• This record comes from PubMed

Role of Exopolysaccharides of Pseudomonas in Heavy Metal Removal and Other Remediation Strategies

. 2022 Oct 11 ; 14 (20) : . [epub] 20221011

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
The Project for Specific University Research (SGS) No. SP2022/8 Faculty of Mining and Geology of VSB - Technical University of Ostrava
VEGA contract No. 1/0175/22 Scientific Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences

Pseudomonas biofilms have been studied intensively for several decades and research outcomes have been successfully implemented in various medical and agricultural applications. Research on biofilm synthesis and composition has also overlapped with the objectives of environmental sciences, since biofilm components show exceptional physicochemical properties applicable to remediation techniques. Especially, exopolysaccharides (ExPs) have been at the center of scientific interest, indicating their potential in solving the environmental issues of heavy metal land and water contamination via sorptive interactions and flocculation. Since exposure to heavy metal via contaminated water or soil poses an imminent risk to the environment and human health, ExPs provide an interesting and viable solution to this issue, alongside other effective and green remedial techniques (e.g., phytostabilization, implementation of biosolids, and biosorption using agricultural wastes) aiming to restore contaminated sites to their natural, pollution-free state, or to ameliorate the negative impact of heavy metals on the environment. Thus, we discuss the plausible role and performance of Pseudomonas ExPs in remediation techniques, aiming to provide the relevant available and comprehensive information on ExPs' biosynthesis and their usage in heavy metal remediation or other environmental applications, such as wastewater treatment via bioflocculation and soil remediation.

See more in PubMed

Mohd Nadzir M., Nurhayati R.W., Idris F.N. Biomedical applications of bacterial exopolysaccharides: A review. Polymers. 2021;13:530. doi: 10.3390/polym13040530. PubMed DOI PMC

Nwodo U.U., Green E., Okoh A.I. Bacterial exopolysaccharides: Functionality and prospects. Int. J. Mol. Sci. 2012;13:14002–14015. doi: 10.3390/ijms131114002. PubMed DOI PMC

Kanmani P., Yuvapriya S. Exopolysaccharide from Bacillus sp. YP03: Its properties and application as a flocculating agent in wastewater treatment. Int. J. Environ. Sci. Technol. 2018;15:2551–2560. doi: 10.1007/s13762-017-1416-x. DOI

Mulligan C.N., Yong R.N., Gibbs B.F. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001;60:193–207. doi: 10.1016/S0013-7952(00)00101-0. DOI

Hagarová I., Kudrík I. Optimization of extraction procedure with nonionic surfactant for determination of trace lead in waters. Chem. Listy. 2016;110:504–510.

Hagarová I. Utilization of Supramolecular Solvents in the Extraction of Metals. Chem. Listy. 2014;108:949–955.

Zhang T., Liu J.-M., Huang X.-F., Xia B., Su C.-Y., Luo G.-F., Xu Y.-W., Wu Y.-X., Mao Z.-W., Qiu R.-L. Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives. J. Hazard. Mater. 2013;262:464–471. doi: 10.1016/j.jhazmat.2013.08.069. PubMed DOI

Hiller E., Jurkovič Ľ., Faragó T., Vítková M., Tóth R., Komárek M. Contaminated soils of different natural pH and industrial origin: The role of (nano) iron- and manganese-based amendments in As, Sb, Pb, and Zn leachability. Environ. Pollut. 2021;285:117268. doi: 10.1016/j.envpol.2021.117268. PubMed DOI

Chmielewska E., Tylus W., Bujdoš M. Study of Mono- and Bimetallic Fe and Mn Oxide-Supported Clinoptilolite for Improved Pb(II) Removal. Molecules. 2021;26:4143. doi: 10.3390/molecules26144143. PubMed DOI PMC

Dudová J., Bujdoš M. Study of selenium sorption on iron oxide hydroxides. Chem. Listy. 2015;109:770–774.

