Bruton's Tyrosine Kinase Inhibitors Ibrutinib and Acalabrutinib Counteract Anthracycline Resistance in Cancer Cells Expressing AKR1C3
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000841
Ministerstvo Školství, Mládeže a Tělovýchovy
SVV 260 416
Univerzita Karlova v Praze
PubMed
33322571
PubMed Central
PMC7764606
DOI
10.3390/cancers12123731
PII: cancers12123731
Knihovny.cz E-zdroje
- Klíčová slova
- AKR1C3, Bruton’s tyrosine kinase, acalabrutinib, anthracyclines, ibrutinib, multidrug resistance,
- Publikační typ
- časopisecké články MeSH
Over the last few years, aldo-keto reductase family 1 member C3 (AKR1C3) has been associated with the emergence of multidrug resistance (MDR), thereby hindering chemotherapy against cancer. In particular, impaired efficacy of the gold standards of induction therapy in acute myeloid leukaemia (AML) has been correlated with AKR1C3 expression, as this enzyme metabolises several drugs including anthracyclines. Therefore, the development of selective AKR1C3 inhibitors may help to overcome chemoresistance in clinical practice. In this regard, we demonstrated that Bruton's tyrosine kinase (BTK) inhibitors ibrutinib and acalabrutinib efficiently prevented daunorubicin (Dau) inactivation mediated by AKR1C3 in both its recombinant form as well as during its overexpression in cancer cells. This revealed a synergistic effect of BTK inhibitors on Dau cytotoxicity in cancer cells expressing AKR1C3 both exogenously and endogenously, thus reverting anthracycline resistance in vitro. These findings suggest that BTK inhibitors have a novel off-target action, which can be exploited against leukaemia through combination regimens with standard chemotherapeutics like anthracyclines.
Zobrazit více v PubMed
Gillet J.-P., Gottesman M.M. Mechanisms of Multidrug Resistance in Cancer. Bioinform. MicroRNA Res. 2010;596:47–76. doi: 10.1007/978-1-60761-416-6_4. PubMed DOI
Wu C.-P., Hsieh C.-H., Wu Y.-S. The Emergence of Drug Transporter-Mediated Multidrug Resistance to Cancer Chemotherapy. Mol. Pharm. 2011;8:1996–2011. doi: 10.1021/mp200261n. PubMed DOI
Vadlapatla R.K., Vadlapudi A.D., Pal D., Mandal A. Mechanisms of drug resistance in cancer chemotherapy: Coordinated role and regulation of efflux transporters and metabolizing enzymes. Curr. Pharm. Des. 2013;19:7126–7140. doi: 10.2174/13816128113199990493. PubMed DOI
Nielsen D., Maare C., Skovsgaard T. Cellular resistance to anthracyclines. Gen. Pharmacol. Vasc. Syst. 1996;27:251–255. doi: 10.1016/0306-3623(95)02013-6. PubMed DOI
Chien A.J., Moasser M.M. Cellular Mechanisms of Resistance to Anthracyclines and Taxanes in Cancer: Intrinsic and Acquired. Semin. Oncol. 2008;35:S1–S14. doi: 10.1053/j.seminoncol.2008.02.010. PubMed DOI
Kaye S., Merry S. Tumour cell resistance to anthracyclines? A review. Cancer Chemother. Pharmacol. 1985;14:96–103. doi: 10.1007/BF00434344. PubMed DOI
Gianni L. Anthracycline resistance: The problem and its current definition. Semin. Oncol. 1997;24:10. PubMed
