Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia maritima
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36358933
PubMed Central
PMC9687265
DOI
10.3390/biom12111583
PII: biom12111583
Knihovny.cz E-zdroje
- Klíčová slova
- Lobularia maritima, biopotential, halophyte, molecular mechanisms, phytochemicals, stress genes,
- MeSH
- Brassicaceae * metabolismus MeSH
- chlorid sodný farmakologie MeSH
- fyziologická adaptace MeSH
- halotolerantní rostliny * genetika MeSH
- lidé MeSH
- vývoj rostlin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chlorid sodný MeSH
Halophytes are plant species widely distributed in saline habitats, such as beaches, postindustrial wastelands, irrigated lands, salt flats, and others. Excessive salt level, known to limit plant growth, is not harmful to halophytes, which have developed a variety of defense mechanisms allowing them to colonize harsh environments. Plants under stress are known to respond with several morpho-anatomical adaptations, but also to enhance the production of secondary metabolites to better cope with difficult conditions. Owing to these adaptations, halophytes are an interesting group of undemanding plants with a high potential for application in the food and pharmaceutical industries. Therefore, this review aims to present the characteristics of halophytes, describe changes in their gene expression, and discuss their synthesized metabolites of pharmacognostic and pharmacological significance. Lobularia maritima is characterized as a widely spread halophyte that has been shown to exhibit various pharmacological properties in vitro and in vivo. It is concluded that halophytes may become important sources of natural products for the treatment of various ailments and for supplementing the human diet with necessary non-nutrients and minerals. However, extensive studies are needed to deepen the knowledge of their biological potential in vivo, so that they can be introduced to the pharmaceutical and food industries.
Collegium Medicum Jan Kochanowski University 9 WiekówKielc 19 35 317 Kielce Poland
ISBST BVBGR LR11ES31 Biotechpole Sidi Thabet University of Manouba Ariana 2020 Tunisia
Zobrazit více v PubMed
Flowers T.J., Colmer T.D. Salinity tolerance in halophytes. New Phytol. 2008;179:945–963. doi: 10.1111/j.1469-8137.2008.02531.x. PubMed DOI
Roohi A., Nazish B., Maleeha M., Waseem S. A critical review on halophytes: Salt tolerant plants. J. Med. Plant Res. 2011;5:7108–7118.
Qasim M., Gulzar S., Shinwari Z.K., Aziz I., Khan M.A. Traditional ethnobotanical uses of halophytes from Hub, Balochistan. Pak. J. Bot. 2010;42:1543–1551.
Hameed A., Khan M.A. Halophytes: Biology and economic potentials. Karachi Univ. J. Sci. 2011;39:40–44.
Kukula-Koch W., Koch W., Angelis A., Halabalaki M., Aligiannis N. Application of pH-zone refining hydrostatic countercurrent chromatography (hCCC) for the recovery of antioxidant phenolics and the isolation of alkaloids from Siberian barberry herb. Food Chem. 2016;203:394–401. doi: 10.1016/j.foodchem.2016.02.096. PubMed DOI
Gómez J. Phenotypic selection and response to selection in Lobularia maritima: The importance of direct and correlational components of natural selection. J. Evol. Biol. 2000;13:689–699. doi: 10.1046/j.1420-9101.2000.00196.x. DOI
Picó F.X., Retana J. The flowering pattern of the perennial herb Lobularia maritima: An unusual case in the Mediterranean basin. Acta Oecol. 2001;22:209–217. doi: 10.1016/S1146-609X(01)01114-6. DOI
Huang R.W., Liu D.F., Zhao M., Li Z.N., Li M.Y., Sue S.Z. Artificially induced polyploidization in Lobularia maritima (L.) Desv. and its effect on morphological traits. Hortscience. 2015;50:636–639. doi: 10.21273/HORTSCI.50.5.636. DOI
Huang L., Ma Y., Jiang J., Li T., Yang W., Zhang L., Wu L., Feng L., Xi Z., Xu X., et al. A chromosome-scale reference genome of Lobularia maritima, an ornamental plant with high-stress tolerance. Hortic. Res. 2020;7:197. doi: 10.1038/s41438-020-00422-w. PubMed DOI PMC
Mahajan R., Kapoor N., Bajaj B.K. Plant Genomics for Sustainable Agriculture. Springer; Singapore: 2022. Use of genomics to improve stress tolerance; pp. 291–312.
