Hybrid Materials Based on Magnetic Iron Oxides with Benzothiazole Derivatives: A Plausible Potential Spectroscopy Probe

. 2021 Apr 12 ; 22 (8) : . [epub] 20210412

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33921510

Grantová podpora
VT2019-2021 UHK CEP - Centrální evidence projektů
FAPEMIG, CNPq, and CAPES Brazilian agencies

Rare diseases affect a small part of the population, and the most affected are children. Because of the low availability of patients for testing, the pharmaceutical industry cannot develop drugs for the diagnosis of many of these orphan diseases. In this sense, the use of benzothiazole compounds that are highly selective and can act as spectroscopy probes, especially the compound 2-(4'-aminophenyl)benzothiazole (ABT), has been highlighted. This article reports the design of potential contrast agents based on ABT and iron to develop a new material with an efficient mechanism to raise the relaxation rate, facilitating diagnosis. The ABT/δ-FeOOH hybrid material was prepared by grafting (N-(4'-aminophenyl) benzothiazole-2-bromoacetamide) on the surface of the iron oxyhydroxide particles. FTIR spectra confirmed the material formations of the hybrid material ABT/δ-FeOOH. SEM analysis checked the covering of nanoflakes' surfaces in relation to the morphology of the samples. The theoretical calculations test a better binding mode of compound with iron oxyhydroxide. Theoretical findings show the radical capture mechanism in the stabilization of this new material. In this context, Fe3+ ions are an electron acceptor from the organic phase.

Zobrazit více v PubMed

Wakap S.N., Lambert D.M., Olry A., Rodwell C., Gueydan C., Lanneau V., Murphy D., Le Cam Y., Rath A. Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. Eur. J. Hum. Genet. 2020;28:165–173. doi: 10.1038/s41431-019-0508-0. PubMed DOI PMC

Haendel M., Vasilevsky N., Unni D., Bologa C., Harris N., Rehm H., Hamosh A., Baynam G., Groza T., McMurry J., et al. How many rare diseases are there? Nat. Rev. Drug Discov. 2020;19:77–78. doi: 10.1038/d41573-019-00180-y. PubMed DOI PMC

Ferreira C.R. The burden of rare diseases. Am. J. Med. Genet. Part A. 2019;179:885–892. doi: 10.1002/ajmg.a.61124. PubMed DOI

Oo C., Rusch L.M. A personal perspective of orphan drug development for rare diseases: A golden opportunity or an unsustainable future? J. Clin. Pharmacol. 2015;56:257–259. doi: 10.1002/jcph.599. PubMed DOI

Taruscio D., Capozzoli F., Frank C. Rare diseases and orphan drugs. Ann. Dell’istituto Super. Sanità. 2011;47:83–93. PubMed

Rosa I.A., Giacoppo J.D.O.S., Da Cunha E.F.F., Fernandes Í.A., Horvath R.D.O., Ionta M., Dos Santos M.H., Ramalho T.C. Structure-Based Virtual Screening and Synthesis of Mn 2+ Complexes of Benzothiazole Derivatives for Designing New MRI Probes. ChemistrySelect. 2019;4:3118–3122. doi: 10.1002/slct.201803675. DOI

Gonçalves M.A., Santos L.S., Peixoto F.C., Da Cunha E.F.F., Silva T.C., Ramalho T.C. Comparing Structure and Dynamics of Solvation of Different Iron Oxide Phases for Enhanced Magnetic Resonance Imaging. ChemistrySelect. 2017;2:10136–10142. doi: 10.1002/slct.201701705. DOI

Mancini D.T., Souza E.F., Caetano M.S., Ramalho T.C. 99Tc NMR as a promising technique for structural investigation of biomolecules: Theoretical studies on the solvent and thermal effects of phenylbenzothiazole complex. Magn. Reson. Chem. 2014;52:129–137. doi: 10.1002/mrc.4043. PubMed DOI

Briguglio I., Piras S., Corona P., Gavini E., Nieddu M., Boatto G., Carta A. Benzotriazole: An overview on its versatile biological behavior. Eur. J. Med. Chem. 2015;97:612–648. doi: 10.1016/j.ejmech.2014.09.089. PubMed DOI PMC

Wu B., Warnock G., Zaiss M., Lin C., Chen M., Zhou Z., Mu L., Nanz D., Tuura R., Delso G. An overview of CEST MRI for non-MR physicists. EJNMMI Phys. 2016;3:19. doi: 10.1186/s40658-016-0155-2. PubMed DOI PMC

Akram M.W., Fakhar-E-Alam M., Butt A.R., Munir T., Ali A., Alimgeer K.S., Mehmood-Ur-Rehman K., Iqbal S., Ali S., Ikram M., et al. Magnesium Oxide in Nanodimension: Model for MRI and Multimodal Therapy. J. Nanomater. 2018;2018:1–12. doi: 10.1155/2018/4210920. DOI

Kuo P.H., Kanal E., Abu-Alfa A.K., Cowper S.E. Gadolinium-based MR Contrast. Radiology. 2007;242:647–649. doi: 10.1148/radiol.2423061640. PubMed DOI

Mihai M.M., Holban A.M., Călugăreanu A., Orzan O.A. Recent advances in diagnosis and therapy of skin cancers through nanotechnological approaches. Nanostruct. Cancer Ther. 2017:285–306. doi: 10.1016/B978-0-323-46144-3.00011-8. DOI

Ramalho T.C., de Castro A.A., Silva D.R., Silva M.C., Franca T.C.C., Bennion B.J., Kuca K. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides. Curr. Med. Chem. 2016;23:1041. doi: 10.2174/0929867323666160222113504. PubMed DOI

Arias L.S., Pessan J.P., Vieira A.P.M., de Lima T.M.T., Delbem A.C.B., Monteiro D.R. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics. 2018;7:46. doi: 10.3390/antibiotics7020046. PubMed DOI PMC

Corrêa S., Lacerda L.C.T., Pires M.S., Rocha M.V.J., Nogueira F.G.E., da Silva A.C., Pereira M.C., de Brito A.D.B., da Cunha E.F.F., Ramalho T.C. Synthesis, structural characterization and thermal properties of the Poly (methylmethacrylate)/δ -FeOOH hybrid material: An experimental and theoretical study. J. Nanomater. 2016 doi: 10.1155/2016/2462135. DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Expanding the Limits of Computational Chemistry. [(accessed on 7 November 2020)]; Available online: https://gaussian.com/citation/

D’Angelo N.D., Kim T.-S., Andrews K., Booker S.K., Caenepeel S., Chen K., D’Amico D., Freeman D., Jiang J., Liu L., et al. Discovery and Optimization of a Series of Benzothiazole Phosphoinositide 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Dual Inhibitors. J. Med. Chem. 2011;54:1789–1811. doi: 10.1021/jm1014605. PubMed DOI

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC

Kemmish H., Fasnacht M., Yan L. Fully automated antibody structure prediction using BIOVIA tools: Validation study. PLoS ONE. 2017;12:e0177923. doi: 10.1371/journal.pone.0177923. PubMed DOI PMC

Giacoppo J.O.S., Franca T.C.C., Kuca K., da Cunha E.F.F., Abagyan R., Mancini D.T., Ramalho T.C. Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. J. Biomol. Struct. Dyn. 2015;33:2048. doi: 10.1080/07391102.2014.989408. PubMed DOI

Velde G.T., Bickelhaupt F.M., Baerends E.J., Guerra C.F., Van Gisbergen S.J.A., Snijders J.G., Ziegler T. Chemistry with ADF. J. Comput. Chem. 2001;22:931–967. doi: 10.1002/jcc.1056. DOI

Leone V.O., Pereira M.C., Aquino S.F., Oliveira L.C.A., Correa S., Ramalho T.C., Gurgel L.V.A., Silva A.C. Adsorption of diclofenac on a magnetic adsorbent based on maghemite: Experimental and theoretical studies. New J. Chem. 2017;42:437–449. doi: 10.1039/C7NJ03214E. DOI

Silverstein R.M., Webster F.X., Kiemle D.J., Bryce D.L. Identificação Espectrofotométrica de Compostos Orgânicos. 8th ed. LTC; Rio de Janeiro, Brazil: 2019. p. 451.

Benvidi A., Jahanbani S., Mirjalili B.F., Zare R. Electrocatalytic oxidation of hydrazine on magnetic bar carbon paste electrode modified with benzothiazole and iron oxide nanoparticles: Simultaneous determination of hydrazine and phenol. Cuihua Xuebao/Chin. J. Catal. 2016;37:549–560. doi: 10.1016/S1872-2067(15)61046-4. DOI

Thomas R.C., Chidester C.G. Albocycline: Structure determination by X-ray crystallography. J. Antibiot. 1982;35:1658–1664. doi: 10.7164/antibiotics.35.1658. PubMed DOI

Porta F.L., Ramalho T.C., Santiago R.T., Rocha M.V. Orbital Signatures as a Descriptor of Regioselectivity and Chemical Reactivity: The Role of the Frontier Orbitals on 1,3-Dipolar Cycloadditions. J. Phys. Chem. 2011;115:824–833. doi: 10.1021/jp108790w. PubMed DOI

Leach A.R., Shoichet B.K., Peishoff C.E. Prediction of Protein−Ligand Interactions. Docking and Scoring:  Successes and Gaps. J. Med. Chem. 2006;49:5851–5855. doi: 10.1021/jm060999m. PubMed DOI

Warren G.L., Andrews C.W., Capelli A.M., Clarke B., LaLonde J., Lambert M.H., Lindvall M., Nevins N., Semus S.F., Senger S., et al. A Critical Assessment of Docking Programs and Scoring Functions. J. Med. Chem. 2006;49:5912–5931. doi: 10.1021/jm050362n. PubMed DOI

Gonçalves M.A., da Cunha E.F.F., Peixoto F.C., Ramalho T.C. Probing thermal and solvent effects on hyperfine interactions and spin relaxation rate of δ-FeOOH (1 0 0) and [MnH3buea (OH)] 2−: Toward new MRI probes. Comput. Theor. Chem. 2015;1069:96–104. doi: 10.1016/j.comptc.2015.07.006. DOI

Gonçalves M.A., Ramalho T.C. Relaxation parameters of water molecules coordinated with Gd (III) complexes and hybrid materials based on δ-FeOOH (100) nanoparticles: A theoretical study of hyperfine inter-actions for CAs in MRI. Eclética Química J. 2020;45:12–20. doi: 10.26850/1678-4618eqj.v45.4.2020.p12-20. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...