. PubMed DOI PMC
Lainey E., Sebert M., Thepot S., Scoazec M., Bouteloup C., Leroy C., De Botton S., Galluzzi L., Fenaux P., Kroemer G. Erlotinib antagonizes ABC transporters in acute myeloid leukemia. Cell Cycle. 2012;11:4079–4092. doi: 10.4161/cc.22382. PubMed DOI PMC
Grundy M., Seedhouse C., Russell N.H., Pallis M. P-glycoprotein and breast cancer resistance protein in acute myeloid leukaemia cells treated with the aurora-B kinase inhibitor barasertib-hQPA. BMC Cancer. 2011;11:254. doi: 10.1186/1471-2407-11-254. PubMed DOI PMC
Hauswald S., Duque-Afonso J., Wagner M.M., Schertl F.M., Lubbert M., Peschel C., Keller U., Licht T. Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes. Clin. Cancer Res. 2009;15:3705–3715. doi: 10.1158/1078-0432.CCR-08-2048. PubMed DOI
Tam C.S., Trotman J., Opat S., Burger J.A., Cull G., Gottlieb D., Harrup R., Johnston P.B., Marlton P., Munoz J., et al. Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood. 2019;134:851–859. doi: 10.1182/blood.2019001160. PubMed DOI PMC
ClinicalTrials.gov. [(accessed on 21 July 2022)]; Available online: https://clinicaltrials.gov/ct2/home.
Hillmen P., Brown J.R., Eichhorst B.F., Lamanna N., O’Brien S.M., Qiu L., Salmi T., Hilger J., Wu K., Cohen A., et al. ALPINE: Zanubrutinib versus ibrutinib in relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma. Future Oncol. 2020;16:517–523. doi: 10.2217/fon-2019-0844. PubMed DOI
Tam C.S., Giannopoulos K., Jurczak W., Šimkovič M., Shadman M., Österborg A., Laurenti L., Walker P., Opat S., Chan H., et al. SEQUOIA: Results of a Phase 3 Randomized Study of Zanubrutinib versus Bendamustine + Rituximab (BR) in Patients with Treatment-Naïve (TN) Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL) Blood. 2021;138:396. doi: 10.1182/blood-2021-148457. DOI
Yang H., Xiang B., Song Y., Zhang H., Zhao W., Zou D., Lv F., Guo W., Liu A., Li C., et al. Zanubrutinib monotherapy for relapsed or refractory non-germinal center diffuse large B-cell lymphoma. Blood Adv. 2022;6:1629–1636. doi: 10.1182/bloodadvances.2020003698. PubMed DOI PMC
Phillips T., Chan H., Tam C.S., Tedeschi A., Johnston P., Oh S.Y., Opat S., Eom H.S., Allewelt H., Stern J.C., et al. Zanubrutinib monotherapy in relapsed/refractory indolent non-Hodgkin lymphoma. Blood Adv. 2022;6:3472–3479. doi: 10.1182/bloodadvances.2021006083. PubMed DOI PMC
Zhang Y., Li Y., Zhuang Z., Wang W., Wei C., Zhao D., Zhou D., Zhang W. Preliminary Evaluation of Zanubrutinib-Containing Regimens in DLBCL and the Cerebrospinal Fluid Distribution of Zanubrutinib: A 13-Case Series. Front. Oncol. 2021;11:760405. doi: 10.3389/fonc.2021.760405. PubMed DOI PMC
Armitage J.O., Longo D.L. Is watch and wait still acceptable for patients with low-grade follicular lymphoma? Blood. 2016;127:2804–2808. doi: 10.1182/blood-2015-11-632745. PubMed DOI
Brieghel C., Galle V., Agius R., da Cunha-Bang C., Andersen M.A., Vlummens P., Mattsson M., Rosenquist R., Smedby K.E., Herling C.D., et al. Identifying patients with chronic lymphocytic leukemia without need of treatment: End of endless watch and wait? Eur. J. Haematol. 2022;108:369–378. doi: 10.1111/ejh.13743. PubMed DOI