Haak D.C., Fukao T., Grene R., Hua Z., Ivanov R., Perrella G., Li S. Multilevel regulation of abiotic stress responses in plants. Front. Plant Sci. 2017;8:1564. doi: 10.3389/fpls.2017.01564. PubMed DOI PMC
Shah A.N., Tanveer M., Abbas A., Fahad S., Baloch M.S., Ahmad M.I., Saud S., Song Y. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. Plant Physiol. Biochem. 2021;158:53–64. doi: 10.1016/j.plaphy.2020.11.044. PubMed DOI
Tiwari V., Chaturvedi A.K., Mishra A., Jha B. Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiate enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea) and acts as a transcription factor. PLoS ONE. 2015;10:e0131567. doi: 10.1371/journal.pone.0131567. PubMed DOI PMC
Ye Y., Lin R., Su H., Chen H., Luo M., Yang L., Zhang M. The functional identification of glycine-rich TtASR from Tetragonia tetragonoides (Pall.) Kuntze involving in plant abiotic stress tolerance. Plant Physiol. Biochem. 2019;143:212–223. doi: 10.1016/j.plaphy.2019.09.013. PubMed DOI
Zhang G.H., Su Q., An L.J., Wu S. Characterization and expression of a vacuolar Na(+)/H(+) antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol. Biochem. 2008;46:117–126. doi: 10.1016/j.plaphy.2007.10.022. PubMed DOI
Ben-Romdhane W., Ben Saad R., Meynard D., Zouari N., Mahjoub A., Fki L., Guiderdoni E., Al-Doss A., Hassairi A. Overexpression of AlTMP2 gene from the halophyte grass Aeluropus littoralis in transgenic tobacco enhances tolerance to different abiotic stresses by improving membrane stability and deregulating some stress-related genes. Protoplasma. 2018;255:1161–1177. doi: 10.1007/s00709-018-1223-3. PubMed DOI
Ben Romdhane W., Ben Saad R., Meynard D., Verdeil J.L., Azaza J., Zouari N., Fki L., Guiderdoni E., Al-Doss A., Hassairi A. Ectopic Expression of Aeluropus littoralis plasma membrane protein gene AlTMP1confers abiotic stress tolerance in transgenic tobacco by improving water status and cation homeostasis. Int. J. Mol. Sci. 2017;18:692. doi: 10.3390/ijms18040692. PubMed DOI PMC
Ben Saad R., Ben Halima N., Ghorbel M., Zouari N., Ben Romdhane W., Guiderdoni E., Al-Doss A., Hassairi A. AlSRG1, a novel gene encoding an RRM-type RNA-binding protein (RBP) from Aeluropus littoralis, confers salt and drought tolerance in transgenic tobacco. Environ. Exp. Bot. 2018;150:25–36. doi: 10.1016/j.envexpbot.2018.03.002. DOI
Lv S.L., Lian L.J., Tao P.L., Li Z.X., Zhang K.W., Zhang J.R. Overexpression of Thellungiella halophila H(+)-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta. 2009;229:899–910. doi: 10.1007/s00425-008-0880-4. PubMed DOI
Pei L., Wang J., Li K., Li Y., Li B., Gao F., Yang A. Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize. PLoS ONE. 2012;7:e43501. doi: 10.1371/journal.pone.0043501. PubMed DOI PMC
Nazish T., Javaid A., Ali M., Zhu Y.H., Li J., Zhang H.Y., Wu J., Xiang C.B., Wu S.J., Alfatih A. Thellungiella halophila ST5 improves salt tolerance in cotton. J. Cotton Res. 2022;5:7. doi: 10.1186/s42397-022-00112-z. DOI
Ardie S.W., Liu S., Takano T. Expression of the AKT1-type K(+) channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep. 2010;29:865–874. doi: 10.1007/s00299-010-0872-2. PubMed DOI
Li Y., Takano T., Liu S. Discovery and characterization of two novel salt-tolerance genes in Puccinellia tenuiflora. Int. J. Mol. Sci. 2014;15:16469–16483. doi: 10.3390/ijms150916469. PubMed DOI PMC
Guan Q.J., Wang Z.J., Wang X.H., Takano T., Liu S.K. A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. J. Plant Physiol. 2015;175:183–191. doi: 10.1016/j.jplph.2014.10.020. PubMed DOI
Holmes G.D., Hall N.E., Gendall A.R., Boon P.I., James E.A. Using transcriptomics to identify differential gene expression in response to salinity among Australian Phragmites australisclones. Front. Plant Sci. 2016;7:432. doi: 10.3389/fpls.2016.00432. PubMed DOI PMC
Zhao C., Xu J., Li Q., Li S., Wang P., Xiang F. Cloning and characterization of a Phragmites australis phytochelatin synthase (PaPCS) and achieving Cd tolerance in tall fescue. PLoS ONE. 2014;9:e103771. doi: 10.1371/journal.pone.0103771. PubMed DOI PMC
Zhang L., Chen L., Lu F., Liu Z., Lan S., Han G. Differentially expressed genes related to oxidoreductase activity and glutathione metabolism underlying the adaptation of Phragmites australis from the salt marsh in the Yellow River Delta, China. PeerJ. 2020;8:e10024. doi: 10.7717/peerj.10024. PubMed DOI PMC
Shao Q., Han N., Ding T., Zhou F., Wang B. SsHKT1;1 is a potassium transporter of the C3 halophyte Suaeda salsa that is involved in salt tolerance. Funct. Plant Biol. 2014;41:790–802. doi: 10.1071/FP13265. PubMed DOI
Zhang X., Liu X., Wu L., Yu G., Wang X., Ma H. The SsDREB transcription factor from the succulent halophyte Suaeda salsaenhances abiotic stress tolerance in transgenic Tobacco. Int. J. Genom. 2015;2015:875497. PubMed PMC
Mishra A., Tanna B. Halophytes: Potential resources for salt stress tolerance genes and promoters. Front. Plant Sci. 2017;8:829. doi: 10.3389/fpls.2017.00829. PubMed DOI PMC
Rahman M.M., Mostofa M.G., Keya S.S., Siddiqui M.N., