Exploring 129Xe NMR parameters for structural investigation of biomolecules: relativistic, solvent, and thermal effects
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
PubMed
36318276
DOI
10.1007/s00894-022-05365-8
PII: 10.1007/s00894-022-05365-8
Knihovny.cz E-zdroje
- Klíčová slova
- 129Xe, Biological systems, NMR, Probes, Relativistic effects,
- MeSH
- izotopy xenonu * chemie MeSH
- magnetická rezonanční spektroskopie metody MeSH
- rozpouštědla chemie MeSH
- thiazoly * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- izotopy xenonu * MeSH
- rozpouštědla MeSH
- thiazoly * MeSH
- Xenon-129 MeSH Prohlížeč
In recent years, the study of new probes has aroused great interest in the scientific community around the world. Therefore, in the present work, we present a potential candidate for a new spectroscopic probe, the Xe(CO)3(NNO) conjugated to 2-(4'-aminophenyl) benzothiazole complex, XeABT. For this proposal, chemical shift calculations at the DFT level were performed; thus, a factorial design was carried out in order to choose the best computational method. The best combination was the base function ZORA-def2-TZVP, with the functional PBE0 and considering the relativistic effects with the ZORA implementation. Our findings reveal that the 129Xe chemical shifts are affected by thermal and solvent effects, and considering an enzymatic environment, a significant decrease in δ(129Xe) values is observed, suggesting with the XeABT complex it may be a promising spectroscopic probe.
Zobrazit více v PubMed
Cook GA (1961) Argon, helium and the rare gases: the elements of the helium group. Interscience Publishers, New York
Boventi M, Mauri M, Simonutti R (2022) 129Xe: a wide-ranging NMR probe for multiscale structures. Appl Sci 12:3152. https://doi.org/10.3390/app12063152 DOI
Arnett EM, Wernett PC (1993) Does the basicity of xenon-129 affect its NMR chemical shift? J Am Chem Soc 115:12187–12188. https://doi.org/10.1021/ja00078a076 DOI
Cherubini A, Bifone A (2003) Hyperpolarised xenon in biology. Prog Nucl Magn Reson Spectrosc 42:1–30. https://doi.org/10.1016/S0079-6565(02)00052-3 DOI
Ito T, Fraissard J (1982) 129 Xe NMR study of xenon adsorbed on Y zeolites. J Chem Phys 76:5225–5229. https://doi.org/10.1063/1.442917 DOI
Rubin SM, Spence MM, Pines A, Wemmer DE (2001) Characterization of the effects of nonspecific xenon–protein interactions on 129Xe chemical shifts in aqueous solutioN: further development of xenon as a biomolecular probe. J Magn Reson 152:79–86. https://doi.org/10.1006/jmre.2001.2389 PubMed DOI
Rubin SM, Spence MM, Dimitrov IE et al (2001) Detection of a conformational change in maltose binding protein by 129 Xe NMR spectroscopy. J Am Chem Soc 123:8616–8617. https://doi.org/10.1021/ja0110325 PubMed DOI
Koubi L, Tarek M, Klein ML, Scharf D (2000) Distribution of halothane in a dipalmitoylphosphatidylcholine bilayer from molecular dynamics calculations. Biophys J 78:800–811. https://doi.org/10.1016/S0006-3495(00)76637-9 PubMed DOI PMC
Brotin T, Lesage A, Emsley L, Collet A (2000) 129 Xe NMR spectroscopy of deuterium-labeled cryptophane-A xenon complexes: investigation of host−guest complexation dynamics. J Am Chem Soc 122:1171–1174. https://doi.org/10.1021/ja993053t DOI
Peuravaara P, Karjalainen J, Zhu J et al (2018) Chemical shift extremum of 129Xe(aq) reveals details of hydrophobic solvation. Sci Rep 8:7023. https://doi.org/10.1038/s41598-018-25418-4 PubMed DOI PMC
Antušek A, Pecul M, Sadlej J (2006) Relativistic calculation of NMR properties of XeF2, XeF4 and XeF6. Chem Phys Lett 427:281–288. https://doi.org/10.1016/j.cplett.2006.06.099 DOI
Varghese JJ (2018). Reaction chemistry & engineering reactivity and computational tools to investigate them : a review. https://doi.org/10.1039/c8re00226f DOI
Schmid R (2001) Recent advances in the description of the structure of water, the hydrophobic effect, and the like-dissolves-like rule. Monatshefte fuer Chemie/Chemical Mon 132:1295–1326. https://doi.org/10.1007/s007060170019 DOI
Mancini DT, Souza EF, Caetano MS, Ramalho TC (2014) 99Tc NMR as a promising technique for structural investigation of biomolecules: theoretical studies on the solvent and thermal effects of phenylbenzothiazole complex. Magn Reson Chem 52:129–137. https://doi.org/10.1002/mrc.4043 PubMed DOI
Machura B, Wolff M, Benoist E, Coulais Y (2013) Tricarbonyl rhenium(I) complex of benzothiazole – synthesis, spectroscopic characterization, X-ray crystal structure and DFT calculations. J Organomet Chem 724:82–87. https://doi.org/10.1016/j.jorganchem.2012.10.020 DOI
Mavroidi B, Sagnou M, Stamatakis K et al (2016) Palladium(II) and platinum(II) complexes of derivatives of 2-(4′-aminophenyl)benzothiazole as potential anticancer agents. Inorganica Chim Acta 444:63–75. https://doi.org/10.1016/j.ica.2016.01.012 DOI
Vaara J, Pyykkö P (2003) Relativistic, nearly basis-set-limit nuclear magnetic shielding constants of the rare gases He–Rn: a way to absolute nuclear magnetic resonance shielding scales. J Chem Phys 118:2973–2976. https://doi.org/10.1063/1.1545718 DOI
