Bruton's Tyrosine Kinase Inhibitors Ibrutinib and Acalabrutinib Counteract Anthracycline Resistance in Cancer Cells Expressing AKR1C3

. 2020 Dec 11 ; 12 (12) : . [epub] 20201211

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33322571

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000841 Ministerstvo Školství, Mládeže a Tělovýchovy
SVV 260 416 Univerzita Karlova v Praze

Over the last few years, aldo-keto reductase family 1 member C3 (AKR1C3) has been associated with the emergence of multidrug resistance (MDR), thereby hindering chemotherapy against cancer. In particular, impaired efficacy of the gold standards of induction therapy in acute myeloid leukaemia (AML) has been correlated with AKR1C3 expression, as this enzyme metabolises several drugs including anthracyclines. Therefore, the development of selective AKR1C3 inhibitors may help to overcome chemoresistance in clinical practice. In this regard, we demonstrated that Bruton's tyrosine kinase (BTK) inhibitors ibrutinib and acalabrutinib efficiently prevented daunorubicin (Dau) inactivation mediated by AKR1C3 in both its recombinant form as well as during its overexpression in cancer cells. This revealed a synergistic effect of BTK inhibitors on Dau cytotoxicity in cancer cells expressing AKR1C3 both exogenously and endogenously, thus reverting anthracycline resistance in vitro. These findings suggest that BTK inhibitors have a novel off-target action, which can be exploited against leukaemia through combination regimens with standard chemotherapeutics like anthracyclines.

Zobrazit více v PubMed

Gillet J.-P., Gottesman M.M. Mechanisms of Multidrug Resistance in Cancer. Bioinform. MicroRNA Res. 2010;596:47–76. doi: 10.1007/978-1-60761-416-6_4. PubMed DOI

Wu C.-P., Hsieh C.-H., Wu Y.-S. The Emergence of Drug Transporter-Mediated Multidrug Resistance to Cancer Chemotherapy. Mol. Pharm. 2011;8:1996–2011. doi: 10.1021/mp200261n. PubMed DOI

Vadlapatla R.K., Vadlapudi A.D., Pal D., Mandal A. Mechanisms of drug resistance in cancer chemotherapy: Coordinated role and regulation of efflux transporters and metabolizing enzymes. Curr. Pharm. Des. 2013;19:7126–7140. doi: 10.2174/13816128113199990493. PubMed DOI

Nielsen D., Maare C., Skovsgaard T. Cellular resistance to anthracyclines. Gen. Pharmacol. Vasc. Syst. 1996;27:251–255. doi: 10.1016/0306-3623(95)02013-6. PubMed DOI

Chien A.J., Moasser M.M. Cellular Mechanisms of Resistance to Anthracyclines and Taxanes in Cancer: Intrinsic and Acquired. Semin. Oncol. 2008;35:S1–S14. doi: 10.1053/j.seminoncol.2008.02.010. PubMed DOI

Kaye S., Merry S. Tumour cell resistance to anthracyclines? A review. Cancer Chemother. Pharmacol. 1985;14:96–103. doi: 10.1007/BF00434344. PubMed DOI

Gianni L. Anthracycline resistance: The problem and its current definition. Semin. Oncol. 1997;24:10. PubMed

Bains O.S., Grigliatti T.A., Reid R.E., Riggs K.W. Naturally Occurring Variants of Human Aldo-Keto Reductases with Reduced In Vitro Metabolism of Daunorubicin and Doxorubicin. J. Pharmacol. Exp. Ther. 2010;335:533–545. doi: 10.1124/jpet.110.173179. PubMed DOI

Bains O.S., Szeitz A., Lubieniecka J.M., Cragg G.E., Grigliatti T.A., Riggs K.W., Reid R.E. A Correlation between Cytotoxicity and Reductase-Mediated Metabolism in Cell Lines Treated with Doxorubicin and Daunorubicin. J. Pharmacol. Exp. Ther. 2013;347:375–387. doi: 10.1124/jpet.113.206805. PubMed DOI

