Diversity dependence is a ubiquitous phenomenon across Phanerozoic oceans

. 2022 Oct 28 ; 8 (43) : eadd9620. [epub] 20221028

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36306361

Biodiversity on Earth is shaped by abiotic perturbations and rapid diversifications. At the same time, there are arguments that biodiversity is bounded and regulated via biotic interactions. Evaluating the role and relative strength of diversity regulation is crucial for interpreting the ongoing biodiversity changes. We have analyzed Phanerozoic fossil record using public databases and new approaches for identifying the causal dependence of origination and extinction rates on environmental variables and standing diversity. While the effect of environmental factors on origination and extinction rates is variable and taxon specific, the diversity dependence of the rates is almost universal across the studied taxa. Origination rates are dependent on instantaneous diversity levels, while extinction rates reveal delayed diversity dependence. Although precise mechanisms of diversity dependence may be complex and difficult to recover, global regulation of diversity via negative diversity dependence of lineage diversification seems to be a common feature of the biosphere, with profound consequences for understanding current biodiversity crisis.

Zobrazit více v PubMed

Sepkoski J. J., A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4, 223–251 (1978).

Close R. A., Benson R. B., Saupe E. E., Clapham M. E., Butler R. J., The spatial structure of Phanerozoic marine animal diversity. Science 368, 420–424 (2020). PubMed

Hannisdal B., Peters S. E., Phanerozoic earth system evolution and marine biodiversity. Science 334, 1121–1124 (2011). PubMed

Cermeño P., García-Comas C., Pohl A., Williams S., Benton M., Gland G. L., Muller R. D., Ridgwell A., Vallina S., Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots. Nature 607, 507–511 (2022). PubMed PMC

Zaffos A., Finnegan S., Peters S. E., Plate tectonic regulation of global marine animal diversity. Proc. Natl. Acad. Sci. U.S.A. 114, 5653–5658 (2017). PubMed PMC

Alroy J., The shifting balance of diversity among major marine animal groups. Science 329, 1191–1194 (2010). PubMed

Benton M., The Red Queen and the Court Jester: Species diversity and the role of biotic and abiotic factors through time. Science 323, 728–732 (2009). PubMed

Hannisdal B., Liow L. H., Causality from palaeontological time series. Palaeontology 61, 495–509 (2018).

Rabosky D. L., Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44, 481–502 (2013).

Alroy J., Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification: Controls on phanerozoic marine diversification. Palaeontology 53, 1211–1235 (2010).

Alroy J., A more precise speciation and extinction rate estimator. Paleobiology 41, 633–639 (2015).

Supplementary Materials can be found on Science Advances Online.

Cárdenas A. L., Harries P. J., Effect of nutrient availability on marine origination rates throughout the Phanerozoic eon. Nat. Geosci. 3, 430–434 (2010).

Sugihara G., May R., Ye H., Hsieh C.-H., Deyle E., Fogarty M., Munch S., Detecting causality in complex ecosystems. Science 338, 496–500 (2012). PubMed

Novelli L., Wollstadt P., Mediano P., Wibral M., Lizier J. T., Large-scale directed network inference with multivariate transfer entropy and hierarchical statistical testing. Netw. Neurosci. 3, 827–847 (2019). PubMed PMC

Ye H., Deyle E. R., Gilarranz L. J., Sugihara G., Distinguishing time-delayed causal interactions using convergent cross mapping. Sci. Rep. 5, 14750 (2015). PubMed PMC

T. Bossomaier, L. Barnett, M. Harré, J. T. Lizier, An Introduction to Transfer Entropy (Springer International Publishing, 2016).

Renaudie J., Lazarus D., Diver P., NSB (Neptune Sandbox Berlin): An expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy. Palaeontol. Electron. 23, a11 (2020).

Venditti C., Meade A., Pagel M., Phylogenies reveal new interpretation of speciation and the Red Queen. Nature 463, 349–352 (2010). PubMed

Storch D., Okie J. G., The carrying capacity for species richness. Glob. Ecol. Biogeogr. 28, 1519–1532 (2019).

M. L. Rosenzweig, Species Diversity in Space and Time (Cambridge Univ. Press, 1995).

Foote M., Cooper R. A., Crampton J. S., Sadler P. M., Diversity-dependent evolutionary rates in early Palaeozoic zooplankton. Proc. R. Soc. B 285, 20180122 (2018). PubMed PMC

Storch D., Bohdalková E., Okie J., The more-individuals hypothesis revisited: The role of community abundance in species richness regulation and the productivity-diversity relationship. Ecol. Lett. 21, 920–937 (2018). PubMed

Flannery-Sutherland J. T., Silvestro D., Benton M. J., Global diversity dynamics in the fossil record are regionally heterogeneous. Nat. Commun. 13, 2751 (2022). PubMed PMC

Moen D., Morlon H., Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014). PubMed

Alroy J., Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127, 285–311 (1996).

Rosenblum E. B., Sarver B. A. J., Brown J. W., Des Roches S., Hardwick K. M., Hether T. D., Eastman J. M., Pennell M. W., Harmon L. J., Goldilocks meets Santa Rosalia: An ephemeral speciation model explains patterns of diversification across time scales. Evol. Biol. 39, 255–261 (2012). PubMed PMC

Alroy J., Dynamics of origination and extinction in the marine fossil record. Proc. Natl. Acad. Sci. U.S.A. 105, 11536–11542 (2008). PubMed PMC

Kiessling W., Kocsis Á. T., Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals. Paleobiology 41, 402–414 (2015).

Kocsis Á. T., Reddin C. J., Alroy J., Kiessling W., The R package divdyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol. 10, 735–743 (2019).

Alroy J., Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. Paleontol. Soc. Pap. 16, 55–80 (2010).

Close R. A., Evers S. W., Alroy J., Butler R. J., How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods Ecol. Evol. 9, 1386–1400 (2018).

Foote M., Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25, 1–115 (1999).

Alroy J., Accurate and precise estimates of origination and extinction rates. Paleobiology 40, 374–397 (2014).

A. A. Tsonis, E. R. Deyle, H. Ye, G. Sugihara, Convergent cross mapping: Theory and an example, in Advances in Nonlinear Geosciences, A. A. Tsonis, Ed. (Springer, 2018), pp. 587–600.

Kwiatkowski D., Phillips P. C., Schmidt P., Shin Y., Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. econom. 54, 159–178 (1992).

Dickey D. A., Fuller W. A., Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 427–431 (1979).

Peterson R. A., Cavanaugh J. E., Ordered quantile normalization: A semiparametric transformation built for the cross-validation era. J. Appl. Stat. 47, 2312–2327 (2020). PubMed PMC

Scotese C. R., Song H., Mills B. J. W., van der Meer D. G., Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth Sci. Rev. 215, 103503 (2021).

Cerling T. E., Harris J. M., MacFadden B. J., Leakey M. G., Quade J., Eisenmann V., Ehleringer J. R., Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

R. F. Sage, D. A. Wedin, M. Li, The biogeography of C4 photosynthesis: Patterns and controlling factors, in C4 Plant Biology, R. F. Sage, R. K. Monson Eds. (Elsevier, 1999), pp. 313–373.

Reinfelder J. R., Kraepiel A. M. L., Morel F. M. M., Unicellular C4 photosynthesis in a marine diatom. Nature 407, 996–999 (2000). PubMed

J. G. Ogg, G. Ogg, F. M. Gradstein, A Concise Geologic Time Scale: 2016 (Elsevier, ed. 1, 2016).

J. M. McArthur, R. J. Howarth, G. A. Shields, Strontium isotope stratigraphy, in The Geologic Time Scale 2012, F. M. Gradstein, J. G. Ogg, M. D. Schmitz, G. M. Ogg, Eds. (Elsevier, ed. 1, 2012), vol. 1, chap. 7.

Prokoph A., Shields G. A., Veizer J., Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci. Rev. 87, 113–133 (2008).

Wei W., Peleo-Alampay A., Updated Cenozoic nannofossil magnetobiochronology. Int. Nannofossil Assoc. Newsl. 15, 15–17 (1993).

F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, D. Rand, L.-S. Young, Eds. (Springer, 1981), vol. 898 of Lecture Notes in Mathematics, pp. 366–381.

Hannisdal B., Haaga K. A., Reitan T., Diego D., Liow L. H., Common species link global ecosystems to climate change: Dynamical evidence in the planktonic fossil record. Proc. R. Soc. B 284, 20170722 (2017). PubMed PMC

Cermeño P., Benton M. J., Paz Ó., Vérard C., Trophic and tectonic limits to the global increase of marine invertebrate diversity. Sci. Rep. 7, 15969 (2017). PubMed PMC

Cramer K. L., O’Dea A., Carpenter C., Norris R. D., A 3000 year record of Caribbean reef urchin communities reveals causes and consequences of long-term decline in Diadema antillarum. Ecography 41, 164–173 (2018).

Ebisuzaki W., A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate 10, 2147–2153 (1997).

Chang C.-W., Ushio M., Hsieh C.-H., Empirical dynamic modeling for beginners. Ecol Res. 32, 785–796 (2017).

T. M. Cover, J. A. Thomas, Elements of Information Theory (Wiley, ed. 2, 2006).

Shannon C. E., A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423 (1948).

Paluš M., Albrecht V., Dvořák I., Information theoretic test for nonlinearity in time series. Phys. Lett. 175, 203–209 (1993).

Schreiber T., Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000). PubMed

Hannisdal B., Non-parametric inference of causal interactions from geological records. Am. J. Sci. 311, 315–334 (2011).

Dunhill A. M., Hannisdal B., Brocklehurst N., Benton M. J., On formation-based sampling proxies and why they should not be used to correct the fossil record. Palaeontology 61, 119–132 (2018).

Wollstadt P., Lizier J., Vicente R., Finn C., Martinez-Zarzuela M., Mediano P., Novelli L., Wibral M., IDTxl: The information dynamics toolkit xl: A python package for the efficient analysis of multivariate information dynamics in networks. J. Open Source Softw. 4, 1081 (2019).

Benjamini Y., Hochberg Y., Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B Stat. Methodol. 57, 289–300 (1995).

García-Medina A., Hernandez C J. B., Network analysis of multivariate transfer entropy of cryptocurrencies in times of turbulence. Entropy 22, 760 (2020). PubMed PMC

Kraskov A., Stögbauer H., Grassberger P., Estimating mutual information. Phys. Rev. E 69, 066138 (2004). PubMed

Bush A. M., Bambach R. K., Paleoecologic megatrends in marine Metazoa. Annu. Rev. Earth Planet. Sci. 39, 241–269 (2011).

Barnett A. G., Van Der Pols J. C., Dobson A. J., Regression to the mean: What it is and how to deal with it. Int. J. Epidemiol. 34, 215–220 (2005). PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...