Hagarová I., Nemček L. Application of Metallic Nanoparticles and Their Hybrids as Innovative Sorbents for Separation and Pre-concentration of Trace Elements by Dispersive Micro-Solid Phase Extraction: A Minireview. Front. Chem. 2021;9:672755. doi: 10.3389/fchem.2021.672755. PubMed DOI PMC

Pamukcu S. Handbook of Environmental Engineering. John Wiley & Sons; Hoboken, NJ, USA: 2018. In Situ Soil and Sediment Remediation; pp. 209–248. DOI

Song T.-S., Zhang J., Hou S., Wang H., Zhang D., Li S., Xie J. In situ electrokinetic remediation of toxic metal-contaminated soil driven by solid phase microbial fuel cells with a wheat straw addition. J. Appl. Chem. Biotechnol. 2018;93:2860–2867. doi: 10.1002/jctb.5638. DOI

You Y., Dou J., Xue Y., Jin N., Yang K. Chelating Agents in Assisting Phytoremediation of Uranium-Contaminated Soils: A Review. Sustainability. 2022;14:6379. doi: 10.3390/su14106379. DOI

Zhou W., Shen B., Meng F., Liu S., Zhang Y. Coagulation enhancement of exopolysaccharide secreted by an Antarctic sea-ice bacterium on dye wastewater. Sep. Purif. Technol. 2010;76:215–221. doi: 10.1016/j.seppur.2010.10.011. DOI

Kumar A.S., Mody K., Jha B. Bacterial exopolysaccharides—A perception. J. Basic Microbiol. 2007;47:103–117. doi: 10.1002/jobm.200610203. PubMed DOI

Li C., Yu Y., Fang A., Feng D., Du M., Tang A., Chen S., Li A. Insight into biosorption of heavy metals by extracellular polymer substances and the improvement of the efficacy: A review. Lett. Appl. Microbiol. 2021 doi: 10.1111/lam.13563. PubMed DOI

Hagarová I. Utilization of biosurfactants in remediation of environmental media contaminated with heavy metals. Chem. Listy. 2015;109:431–436.

Villela H.D.M., Peixoto R.S., Soriano A.U., Carmo F.L. Microbial bioremediation of oil contaminated seawater: A survey of patent deposits and the characterization of the top genera applied. Sci. Total Environ. 2019;666:743–758. doi: 10.1016/j.scitotenv.2019.02.153. PubMed DOI

Al Disi Z., Al-Ghouti M.A., Zouari N. Investigating the simultaneous removal of hydrocarbons and heavy metals by highly adapted Bacillus and Pseudomonas strains. Environ. Technol. Innov. 2022;27:102513. doi: 10.1016/j.eti.2022.102513. DOI

Braud A., Jézéquel K., Bazot S., Lebeau T. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere. 2009;74:280–286. doi: 10.1016/j.chemosphere.2008.09.013. PubMed DOI

Chlebek D., Płociniczak T., Gobetti S., Kumor A., Hupert-Kocurek K., Pacwa-Płociniczak M. Analysis of the genome of the heavy metal resistant and hydrocarbon-degrading rhizospheric Pseudomonas qingdaonensis zcr6 strain and assessment of its plant-growth-promoting traits. Int. J. Mol. Sci. 2022;23:214. doi: 10.3390/ijms23010214. PubMed DOI PMC

Moore E.R.B., Tindall B.J., Martins Dos Santos V.A.P., Pieper D.H., Ramos J.-L., Palleroni N.J. Nonmedical: Pseudomonas. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E., editors. The Prokaryotes: A Handbook on the Biology of Bacteria Volume 6: Proteobacteria: Gamma Subclass. Springer; New York, NY, USA: 2006. pp. 646–703. DOI

Abdelbary S., Elgamal M.S., Farrag A. Trends in Heavy Metals Tolerance and Uptake by Pseudomonas aeruginosa. In: Sriramulu D., editor. Pseudomonas aeruginosa—An Armory Within. IntechOpen; London, UK: 2018.

Nouha K., Kumar R.S., Balasubramanian S., Tyagi R.D. Critical review of EPS production, synthesis and composition for sludge flocculation. J. Environ. Sci. 2018;66:225–245. doi: 10.1016/j.jes.2017.05.020. PubMed DOI

Hay I.D., Rehman Z.U., Moradali M.F., Wang Y., Rehm B.H.A. Microbial alginate production, modification and its applications. Microb. Biotechnol. 2013;6:637–650. doi: 10.1111/1751-7915.12076. PubMed DOI PMC

Wu Q., Tun H.M., Leung F.C.-C., Shah N.P. Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275. Sci. Rep. 2014;4:4974. doi: 10.1038/srep04974. PubMed DOI PMC

Osemwegie O.O., Adetunji C.O., Ayeni E.A., Adejobi O.I., Arise R.O., Nwonuma C.O., Oghenekaro A.O. Exopolysaccharides from bacteria and fungi: Current status and perspectives in Africa. Heliyon. 2020;6:e04205. doi: 10.1016/j.heliyon.2020.e04205. PubMed DOI PMC

Rehm B.H.A. Bacterial polymers: Biosynthesis, modifications and applications. Nat. Rev. Microbiol. 2010;8:578–592. doi: 10.1038/nrmicro2354. PubMed DOI

Ohman D.E. Molecular genetics of exopolysaccharide production by mucoid Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. 1986;5:6–10. doi: 10.1007/BF02013452. PubMed DOI

Kasak P., Sasová J., Shoheeduzzaman R., Baig M.T., Alyafei A.A.H.A., Tkac J. Influence of direct electric field on PMCG-alginate-based microcapsule. Emergent Mater. 2021;4:769–779. doi: 10.1007/s42247-021-00166-w. DOI

Kasak P., Danko M., Zavahir S., Mrlik M., Xiong Y., Yousaf A.B., Lai W.-F., Krupa I., Tkac J., Rogach A.L. Identification of molecular fluorophore as a component of carbon dots able to induce gelation in a fluorescent multivalent-metal-ion-free alginate hydrogel. Sci. Rep. 2019;9:15080. doi: 10.1038/s41598-019-51512-2. PubMed DOI PMC

Franklin M., Nivens D., Weadge J., Howell P. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front. Microbiol. 2011;2:167. doi: 10.3389/fmicb.2011.00167. PubMed DOI PMC

May T.B., Shinabarger D., Boyd A., Chakrabarty A.M. Identification of amino acid residues involved in the activity of phosphomannose isomerase-guanosine 5′-diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J. Biol. Chem. 1994;269:4872–4877. doi: 10.1016/S0021-9258(17)37625-1. PubMed DOI

Zielinski N.A., Chakrabarty A.M., Berry A. Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J. Biol. Chem. 1991;266:9754–9763. doi: 10.1016/S0021-9258(18)92885-1. PubMed DOI

Tavares I.M., Leitão J.H., Fialho A.M., Sá-Correia I. Pattern of changes in the activity of enzymes of GDP-D-mannuronic acid synthesis and in the level of transcription of algA, algC and algD genes accompanying the loss and emergence of mucoidy in Pseudomonas aeruginosa. Res. Microbiol. 1999;150:105–116. doi: 10.1016/S0923-2508(99)80028-X. PubMed DOI

Oglesby L.L., Jain S., Ohman D.E. Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology. 2008;154:1605–1615. doi: 10.1099/mic.0.2007/015305-0. PubMed DOI PMC

Remminghorst U., Rehm B.H.A. Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett. 2006;580:3883–3888. doi: 10.1016/j.febslet.2006.05.077. PubMed DOI

Maharaj R., May T.B., Shang-Kwei W., Chakrabarty A.M. Sequence of the alg8 and alg44 genes involved in the synthesis of alginate by Pseudomonas aeruginosa. Gene. 1993;136:267–269. doi: 10.1016/0378-1119(93)90477-K. PubMed DOI

Hay I.D., Remminghorst U., Rehm B.H.A. MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2009;75:1110–1120. doi: 10.1128/AEM.02416-08. PubMed DOI PMC

Nivens D.E., Ohman D.E., Williams J., Franklin M.J. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J. Bacteriol. 2001;183:1047–1057. doi: 10.1128/JB.183.3.1047-1057.2001. PubMed DOI PMC

Franklin M.J., Chitnis C.E., Gacesa P., Sonesson A., White D.C., Ohman D.E. Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J. Bacteriol. 1994;176:1821–1830. doi: 10.1128/jb.176.7.1821-1830.1994. PubMed DOI PMC

Robles-Price A., Wong Thiang Y., Sletta H., Valla S., Schiller Neal L. AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa. J. Bacteriol. 2004;186:7369–7377. doi: 10.1128/JB.186.21.7369-7377.2004. PubMed DOI PMC

Schiller N.L., Monday S.R., Boyd C.M., Keen N.T., Ohman D.E. Characterization of the Pseudomonas aeruginosa alginate lyase gene (algL): Cloning, sequencing, and expression in Escherichia coli. J. Bacteriol. 1993;175:4780–4789. doi: 10.1128/jb.175.15.4780-4789.1993. PubMed DOI PMC

Whitney J.C., Hay I.D., Li C., Eckford P.D.W., Robinson H., Amaya M.F., Wood L.F., Ohman D.E., Bear C.E., Rehm B.H., et al. Structural basis for alginate secretion across the bacterial outer membrane. Proc. Natl. Acad. Sci. USA. 2011;108:13083–13088. doi: 10.1073/pnas.1104984108. PubMed DOI PMC

Keiski C.-L., Harwich M., Jain S., Neculai A.M., Yip P., Robinson H., Whitney J.C., Riley L., Burrows L.L., Ohman D.E., et al. AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure. 2010;18:265–273. doi: 10.1016/j.str.2009.11.015. PubMed DOI PMC

Myszka K., Czaczyk K. Characterization of adhesive exopolysaccharide (EPS) produced by Pseudomonas aeruginosa under starvation conditions. Curr. Microbiol. 2009;58:541–546. doi: 10.1007/s00284-009-9365-3. PubMed DOI

Grobe S., Wingender J., Flemming H.-C. Capability of mucoid Pseudomonas aeruginosa to survive in chlorinated water. Int. J. Hyg. Environ. Health. 2001;204:139–142. doi: 10.1078/1438-4639-00085. PubMed DOI

Grobe S., Wingender J., Trüper H.G. Characterization of mucoid Pseudomonas aeruginosa strains isolated from technical water systems. J. Appl. Bacteriol. 1995;79:94–102. doi: 10.1111/j.1365-2672.1995.tb03129.x. PubMed DOI

Wozniak D.J., Wyckoff T.J.O., Starkey M., Keyser R., Azadi P., O’Toole G.A., Parsek M.R. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA. 2003;100:7907–7912. doi: 10.1073/pnas.1231792100. PubMed DOI PMC

Colvin K.M., Irie Y., Tart C.S., Urbano R., Whitney J.C., Ryder C., Howell P.L., Wozniak D.J., Parsek M.R. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol. 2012;14:1913–1928. doi: 10.1111/j.1462-2920.2011.02657.x. PubMed DOI PMC

Jennings L.K., Storek K.M., Ledvina H.E., Coulon C., Marmont L.S., Sadovskaya I., Secor P.R., Tseng B.S., Scian M., Filloux A., et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc. Natl. Acad. Sci. USA. 2015;112:11353–11358. doi: 10.1073/pnas.1503058112. PubMed DOI PMC

Le Mauff F., Razvi E., Reichhardt C., Sivarajah P., Parsek M.R., Howell P.L., Sheppard D.C. The Pel polysaccharide is predominantly composed of a dimeric repeat of α-1,4 linked galactosamine and N-acetylgalactosamine. Commun. Biol. 2022;5:502. doi: 10.1038/s42003-022-03453-2. PubMed DOI PMC

Friedman L., Kolter R. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 2004;51:675–690. doi: 10.1046/j.1365-2958.2003.03877.x. PubMed DOI

Ghafoor A., Jordens Z., Rehma H.A.B. Role of pelf in pel polysaccharide biosynthesis in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2013;79:2968–2978. doi: 10.1128/AEM.03666-12. PubMed DOI PMC

Whitfield Gregory B., Marmont Lindsey S., Ostaszewski A., Rich Jacquelyn D., Whitney John C., Parsek Matthew R., Harrison Joe J., Howell P.L. Pel Polysaccharide Biosynthesis Requires an Inner Membrane Complex Comprised of PelD, PelE, PelF, and PelG. J. Bacteriol. 2020;202:e00684-19. doi: 10.1128/JB.00684-19. PubMed DOI PMC

Low K.E., Howell P.L. Gram-negative synthase-dependent exopolysaccharide biosynthetic machines. Curr. Opin. Struct. Biol. 2018;53:32–44. doi: 10.1016/j.sbi.2018.05.001. PubMed DOI

Colvin Kelly M., Alnabelseya N., Baker P., Whitney John C., Howell P.L., Parsek Matthew R. PelA deacetylase activity is required for Pel polysaccharide synthesis in Pseudomonas aeruginosa. J. Bacteriol. 2013;195:2329–2339. doi: 10.1128/JB.02150-12. PubMed DOI PMC

Marmont L.S., Rich J.D., Whitney J.C., Whitfield G.B., Almblad H., Robinson H., Parsek M.R., Harrison J.J., Howell P.L. Oligomeric lipoprotein PelC guides Pel polysaccharide export across the outer membrane of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA. 2017;114:2892–2897. doi: 10.1073/pnas.1613606114. PubMed DOI PMC

Byrd M.S., Sadovskaya I., Vinogradov E., Lu H., Sprinkle A.B., Richardson S.H., Ma L., Ralston B., Parsek M.R., Anderson E.M., et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol. Microbiol. 2009;73:622–638. doi: 10.1111/j.1365-2958.2009.06795.x. PubMed DOI PMC

Lee H.-J., Chang H.-Y., Venkatesan N., Peng H.-L. Identification of amino acid residues important for the phosphomannose isomerase activity of PslB in Pseudomonas aeruginosa PAO1. FEBS Lett. 2008;582:3479–3483. doi: 10.1016/j.febslet.2008.09.013. PubMed DOI

Baker P., Whitfield G.B., Hill P.J., Little D.J., Pestrak M.J., Robinson H., Wozniak D.J., Howell P.L. Characterization of the Pseudomonas aeruginosa glycoside hydrolase PslG reveals that Its levels are critical for Psl polysaccharide biosynthesis and biofilm formation. J. Biol. Chem. 2015;290:28374–28387. doi: 10.1074/jbc.M115.674929. PubMed DOI PMC

Wu H., Wang D., Tang M., Ma L.Z. The advance of assembly of exopolysaccharide Psl biosynthesis machinery in Pseudomonas aeruginosa. MicrobiologyOpen. 2019;8:e857. doi: 10.1002/mbo3.857. PubMed DOI PMC

Lau T.C., Wu X.A., Chua H., Qian P.Y., Wong P.K. Effect of exopolysaccharides on the adsorption of metal ions by Pseudomonas sp. CU-1. Water. Sci. Technol. 2005;52:63–68. doi: 10.2166/wst.2005.0182. DOI

Kazy S.K., Sar P., Singh S.P., Sen A.K., D’Souza S.F. Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: Synthesis, chemical nature and copper binding. World J. Microbiol. Biotechnol. 2002;18:583–588. doi: 10.1023/A:1016354713289. DOI

Kazy S.K., Sar P., Asthana R.K., Singh S.P. Copper uptake and its compartmentalization in Pseudomonas aeruginosa strains: Chemical nature of cellular metal. World J. Microbiol. Biotechnol. 1999;15:599–605. doi: 10.1023/A:1008997718811. DOI

Chug R., Mathur S., Kothari S.L., Harish, Gour V.S. Maximizing EPS production from Pseudomonas aeruginosa and its application in Cr and Ni sequestration. Biochem. Biophys. Rep. 2021;26:100972. doi: 10.1016/j.bbrep.2021.100972. PubMed DOI PMC

Al-Dhabi N.A., Esmail G.A., Valan Arasu M. Sustainable conversion of palm juice wastewater into extracellular polysaccharides for absorption of heavy metals from Saudi Arabian wastewater. J. Clean. Prod. 2020;277:124252. doi: 10.1016/j.jclepro.2020.124252. DOI

Kumari S., Das S. Expression of metallothionein encoding gene bmtA in biofilm-forming marine bacterium Pseudomonas aeruginosa N6P6 and understanding its involvement in Pb(II) resistance and bioremediation. Environ. Sci. Pollut. Res. 2019;26:28763–28774. doi: 10.1007/s11356-019-05916-2. PubMed DOI

Rezić T., Rezić I., Zeiner M., Šantek B. Application of mixed microbial culture biofilms for manganese (II), cobalt (II), and chromium (VI) biosorption by horizontal rotating tubular bioreactor. In: Farooq R., Ahmad Z., editors. Biological Wastewater Treatment and Resource Recovery. IntechOpen; London, UK: 2017. DOI

Abinaya Sindu P., Gautam P. Studies on the biofilm produced by Pseudomonas aeruginosa grown in different metal fatty acid salt media and its application in biodegradation of fatty acids and bioremediation of heavy metal ions. Can. J. Microbiol. 2017;63:61–73. doi: 10.1139/cjm-2015-0384. PubMed DOI

Rizvi A., Saghir Khan M. Putative role of bacterial biosorbent in metal sequestration revealed by SEM–EDX and FTIR. Indian J. Microbiol. 2019;59:246–249. doi: 10.1007/s12088-019-00780-7. PubMed DOI PMC

Ferreira M.L., Casabuono A.C., Stacchiotti S.T., Couto A.S., Ramirez S.A., Vullo D.L. Chemical characterization of Pseudomonas veronii 2E soluble exopolymer as Cd(II) ligand for the biotreatment of electroplating wastes. Int. Biodeterior. Biodegrad. 2017;119:605–613. doi: 10.1016/j.ibiod.2016.10.013. DOI

Busnelli M.P., Lazzarini Behrmann I.C., Ferreira M.L., Candal R.J., Ramirez S.A., Vullo D.L. Metal-Pseudomonas veronii 2E interactions as strategies for innovative process developments in environmental biotechnology. Front. Microbiol. 2021;12:622600. doi: 10.3389/fmicb.2021.622600. PubMed DOI PMC

Busnelli M.P., Vullo D.L. Copper removal mediated by Pseudomonas veronii 2E in batch and continuous reactors. J. Sustain. Dev. Energy Water Environ. Syst. 2022;10:1080351. doi: 10.13044/j.sdewes.d8.0351. DOI

Ferreira M.L., Ramirez S.A., Vullo D.L. Chemical characterization and ligand behaviour of Pseudomonas veronii 2E siderophores. World J. Microbiol. Biotechnol. 2018;34:134. doi: 10.1007/s11274-018-2519-3. PubMed DOI

Schalk I.J., Hannauer M., Braud A. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 2011;13:2844–2854. doi: 10.1111/j.1462-2920.2011.02556.x. PubMed DOI

Ferreira M.L., Gerbino E., Cavallero G.J., Casabuono A.C., Couto A.S., Gomez-Zavaglia A., Ramirez S.A.M., Vullo D.L. Infrared spectroscopy with multivariate analysis to interrogate the interaction of whole cells and secreted soluble exopolimeric substances of Pseudomonas veronii 2E with Cd(II), Cu(II) and Zn(II) Spectrochim. Acta Part A. 2020;228:117820. doi: 10.1016/j.saa.2019.117820. PubMed DOI

Cavallero G.J., Ferreira M.L., Casabuono A.C., Ramírez S.A., Vullo D.L., Couto A.S. Structural characterization and metal biosorptive activity of the major polysaccharide produced by Pseudomonas veronii 2E. Carbohydr. Polym. 2020;245:116458. doi: 10.1016/j.carbpol.2020.116458. PubMed DOI

Maalej H., Boisset C., Hmidet N., Buon L., Heyraud A., Nasri M. Purification and structural data of a highly substituted exopolysaccharide from Pseudomonas stutzeri AS22. Carbohydr. Polym. 2014;112:404–411. doi: 10.1016/j.carbpol.2014.06.003. PubMed DOI

Maalej H., Hmidet N., Boisset C., Buon L., Heyraud A., Nasri M. Optimization of exopolysaccharide production from Pseudomonas stutzeri AS22 and examination of its metal-binding abilities. J. Appl. Microbiol. 2015;118:356–367. doi: 10.1111/jam.12688. PubMed DOI

Meena S., Vidya Kalaivani M., Tripathi A.D., Ramyaa Lakshmi T. Optimization and characterization of alginic acid synthesized from a novel strain of Pseudomonas stutzeri. Biotechnol. Rep. 2020;27:e00517. doi: 10.1016/j.btre.2020.e00517. PubMed DOI PMC

Thorgersen M.P., Andrew Lancaster W., Ge X., Zane G.M., Wetmore K.M., Vaccaro B.J., Poole F.L., Younkin A.D., Deutschbauer A.M., Arkin A.P., et al. Mechanisms of chromium and uranium toxicity in Pseudomonas stutzeri RCH2 grown under anaerobic nitrate-reducing conditions. Front. Microbiol. 2017;8:01529. doi: 10.3389/fmicb.2017.01529. PubMed DOI PMC

Marqués A.M., Bonet R., Simon-Pujol M.D., Fusté M.C., Congregado F. Removal of uranium by an exopolysaccharide from Pseudomonas sp. Appl. Microbiol. Biotechnol. 1990;34:429–431. doi: 10.1007/BF00170074. DOI

Marqués A.M., Roca X., Simon-Pujol M.D., Fuste M.C., Congregado F. Uranium accumulation by Pseudomonas sp. EPS-5028. Appl. Microbiol. Biotechnol. 1991;35:406–410. doi: 10.1007/BF00172734. PubMed DOI

Quintero N.Y., Bruggemann R., Restrepo G. Ranking of 38 prokaryotes according to their uranium uptake capacity in aqueous solutions: An approach from order theory through the Hasse diagram technique. Toxicol. Environ. Chem. 2017;99:1242–1269. doi: 10.1080/02772248.2017.1312401. DOI

Ueshima M., Ginn B.R., Haack E.A., Szymanowski J.E.S., Fein J.B. Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances. Geochim. Cosmochim. Acta. 2008;72:5885–5895. doi: 10.1016/j.gca.2008.09.014. DOI

Wei X., Fang L., Cai P., Huang Q., Chen H., Liang W., Rong X. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environ. Pollut. 2011;159:1369–1374. doi: 10.1016/j.envpol.2011.01.006. PubMed DOI

Guiné V., Spadini L., Sarret G., Muris M., Delolme C., Gaudet J.P., Martins J.M.F. Zinc sorption to three gram-negative bacteria:  Combined titration, modeling, and EXAFS study. Environ. Sci. Technol. 2006;40:1806–1813. doi: 10.1021/es050981l. PubMed DOI

Lin H., Wang C., Zhao H., Chen G., Chen X. A subcellular level study of copper speciation reveals the synergistic mechanism of microbial cells and EPS involved in copper binding in bacterial biofilms. Environ. Pollut. 2020;263:114485. doi: 10.1016/j.envpol.2020.114485. PubMed DOI

Andreazza R., Pieniz S., Wolf L., Lee M.-K., Camargo F.A.O., Okeke B.C. Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil. Sci. Total Environ. 2010;408:1501–1507. doi: 10.1016/j.scitotenv.2009.12.017. PubMed DOI

Coutaud M., Méheut M., Glatzel P., Pokrovski G.S., Viers J., Rols J.-L., Pokrovsky O.S. Small changes in Cu redox state and speciation generate large isotope fractionation during adsorption and incorporation of Cu by a phototrophic biofilm. Geochim. Cosmochim. Acta. 2018;220:1–18. doi: 10.1016/j.gca.2017.09.018. DOI

Upadhyay A., Srivastava S. Mechanism of zinc resistance in a plant growth promoting Pseudomonas fluorescens strain. World J. Microbiol. Biotechnol. 2014;30:2273–2282. doi: 10.1007/s11274-014-1648-6. PubMed DOI

Upadhyay A., Srivastava S. Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd. Indian J. Exp. Biol. 2010;48:601–609. PubMed

Bhagat N., Raghav M., Dubey S., Bedi N. Bacterial exopolysaccharides: Insight into their role in plant abiotic stress tolerance. J. Microbiol. Biotechnol. 2021;31:1045–1059. doi: 10.4014/jmb.2105.05009. PubMed DOI PMC