Birtwistle J., Hayden R.E., Khanim F., Green R.M., Pearce C., Davies N.J., Wake N., Schrewe H., Ride J.P., Chipman J.K., et al. The aldo-keto reductase AKR1C3 contributes to 7,12-dimethylbenz(a)anthracene-3,4-dihydrodiol mediated oxidative DNA damage in myeloid cells: Implications for leukemogenesis. Mutat. Res. Mol. Mech. Mutagen. 2009;662:67–74. doi: 10.1016/j.mrfmmm.2008.12.010. PubMed DOI

Desmond J.C., Mountford J.C., Drayson M.T., Walker A.E., Hewison M., Ride J.P., Luong Q.T., Hayden E.R., Vanin E.F., Bunce C.M. The aldo-keto reductase AKR1C3 is a novel suppressor of cell differentiation that provides a plausible target for the non-cyclooxygenase-dependent antineoplastic actions of nonsteroidal anti-inflammatory drugs. Cancer Res. 2003;63:505–512. PubMed

Byrns M.C., Duan L., Lee S.H., Blair I.A., Penning T.M. Aldo-keto reductase 1C3 expression in MCF-7 cells reveals roles in steroid hormone and prostaglandin metabolism that may explain its over-expression in breast cancer. J. Steroid Biochem. Mol. Biol. 2010;118:177–187. doi: 10.1016/j.jsbmb.2009.12.009. PubMed DOI PMC

Dozmorov M.G., Azzarello J.T., Wren J.D., Fung K.-M., Yang Q., Davis J.S., Hurst R.E., Culkin D.J., Penning T.M., Lin H.-K. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: Implications for prostate cancer progressioan. BMC Cancer. 2010;10:672. doi: 10.1186/1471-2407-10-672. PubMed DOI PMC

Liu Y., He S., Chen Y., Liu Y., Feng F., Liu W., Guo Q., Zhao L., Sun H. Overview of AKR1C3: Inhibitor Achievements and Disease Insights. J. Med. Chem. 2020;63:11305–11329. doi: 10.1021/acs.jmedchem.9b02138. PubMed DOI

Hofman J., Malcekova B., Skarka A., Novotna E., Wsól V. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3. Toxicol. Appl. Pharmacol. 2014;278:238–248. doi: 10.1016/j.taap.2014.04.027. PubMed DOI

Verma K., Zang T., Gupta N., Penning T.M., Trippier P.C. Selective AKR1C3 Inhibitors Potentiate Chemotherapeutic Activity in Multiple Acute Myeloid Leukemia (AML) Cell Lines. ACS Med. Chem. Lett. 2016;7:774–779. doi: 10.1021/acsmedchemlett.6b00163. PubMed DOI PMC

Verma K., Zang T., Penning T.M., Trippier P.C. Potent and Highly Selective Aldo–Keto Reductase 1C3 (AKR1C3) Inhibitors Act as Chemotherapeutic Potentiators in Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. J. Med. Chem. 2019;62:3590–3616. doi: 10.1021/acs.jmedchem.9b00090. PubMed DOI PMC

Novotná E., Büküm N., Hofman J., Flaxová M., Kouklíková E., Louvarová D., Wsól V. Roscovitine and purvalanol A effectively reverse anthracycline resistance mediated by the activity of aldo-keto reductase 1C3 (AKR1C3): A promising therapeutic target for cancer treatment. Biochem. Pharmacol. 2018;156:22–31. doi: 10.1016/j.bcp.2018.08.001. PubMed DOI

Novotná E., Büküm N., Hofman J., Flaxová M., Kouklíková E., Louvarová D., Wsól V. Aldo-keto reductase 1C3 (AKR1C3): A missing piece of the puzzle in the dinaciclib interaction profile. Arch. Toxicol. 2018;92:2845–2857. doi: 10.1007/s00204-018-2258-0. PubMed DOI