Bains O.S., Grigliatti T.A., Reid R.E., Riggs K.W. Naturally Occurring Variants of Human Aldo-Keto Reductases with Reduced In Vitro Metabolism of Daunorubicin and Doxorubicin. J. Pharmacol. Exp. Ther. 2010;335:533–545. doi: 10.1124/jpet.110.173179. PubMed DOI
Bains O.S., Szeitz A., Lubieniecka J.M., Cragg G.E., Grigliatti T.A., Riggs K.W., Reid R.E. A Correlation between Cytotoxicity and Reductase-Mediated Metabolism in Cell Lines Treated with Doxorubicin and Daunorubicin. J. Pharmacol. Exp. Ther. 2013;347:375–387. doi: 10.1124/jpet.113.206805. PubMed DOI
Birtwistle J., Hayden R.E., Khanim F., Green R.M., Pearce C., Davies N.J., Wake N., Schrewe H., Ride J.P., Chipman J.K., et al. The aldo-keto reductase AKR1C3 contributes to 7,12-dimethylbenz(a)anthracene-3,4-dihydrodiol mediated oxidative DNA damage in myeloid cells: Implications for leukemogenesis. Mutat. Res. Mol. Mech. Mutagen. 2009;662:67–74. doi: 10.1016/j.mrfmmm.2008.12.010. PubMed DOI
Desmond J.C., Mountford J.C., Drayson M.T., Walker A.E., Hewison M., Ride J.P., Luong Q.T., Hayden E.R., Vanin E.F., Bunce C.M. The aldo-keto reductase AKR1C3 is a novel suppressor of cell differentiation that provides a plausible target for the non-cyclooxygenase-dependent antineoplastic actions of nonsteroidal anti-inflammatory drugs. Cancer Res. 2003;63:505–512. PubMed
Byrns M.C., Duan L., Lee S.H., Blair I.A., Penning T.M. Aldo-keto reductase 1C3 expression in MCF-7 cells reveals roles in steroid hormone and prostaglandin metabolism that may explain its over-expression in breast cancer. J. Steroid Biochem. Mol. Biol. 2010;118:177–187. doi: 10.1016/j.jsbmb.2009.12.009. PubMed DOI PMC
Dozmorov M.G., Azzarello J.T., Wren J.D., Fung K.-M., Yang Q., Davis J.S., Hurst R.E., Culkin D.J., Penning T.M., Lin H.-K. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: Implications for prostate cancer progressioan. BMC Cancer. 2010;10:672. doi: 10.1186/1471-2407-10-672. PubMed DOI PMC
Liu Y., He S., Chen Y., Liu Y., Feng F., Liu W., Guo Q., Zhao L., Sun H. Overview of AKR1C3: Inhibitor Achievements and Disease Insights. J. Med. Chem. 2020;63:11305–11329. doi: 10.1021/acs.jmedchem.9b02138. PubMed DOI
Hofman J., Malcekova B., Skarka A., Novotna E., Wsól V. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3. Toxicol. Appl. Pharmacol. 2014;278:238–248. doi: 10.1016/j.taap.2014.04.027. PubMed DOI
Verma K., Zang T., Gupta N., Penning T.M., Trippier P.C. Selective AKR1C3 Inhibitors Potentiate Chemotherapeutic Activity in Multiple Acute Myeloid Leukemia (AML) Cell Lines. ACS Med. Chem. Lett. 2016;7:774–779. doi: 10.1021/acsmedchemlett.6b00163. PubMed DOI PMC
Verma K., Zang T., Penning T.M., Trippier P.C. Potent and Highly Selective Aldo–Keto Reductase 1C3 (AKR1C3) Inhibitors Act as Chemotherapeutic Potentiators in Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. J. Med. Chem. 2019;62:3590–3616. doi: 10.1021/acs.jmedchem.9b00090. PubMed DOI PMC
Novotná E., Büküm N., Hofman J., Flaxová M., Kouklíková E., Louvarová D., Wsól V. Roscovitine and purvalanol A effectively reverse anthracycline resistance mediated by the activity of aldo-keto reductase 1C3 (AKR1C3): A promising therapeutic target for cancer treatment. Biochem. Pharmacol. 2018;156:22–31. doi: 10.1016/j.bcp.2018.08.001. PubMed DOI
Novotná E., Büküm N., Hofman J., Flaxová M., Kouklíková E., Louvarová D., Wsól V. Aldo-keto reductase 1C3 (AKR1C3): A missing piece of the puzzle in the dinaciclib interaction profile. Arch. Toxicol. 2018;92:2845–2857. doi: 10.1007/s00204-018-2258-0. PubMed DOI
Novotná E., Morell A., Büküm N., Hofman J., Danielisová P., Wsól V. Interactions of antileukemic drugs with daunorubicin reductases: Could reductases affect the clinical efficacy of daunorubicin chemoregimens? Arch. Toxicol. 2020;94:3059–3068. doi: 10.1007/s00204-020-02818-y. PubMed DOI
Lindvall J.M., Blomberg K.E.M., Väliaho J., Vargas L., Heinonen J.E., Berglof A., Mohamed A.J., Nore B.F., Vihinen M., Smith C.I.E. Bruton’s tyrosine kinase: Cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol. Rev. 2005;203:200–215. doi: 10.1111/j.0105-2896.2005.00225.x. PubMed DOI
Tsukada S., Saffran D.C., Rawlings D.J., Parolini O., Allen R., Klisak I., Sparkes R.S., Kubagawa H., Mohandas T., Quan S., et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72:279–290. doi: 10.1016/0092-8674(93)90667-F. PubMed DOI
Di Paolo A.J., Huang T., Balazs M., Barbosa J., Barck K.H., Bravo B.J., Carano R.A.D., Darrow J.W., Davies D.R., DeForge E.L., et al. Specific Btk inhibition suppresses B cell– and myeloid cell–mediated arthritis. Nat. Chem. Biol. 2011;7:41–50. doi: 10.1038/nchembio.481. PubMed DOI
Honigberg L.A., Smith A.M., Sirisawad M., Verner E., Loury D., Chang B., Li S., Pan Z., Thamm D.H., Miller R.A., et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. USA. 2010;107:13075–13080. doi: 10.1073/pnas.1004594107. PubMed DOI PMC
Byrd J.C., Furman R.R., Coutre S.E., Flinn I.W., Burger J.A., Blum K.A., Grant B., Sharman J.P., Coleman M., Wierda W.G., et al. Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2013;369:32–42. doi: 10.1056/NEJMoa1215637. PubMed DOI PMC
Byrd J.C., Brown J.R., O’Brien S., Barrientos J.C., Kay N.E., Reddy N.M., Coutre S., Tam C.S., Mulligan S.P., Jaeger U., et al. Ibrutinib versus Ofatumumab in Previously Treated Chronic Lymphoid Leukemia. N. Engl. J. Med. 2014;371:213–223. doi: 10.1056/NEJMoa1400376. PubMed DOI PMC
Burger J.A., Tedeschi A., Barr P.M., Robak T., Owen C., Ghia P., Bairey O., Hillmen P., Bartlett N.L., Deepali S., et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2015;373:2425–2437. doi: 10.1056/NEJMoa1509388. PubMed DOI PMC
Rotin L.E., Gronda M., Hurren R., Wang X., Minden M.D., Slassi M., Schimmer A.D. Investigating the synergistic mechanism between ibrutinib and daunorubicin in acute myeloid leukemia cells. Leuk. Lymphoma. 2016;57:2432–2436. doi: 10.3109/10428194.2016.1138292. PubMed DOI
Copeland R.A. Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists. 2nd ed. Wiley; Hobokin, NJ, USA: 2013. PubMed
Lovering A.L., Ride J.P., Bunce C.M., Desmond J.C., Cummings S.M., White S.A. Crystal Structures of Prostaglandin D211-Ketoreductase (AKR1C3) in Complex with the Nonsteroidal Anti-Inflammatory Drugs Flufenamic Acid and Indomethacin. Cancer Res. 2004;64:1802–1810. doi: 10.1158/0008-5472.CAN-03-2847. PubMed DOI