Vélez J.M.B., Martínez J.G., Ospina J.T., Agudelo S.O. Bioremediation potential of Pseudomonas genus isolates from residual water, capable of tolerating lead through mechanisms of exopolysaccharide production and biosorption. Biotechnol. Rep. 2021;32:e00685. doi: 10.1016/j.btre.2021.e00685. PubMed DOI PMC

Pathak M., Devi A., Sarma H.K., Lal B. Application of bioflocculating property of Pseudomonas aeruginosa strain IASST201 in treatment of oil-field formation water. J. Basic Microbiol. 2014;54:658–669. doi: 10.1002/jobm.201301011. PubMed DOI

Subramanian B.S., Yan S., Tyagi R.D., Surampalli R.Y. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: Isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering. Water Res. 2010;44:2253–2266. doi: 10.1016/j.watres.2009.12.046. PubMed DOI

Farag S., Zaki S., Elkady M., Abd-El-Haleem D. Production and characteristics of a bioflocculant produced by Pseudomonas sp. strain 38A. J. Adv. Microbiol. 2011;4:286–295.

Liu W., Hao Y., Jiang J., Zhu A., Zhu J., Dong Z. Production of a bioflocculant from Pseudomonas veronii L918 using the hydrolyzate of peanut hull and its application in the treatment of ash-flushing wastewater generated from coal fired power plant. Bioresour. Technol. 2016;218:318–325. doi: 10.1016/j.biortech.2016.06.108. PubMed DOI

Buthelezi S., Olaniran A., Pillay B. Turbidity and microbial load removal from river water using bioflocculants from indigenous bacteria isolated from wastewater in South Africa. Afr. J. Biotechnol. 2009;8:3261–3266.

Sun P.-F., Lin H., Wang G., Lu L.-L., Zhao Y.-H. Preparation of a new-style composite containing a key bioflocculant produced by Pseudomonas aeruginosa ZJU1 and its flocculating effect on harmful algal blooms. J. Hazard. Mater. 2015;284:215–221. doi: 10.1016/j.jhazmat.2014.11.025. PubMed DOI

Drakou E.-M., Amorim C.L., Castro P.M.L., Panagiotou F., Vyrides I. Wastewater valorization by pure bacterial cultures to extracellular polymeric substances (EPS) with high emulsifying potential and flocculation activities. Waste Biomass Valoriz. 2018;9:2557–2564. doi: 10.1007/s12649-017-0016-9. DOI

Mao Y., Xiao X., Liu Y., Zhao E.L., Zhai L.B. Production of a novel biopolymer by culture of Pseudomonas fluorescens using brewery wastewater and its use for dye removal. Adv. Mater. Res. 2010;171–172:45–48. doi: 10.4028/www.scientific.net/AMR.171-172.45. DOI

Wang Y.H., Liu R.Q., Liu W.F., Tong L.B., Wang Y.Q., Wang R.N. Production of a novel bioflocculant by culture of Pseudomonas alcaligenes using brewery wastewater and its application in dye removal; Proceedings of the 2009 International Conference on Energy and Environment Technology, ICEET 2009; Guilin, China. 16–18 October 2009; pp. 678–682.

Kumar V., Jamwal A., Kumar V., Singh D. Green bioprocess for degradation of synthetic dyes mixture using consortium of laccase-producing bacteria from Himalayan niches. J. Environ. Manage. 2022;310:114764. doi: 10.1016/j.jenvman.2022.114764. PubMed DOI

Yi H.W., Yuliani E., Handayani M., Sseng H.C., Ching C.S. Affectivity of biological cement’s application to sandy soil for geotechnical engineering; Proceedings of the MATEC Web of Conferences, The Sixth International Multi-Conference on Engineering and Technology Innovation 2017, IMETI2017; Hualien, Taiwan. 27–31 October 2017.

Sandhya V., Ali S.Z. The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology. 2015;84:512–519. doi: 10.1134/S0026261715040153. PubMed DOI

Fatima T., Arora N.K. Pseudomonas entomophila PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions. Microbiol. Res. 2021;244:126671. doi: 10.1016/j.micres.2020.126671. PubMed DOI

Tewari S., Arora N.K. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr. Microbiol. 2014;69:484–494. doi: 10.1007/s00284-014-0612-x. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...