Novotná E., Morell A., Büküm N., Hofman J., Danielisová P., Wsól V. Interactions of antileukemic drugs with daunorubicin reductases: Could reductases affect the clinical efficacy of daunorubicin chemoregimens? Arch. Toxicol. 2020;94:3059–3068. doi: 10.1007/s00204-020-02818-y. PubMed DOI

Lindvall J.M., Blomberg K.E.M., Väliaho J., Vargas L., Heinonen J.E., Berglof A., Mohamed A.J., Nore B.F., Vihinen M., Smith C.I.E. Bruton’s tyrosine kinase: Cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol. Rev. 2005;203:200–215. doi: 10.1111/j.0105-2896.2005.00225.x. PubMed DOI

Tsukada S., Saffran D.C., Rawlings D.J., Parolini O., Allen R., Klisak I., Sparkes R.S., Kubagawa H., Mohandas T., Quan S., et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72:279–290. doi: 10.1016/0092-8674(93)90667-F. PubMed DOI

Di Paolo A.J., Huang T., Balazs M., Barbosa J., Barck K.H., Bravo B.J., Carano R.A.D., Darrow J.W., Davies D.R., DeForge E.L., et al. Specific Btk inhibition suppresses B cell– and myeloid cell–mediated arthritis. Nat. Chem. Biol. 2011;7:41–50. doi: 10.1038/nchembio.481. PubMed DOI

Honigberg L.A., Smith A.M., Sirisawad M., Verner E., Loury D., Chang B., Li S., Pan Z., Thamm D.H., Miller R.A., et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. USA. 2010;107:13075–13080. doi: 10.1073/pnas.1004594107. PubMed DOI PMC

Byrd J.C., Furman R.R., Coutre S.E., Flinn I.W., Burger J.A., Blum K.A., Grant B., Sharman J.P., Coleman M., Wierda W.G., et al. Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2013;369:32–42. doi: 10.1056/NEJMoa1215637. PubMed DOI PMC

Byrd J.C., Brown J.R., O’Brien S., Barrientos J.C., Kay N.E., Reddy N.M., Coutre S., Tam C.S., Mulligan S.P., Jaeger U., et al. Ibrutinib versus Ofatumumab in Previously Treated Chronic Lymphoid Leukemia. N. Engl. J. Med. 2014;371:213–223. doi: 10.1056/NEJMoa1400376. PubMed DOI PMC

Burger J.A., Tedeschi A., Barr P.M., Robak T., Owen C., Ghia P., Bairey O., Hillmen P., Bartlett N.L., Deepali S., et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2015;373:2425–2437. doi: 10.1056/NEJMoa1509388. PubMed DOI PMC

Rotin L.E., Gronda M., Hurren R., Wang X., Minden M.D., Slassi M., Schimmer A.D. Investigating the synergistic mechanism between ibrutinib and daunorubicin in acute myeloid leukemia cells. Leuk. Lymphoma. 2016;57:2432–2436. doi: 10.3109/10428194.2016.1138292. PubMed DOI

Copeland R.A. Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists. 2nd ed. Wiley; Hobokin, NJ, USA: 2013. PubMed

Lovering A.L., Ride J.P., Bunce C.M., Desmond J.C., Cummings S.M., White S.A. Crystal Structures of Prostaglandin D211-Ketoreductase (AKR1C3) in Complex with the Nonsteroidal Anti-Inflammatory Drugs Flufenamic Acid and Indomethacin. Cancer Res. 2004;64:1802–1810. doi: 10.1158/0008-5472.CAN-03-2847. PubMed DOI

Rushworth S.A., Murray M.Y., Zaitseva L., Bowles K.M., MacEwan D.J. Identification of Bruton’s tyrosine kinase as a therapeutic target in acute myeloid leukemia. Blood. 2014;123:1229–1238. doi: 10.1182/blood-2013-06-511154. PubMed DOI