Sindel A., Al-Juhaishi T., Yazbeck V. Marginal Zone Lymphoma: State-of-the-Art Treatment. Curr. Treat. Options Oncol. 2019;20:90. doi: 10.1007/s11864-019-0687-5. PubMed DOI
Durot E., Delmer A. Watch and wait in Waldenstrom macroglobulinaemia: Looking for who to watch carefully and who can wait without worrying. Is it that simple? Br. J. Haematol. 2021;195:155–157. doi: 10.1111/bjh.17699. PubMed DOI
Rossi D., Spina V., Gaidano G. Biology and treatment of Richter syndrome. Blood. 2018;131:2761–2772. doi: 10.1182/blood-2018-01-791376. PubMed DOI
Gonzalez-Rincon J., Mendez M., Gomez S., Garcia J.F., Martin P., Bellas C., Pedrosa L., Rodriguez-Pinilla S.M., Camacho F.I., Quero C., et al. Unraveling transformation of follicular lymphoma to diffuse large B-cell lymphoma. PLoS ONE. 2019;14:e0212813. doi: 10.1371/journal.pone.0212813. PubMed DOI PMC
Coiffier B., Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure-what to do? Hematol. Am. Soc. Hematol. Educ. Program. 2016;2016:366–378. doi: 10.1182/asheducation-2016.1.366. PubMed DOI PMC
Gustafson H.L., Yao S., Goldman B.H., Lee K., Spier C.M., LeBlanc M.L., Rimsza L.M., Cerhan J.R., Habermann T.M., Link B.K., et al. Genetic polymorphisms in oxidative stress-related genes are associated with outcomes following treatment for aggressive B-cell non-Hodgkin lymphoma. Am. J. Hematol. 2014;89:639–645. doi: 10.1002/ajh.23709. PubMed DOI PMC
Liu D., Wu N., Sun H., Dong M., Guo T., Chi P., Li G., Sun D., Jin Y. ABCG2 and NCF4 polymorphisms are associated with clinical outcomes in diffuse large B-cell lymphoma patients treated with R-CHOP. Oncotarget. 2017;8:58292–58303. doi: 10.18632/oncotarget.16869. PubMed DOI PMC
Takimoto-Shimomura T., Nagoshi H., Maegawa S., Fujibayashi Y., Tsukamoto T., Matsumura-Kimoto Y., Mizuno Y., Chinen Y., Mizutani S., Shimura Y., et al. Establishment and Characteristics of a Novel Mantle Cell Lymphoma-derived Cell Line and a Bendamustine-resistant Subline. Cancer Genom. Proteom. 2018;15:213–223. doi: 10.21873/cgp.20080. PubMed DOI PMC
Tabata M., Tsubaki M., Takeda T., Tateishi K., Tsurushima K., Imano M., Satou T., Ishizaka T., Nishida S. Dasatinib reverses drug resistance by downregulating MDR1 and Survivin in Burkitt lymphoma cells. BMC Complement Med. Ther. 2020;20:84. doi: 10.1186/s12906-020-2879-8. PubMed DOI PMC
Molina-Cerrillo J., Alonso-Gordoa T., Gajate P., Grande E. Bruton’s tyrosine kinase (BTK) as a promising target in solid tumors. Cancer Treat. Rev. 2017;58:41–50. doi: 10.1016/j.ctrv.2017.06.001. PubMed DOI
Szklener K., Michalski A., Zak K., Piwonski M., Mandziuk S. Ibrutinib in the Treatment of Solid Tumors: Current State of Knowledge and Future Directions. Cells. 2022;11:1338. doi: 10.3390/cells11081338. PubMed DOI PMC
Rushworth S.A., Murray M.Y., Zaitseva L., Bowles K.M., MacEwan D.J. Identification of Bruton’s tyrosine kinase as a therapeutic target in acute myeloid leukemia. Blood. 2014;123:1229–1238. doi: 10.1182/blood-2013-06-511154. PubMed DOI
Yeh C.T., Chen T.T., Satriyo P.B., Wang C.H., Wu A.T.H., Chao T.Y., Lee K.Y., Hsiao M., Wang L.S., Kuo K.T. Bruton’s tyrosine kinase (BTK) mediates resistance to EGFR inhibition in non-small-cell lung carcinoma. Oncogenesis. 2021;10:56. doi: 10.1038/s41389-021-00345-8. PubMed DOI PMC