Kudo K, Ootani Y, Funaki M, Fukui H (2006) Relativistic calculation of nuclear magnetic shieldings of xenon difluoride. J Chem Phys 124:116101. https://doi.org/10.1063/1.2173999 PubMed DOI
Ferreira SLC, Bruns RE, Ferreira HS et al (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. https://doi.org/10.1016/j.aca.2007.07.011 PubMed DOI
da Rocha EP, Castro AA, Ramalho TC, da Cunha EFF (2016) Insights into the value of statistical models and relativistic effects for the investigation of halogenated derivatives of fluorescent probes. Theor Chem Acc 135:135. https://doi.org/10.1007/s00214-016-1862-4 DOI
Avogadro: an open-source molecular builder and visualization tool. Version 1.XX. http://avogadro.cc/
Neese F (2012) The ORCA program system. WIREs Comput Mol Sci 2:73–78. https://doi.org/10.1002/wcms.81 DOI
van Wüllen C (1998) Molecular density functional calculations in the regular relativistic approximation: method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J Chem Phys 109:392–399. https://doi.org/10.1063/1.476576 DOI
Gonçalves MA, Santos LS, Prata DM, et al (2017) Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: application to thermal and solvent effects of MRI probes. Theor Chem Acc 136. https://doi.org/10.1007/s00214-016-2037-z
Gonçalves MA, Gonçalves AS, Franca TCC et al (2022) Improved protocol for the selection of structures from molecular dynamics of organic systems in solution: the value of investigating different wavelet families. J Chem Theory Comput 18:5810–5818. https://doi.org/10.1021/acs.jctc.2c00593 PubMed DOI
Matlab. The MathWorks, Inc.: Natick, MA, USA
Gonçalves MA, Santos LS, Peixoto FC, et al (2017) Comparing structure and dynamics of solvation of different iron oxide phases for enhanced magnetic resonance imaging. ChemistrySelect 2. https://doi.org/10.1002/slct.201701705
Gonçalves MA, Júnior AMG, da Cunha EFF, Ramalho TC (2021) Investigating an efficient and accurate protocol for sampling structures from molecular dynamics simulations: a close look by different wavelet families. Theor Chem Acc 140:109. https://doi.org/10.1007/s00214-021-02816-y DOI
Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321 PubMed DOI
Corrêa S, Rosa IA, Andolpho GA et al (2021) Hybrid materials based on magnetic iron oxides with benzothiazole derivatives: a plausible potential spectroscopy probe. Int J Mol Sci 22:3980. https://doi.org/10.3390/ijms22083980 PubMed DOI PMC
D’Angelo ND, Kim T-S, Andrews K et al (2011) Discovery and optimization of a series of benzothiazole phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors. J Med Chem 54:1789–1811. https://doi.org/10.1021/jm1014605 PubMed DOI
Schrobilgen GJ, Holloway JH, Granger P, Brevard C (1978) Xenon-129 pulse Fourier-transform nuclear magnetic resonance spectroscopy. Inorg Chem 17:980–987. https://doi.org/10.1021/ic50182a037 DOI
Levy HA, Agron PA (1963) The crystal and molecular structure of xenon difluoride by neutron diffraction. J Am Chem Soc 85:241–242. https://doi.org/10.1021/ja00885a037 DOI
Bürger H, Ma S, Breidung J, Thiel W (1996) Ab initio calculations and high resolution infrared investigation on XeF 4. J Chem Phys 104:4945–4953. https://doi.org/10.1063/1.471266 DOI
Kaupp M, van Wüllen C, Franke R et al (1996) The structure of XeF 6 and of compounds isoelectronic with it. A challenge to computational chemistry and to the qualitative theory of the chemical bond. J Am Chem Soc 118:11939–11950. https://doi.org/10.1021/ja9621556 DOI
Donati G, Petrone A, Rega N (2020) Multiresolution continuous wavelet transform for studying coupled solute–solvent vibrations via ab initio molecular dynamics. Phys Chem Chem Phys 22:22645–22661. https://doi.org/10.1039/D0CP02495C PubMed DOI
Heidari Z, Roe DR, Galindo-Murillo R et al (2016) Using wavelet analysis to assist in identification of significant events in molecular dynamics simulations. J Chem Inf Model 56:1282–1291. https://doi.org/10.1021/acs.jcim.5b00727 PubMed DOI
da Cunha EFF, Sippl W, de Castro RT et al (2009) 3D-QSAR CoMFA/CoMSIA models based on theoretical active conformers of HOE/BAY-793 analogs derived from HIV-1 protease inhibitor complexes. Eur J Med Chem 44:4344–4352. https://doi.org/10.1016/j.ejmech.2009.05.016 PubMed DOI
Oppenheim G (2007) Wavelets and their applications. Springer. https://doi.org/10.1017/CBO9781107415324.004
SCHRODER P, (1995) Wavelets for computer graphics: a primer.1. IEEE Comput Graph Appl 15:76–84. https://doi.org/10.1109/38.376616 DOI
Pereira BTL, Gonçalves MA, Mancini DT, et al (2019) First attempts of the use of 195Pt NMR of phenylbenzothiazole complexes as spectroscopic technique for the cancer diagnosis. Molecules 24:. https://doi.org/10.3390/molecules24213970
Guimarães AP, Oliveira AA, da Cunha EFF et al (2011) Design of new chemotherapeutics against the deadly anthrax disease. Docking and molecular dynamics studies of inhibitors containing pyrrolidine and riboamidrazone rings on nucleoside hydrolase from Bacillus anthracis. J Biomol Struct Dyn 28:455–469. https://doi.org/10.1080/07391102.2011.10508588 PubMed DOI