Zhang H., Patel A., Ma S.-L., Li X.J., Zhang Y.-K., Yang P.-Q., Kathawala R.J., Wang Y.-J., Anreddy N., Fu L.-W., et al. In vitro, in vivoandex vivocharacterization of ibrutinib: A potent inhibitor of the efflux function of the transporter MRP1. Br. J. Pharmacol. 2014;171:5845–5857. doi: 10.1111/bph.12889. PubMed DOI PMC

Berglof A., Hamasy A., Meinke S., Palma M., Krstić A., Månsson R., Kimby E., Österborg A., Smith C.I.E. Targets for Ibrutinib Beyond B Cell Malignancies. Scand. J. Immunol. 2015;82:208–217. doi: 10.1111/sji.12333. PubMed DOI PMC

Griner L.A.M., Guha R., Shinn P., Young R.M., Keller J.M., Liu D., Goldlust I.S., Yasgar A., McKnight C., Boxer M.B., et al. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell–like diffuse large B-cell lymphoma cells. Proc. Natl. Acad. Sci. USA. 2014;111:2349–2354. doi: 10.1073/pnas.1311846111. PubMed DOI PMC

Oellerich T., Mohr S., Corso J., Beck J., Döbele C., Braun H., Cremer A., Münch S., Wicht J., Oellerich M.F., et al. FLT3-ITD and TLR9 use Bruton tyrosine kinase to activate distinct transcriptional programs mediating AML cell survival and proliferation. Blood. 2015;125:1936–1947. doi: 10.1182/blood-2014-06-585216. PubMed DOI

Matsunaga T., Yamaguchi A., Morikawa Y., Kezuka C., Takazawa H., Endo S., El-Kabbani O., Tajima K., Ikari A., Hara A. Induction of aldo-keto reductases (AKR1C1 and AKR1C3) abolishes the efficacy of daunorubicin chemotherapy for leukemic U937 cells. Anti-Cancer Drugs. 2014;25:868–877. doi: 10.1097/CAD.0000000000000112. PubMed DOI

Bukum N., Novotna E., Morell A., Hofman J., Wsól V. Buparlisib is a novel inhibitor of daunorubicin reduction mediated by aldo-keto reductase 1C3. Chem. Interact. 2019;302:101–107. doi: 10.1016/j.cbi.2019.01.026. PubMed DOI

Morell A., Novotná E., Milan J., Danielisová P., Büküm N., Wsól V. Selective inhibition of aldo-keto reductase 1C3: A novel mechanism involved in midostaurin and daunorubicin synergism. Arch. Toxicol. 2020:1–12. doi: 10.1007/s00204-020-02884-2. PubMed DOI

Cihalova D., Ceckova M., Kučera R., Klimes J., Staud F. Dinaciclib, a cyclin-dependent kinase inhibitor, is a substrate of human ABCB1 and ABCG2 and an inhibitor of human ABCC1 in vitro. Biochem. Pharmacol. 2015;98:465–472. doi: 10.1016/j.bcp.2015.08.099. PubMed DOI

Hsiao S.-H., Lusvarghi S., Huang Y.-H., Ambudkar S.V., Hsu S.-C., Wu C.-P. The FLT3 inhibitor midostaurin selectively resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Cancer Lett. 2019;445:34–44. doi: 10.1016/j.canlet.2019.01.001. PubMed DOI PMC

Ji N., Yang Y., Cai C.-Y., Wang J.-Q., Lei Z.-N., Wu Z.-X., Cui Q., Yang D.-H., Chen Z.-S., Kong D. Midostaurin Reverses ABCB1-Mediated Multidrug Resistance, an in vitro Study. Front. Oncol. 2019;9:514. doi: 10.3389/fonc.2019.00514. PubMed DOI PMC