Rotin L.E., Gronda M., Hurren R., Wang X., Minden M.D., Slassi M., Schimmer A.D. Investigating the synergistic mechanism between ibrutinib and daunorubicin in acute myeloid leukemia cells. Leuk. Lymphoma. 2016;57:2432–2436. doi: 10.3109/10428194.2016.1138292. PubMed DOI
Birtwistle J., Hayden R.E., Khanim F.L., Green R.M., Pearce C., Davies N.J., Wake N., Schrewe H., Ride J.P., Chipman J.K., et al. The aldo-keto reductase AKR1C3 contributes to 7,12-dimethylbenz(a)anthracene-3,4-dihydrodiol mediated oxidative DNA damage in myeloid cells: Implications for leukemogenesis. Mutat. Res. 2009;662:67–74. doi: 10.1016/j.mrfmmm.2008.12.010. PubMed DOI
Byrns M.C., Duan L., Lee S.H., Blair I.A., Penning T.M. Aldo-keto reductase 1C3 expression in MCF-7 cells reveals roles in steroid hormone and prostaglandin metabolism that may explain its over-expression in breast cancer. J. Steroid Biochem. Mol. Biol. 2010;118:177–187. doi: 10.1016/j.jsbmb.2009.12.009. PubMed DOI PMC
Desmond J.C., Mountford J.C., Drayson M.T., Walker E.A., Hewison M., Ride J.P., Luong Q.T., Hayden R.E., Vanin E.F., Bunce C.M. The aldo-keto reductase AKR1C3 is a novel suppressor of cell differentiation that provides a plausible target for the non-cyclooxygenase-dependent antineoplastic actions of nonsteroidal anti-inflammatory drugs. Cancer Res. 2003;63:505–512. PubMed
Oduwole O.O., Li Y., Isomaa V.V., Mantyniemi A., Pulkka A.E., Soini Y., Vihko P.T. 17beta-hydroxysteroid dehydrogenase type 1 is an independent prognostic marker in breast cancer. Cancer Res. 2004;64:7604–7609. doi: 10.1158/0008-5472.CAN-04-0446. PubMed DOI
Zhu P., Feng R., Lu X., Liao Y., Du Z., Zhai W., Chen K. Diagnostic and prognostic values of AKR1C3 and AKR1D1 in hepatocellular carcinoma. Aging. 2021;13:4138–4156. doi: 10.18632/aging.202380. PubMed DOI PMC
Zhao S.F., Wang S.G., Zhao Z.Y., Li W.L. AKR1C1-3, notably AKR1C3, are distinct biomarkers for liver cancer diagnosis and prognosis: Database mining in malignancies. Oncol. Lett. 2019;18:4515–4522. doi: 10.3892/ol.2019.10802. PubMed DOI PMC
Mahadevan D., DiMento J., Croce K.D., Riley C., George B., Fuchs D., Mathews T., Wilson C., Lobell M. Transcriptosome and serum cytokine profiling of an atypical case of myelodysplastic syndrome with progression to acute myelogenous leukemia. Am. J. Hematol. 2006;81:779–786. doi: 10.1002/ajh.20690. PubMed DOI
Liu C.Y., Hsu Y.H., Pan P.C., Wu M.T., Ho C.K., Su L., Xu X., Li Y., Christiani D.C., Kaohsiung Leukemia Research G. Maternal and offspring genetic variants of AKR1C3 and the risk of childhood leukemia. Carcinogenesis. 2008;29:984–990. doi: 10.1093/carcin/bgn071. PubMed DOI PMC
FDA (US Food and Drug Administration) U.S. Food & Drug Administration: List of the Relevant Molecular Targets in Paediatric Oncology. [(accessed on 16 July 2022)]; Available online: https://www.fda.gov/about-fda/oncology-center-excellence/pediatric-oncology.
FDA (US Food and Drug Administration) U.S. Food & Drug Administration: List of the Relevant Molecular Targets in Paediatric Oncology. [(accessed on 16 July 2022)]; Available online: https://www.fda.gov/media/120332/download.