Rushworth S.A., Murray M.Y., Zaitseva L., Bowles K.M., MacEwan D.J. Identification of Bruton’s tyrosine kinase as a therapeutic target in acute myeloid leukemia. Blood. 2014;123:1229–1238. doi: 10.1182/blood-2013-06-511154. PubMed DOI
Zhang H., Patel A., Ma S.-L., Li X.J., Zhang Y.-K., Yang P.-Q., Kathawala R.J., Wang Y.-J., Anreddy N., Fu L.-W., et al. In vitro, in vivoandex vivocharacterization of ibrutinib: A potent inhibitor of the efflux function of the transporter MRP1. Br. J. Pharmacol. 2014;171:5845–5857. doi: 10.1111/bph.12889. PubMed DOI PMC
Berglof A., Hamasy A., Meinke S., Palma M., Krstić A., Månsson R., Kimby E., Österborg A., Smith C.I.E. Targets for Ibrutinib Beyond B Cell Malignancies. Scand. J. Immunol. 2015;82:208–217. doi: 10.1111/sji.12333. PubMed DOI PMC
Griner L.A.M., Guha R., Shinn P., Young R.M., Keller J.M., Liu D., Goldlust I.S., Yasgar A., McKnight C., Boxer M.B., et al. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell–like diffuse large B-cell lymphoma cells. Proc. Natl. Acad. Sci. USA. 2014;111:2349–2354. doi: 10.1073/pnas.1311846111. PubMed DOI PMC
Oellerich T., Mohr S., Corso J., Beck J., Döbele C., Braun H., Cremer A., Münch S., Wicht J., Oellerich M.F., et al. FLT3-ITD and TLR9 use Bruton tyrosine kinase to activate distinct transcriptional programs mediating AML cell survival and proliferation. Blood. 2015;125:1936–1947. doi: 10.1182/blood-2014-06-585216. PubMed DOI
Matsunaga T., Yamaguchi A., Morikawa Y., Kezuka C., Takazawa H., Endo S., El-Kabbani O., Tajima K., Ikari A., Hara A. Induction of aldo-keto reductases (AKR1C1 and AKR1C3) abolishes the efficacy of daunorubicin chemotherapy for leukemic U937 cells. Anti-Cancer Drugs. 2014;25:868–877. doi: 10.1097/CAD.0000000000000112. PubMed DOI
Bukum N., Novotna E., Morell A., Hofman J., Wsól V. Buparlisib is a novel inhibitor of daunorubicin reduction mediated by aldo-keto reductase 1C3. Chem. Interact. 2019;302:101–107. doi: 10.1016/j.cbi.2019.01.026. PubMed DOI
Morell A., Novotná E., Milan J., Danielisová P., Büküm N., Wsól V. Selective inhibition of aldo-keto reductase 1C3: A novel mechanism involved in midostaurin and daunorubicin synergism. Arch. Toxicol. 2020:1–12. doi: 10.1007/s00204-020-02884-2. PubMed DOI
Cihalova D., Ceckova M., Kučera R., Klimes J., Staud F. Dinaciclib, a cyclin-dependent kinase inhibitor, is a substrate of human ABCB1 and ABCG2 and an inhibitor of human ABCC1 in vitro. Biochem. Pharmacol. 2015;98:465–472. doi: 10.1016/j.bcp.2015.08.099. PubMed DOI
Hsiao S.-H., Lusvarghi S., Huang Y.-H., Ambudkar S.V., Hsu S.-C., Wu C.-P. The FLT3 inhibitor midostaurin selectively resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Cancer Lett. 2019;445:34–44. doi: 10.1016/j.canlet.2019.01.001. PubMed DOI PMC
Ji N., Yang Y., Cai C.-Y., Wang J.-Q., Lei Z.-N., Wu Z.-X., Cui Q., Yang D.-H., Chen Z.-S., Kong D. Midostaurin Reverses ABCB1-Mediated Multidrug Resistance, an in vitro Study. Front. Oncol. 2019;9:514. doi: 10.3389/fonc.2019.00514. PubMed DOI PMC