Van Der Kolk D.M., De Vries E.G.E., Müller M., Vellenga E. The Role of Drug Efflux Pumps in Acute Myeloid Leukemia. Leuk. Lymphoma. 2002;43:685–701. doi: 10.1080/10428190290016773. PubMed DOI

Bailly J.D., Muller C., Jaffrézou J.P., Demur C., Gassar G., Bordier C., Laurent G. Lack of correlation between expression and function of P-glycoprotein in acute myeloid leukemia cell lines. Leukemia. 1995;9:799–807. PubMed

Scheers E., Leclercq L., De Jong J., Bode N., Bockx M., Laenen A., Cuyckens F., Skee D., Murphy J., Sukbuntherng J., et al. Absorption, Metabolism, and Excretion of Oral 14C Radiolabeled Ibrutinib: An Open-Label, Phase I, Single-Dose Study in Healthy Men. Drug Metab. Dispos. 2015;43:289–297. doi: 10.1124/dmd.114.060061. PubMed DOI

Patel V.K., Lamothe B., Ayres M.L., Gay J., Cheung J., Balakrishnan K., Ivan C., Morse J., Nelson M., Keating M.J., et al. Pharmacodynamics and proteomic analysis of acalabrutinib therapy: Similarity of on-target effects to ibrutinib and rationale for combination therapy. Leukemia. 2018;32:920–930. doi: 10.1038/leu.2017.321. PubMed DOI PMC

Zhong L., Shen H., Huang C., Jing H., Cao D. AKR1B10 induces cell resistance to daunorubicin and idarubicin by reducing C13 ketonic group. Toxicol. Appl. Pharmacol. 2011;255:40–47. doi: 10.1016/j.taap.2011.05.014. PubMed DOI PMC

Matsunaga T., Wada Y., Endo S., Soda M., El-Kabbani O., Hara A. Aldo–Keto Reductase 1B10 and Its Role in Proliferation Capacity of Drug-Resistant Cancers. Front. Pharmacol. 2012;3:1–11. doi: 10.3389/fphar.2012.00005. PubMed DOI PMC

Yan R., Zu X., Ma J., Liu Z., Adeyanju M., Cao D. Aldo–keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: Implication for cancer intervention. Int. J. Cancer. 2007;121:2301–2306. doi: 10.1002/ijc.22933. PubMed DOI

Zhou Z., Zhao Y., Gu L., Niu X., Lu S. Inhibiting proliferation and migration of lung cancer using small interfering RNA targeting on Aldo-keto reductase family 1 member B10. Mol. Med. Rep. 2017;17:2153–2160. doi: 10.3892/mmr.2017.8173. PubMed DOI PMC

Laffin B., Petrash J.M. Expression of the Aldo-Ketoreductases AKR1B1 and AKR1B10 in Human Cancers. Front. Pharmacol. 2012;3:104. doi: 10.3389/fphar.2012.00104. PubMed DOI PMC

Škarydová L., Nobilis M., Wsól V. Role of carbonyl reducing enzymes in the phase I biotransformation of the non-steroidal anti-inflammatory drug nabumetone in vitro. Xenobiotica. 2012;43:346–354. doi: 10.3109/00498254.2012.720048. PubMed DOI

Škarydová L., Živná L., Xiong G., Maser E., Wsól V. AKR1C3 as a potential target for the inhibitory effect of dietary flavonoids. Chem. Interactions. 2009;178:138–144. doi: 10.1016/j.cbi.2008.10.015. PubMed DOI

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Irwin J., Sterling T., Mysinger M.M., Bolstad E.S., Coleman R.G. ZINC: A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 2012;52:1757–1768. doi: 10.1021/ci3001277. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Feinstein W.P., Brylinski M. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J. Chemin. 2015;7:1–10. doi: 10.1186/s13321-015-0067-5. PubMed DOI PMC

BIOVIA . Dassault Systèmes, Discovery Studio Visualizer, v.20.1.0.19295. Dassault Systèmes; San Diego, CA, USA: 2019.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...