Van Der Kolk D.M., De Vries E.G.E., Müller M., Vellenga E. The Role of Drug Efflux Pumps in Acute Myeloid Leukemia. Leuk. Lymphoma. 2002;43:685–701. doi: 10.1080/10428190290016773. PubMed DOI
Bailly J.D., Muller C., Jaffrézou J.P., Demur C., Gassar G., Bordier C., Laurent G. Lack of correlation between expression and function of P-glycoprotein in acute myeloid leukemia cell lines. Leukemia. 1995;9:799–807. PubMed
Scheers E., Leclercq L., De Jong J., Bode N., Bockx M., Laenen A., Cuyckens F., Skee D., Murphy J., Sukbuntherng J., et al. Absorption, Metabolism, and Excretion of Oral 14C Radiolabeled Ibrutinib: An Open-Label, Phase I, Single-Dose Study in Healthy Men. Drug Metab. Dispos. 2015;43:289–297. doi: 10.1124/dmd.114.060061. PubMed DOI
Patel V.K., Lamothe B., Ayres M.L., Gay J., Cheung J., Balakrishnan K., Ivan C., Morse J., Nelson M., Keating M.J., et al. Pharmacodynamics and proteomic analysis of acalabrutinib therapy: Similarity of on-target effects to ibrutinib and rationale for combination therapy. Leukemia. 2018;32:920–930. doi: 10.1038/leu.2017.321. PubMed DOI PMC
Zhong L., Shen H., Huang C., Jing H., Cao D. AKR1B10 induces cell resistance to daunorubicin and idarubicin by reducing C13 ketonic group. Toxicol. Appl. Pharmacol. 2011;255:40–47. doi: 10.1016/j.taap.2011.05.014. PubMed DOI PMC
Matsunaga T., Wada Y., Endo S., Soda M., El-Kabbani O., Hara A. Aldo–Keto Reductase 1B10 and Its Role in Proliferation Capacity of Drug-Resistant Cancers. Front. Pharmacol. 2012;3:1–11. doi: 10.3389/fphar.2012.00005. PubMed DOI PMC
Yan R., Zu X., Ma J., Liu Z., Adeyanju M., Cao D. Aldo–keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: Implication for cancer intervention. Int. J. Cancer. 2007;121:2301–2306. doi: 10.1002/ijc.22933. PubMed DOI
Zhou Z., Zhao Y., Gu L., Niu X., Lu S. Inhibiting proliferation and migration of lung cancer using small interfering RNA targeting on Aldo-keto reductase family 1 member B10. Mol. Med. Rep. 2017;17:2153–2160. doi: 10.3892/mmr.2017.8173. PubMed DOI PMC
Laffin B., Petrash J.M. Expression of the Aldo-Ketoreductases AKR1B1 and AKR1B10 in Human Cancers. Front. Pharmacol. 2012;3:104. doi: 10.3389/fphar.2012.00104. PubMed DOI PMC
Škarydová L., Nobilis M., Wsól V. Role of carbonyl reducing enzymes in the phase I biotransformation of the non-steroidal anti-inflammatory drug nabumetone in vitro. Xenobiotica. 2012;43:346–354. doi: 10.3109/00498254.2012.720048. PubMed DOI
Škarydová L., Živná L., Xiong G., Maser E., Wsól V. AKR1C3 as a potential target for the inhibitory effect of dietary flavonoids. Chem. Interactions. 2009;178:138–144. doi: 10.1016/j.cbi.2008.10.015. PubMed DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Irwin J., Sterling T., Mysinger M.M., Bolstad E.S., Coleman R.G. ZINC: A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 2012;52:1757–1768. doi: 10.1021/ci3001277. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Feinstein W.P., Brylinski M. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J. Chemin. 2015;7:1–10. doi: 10.1186/s13321-015-0067-5. PubMed DOI PMC
BIOVIA . Dassault Systèmes, Discovery Studio Visualizer, v.20.1.0.19295. Dassault Systèmes; San Diego, CA, USA: 2019.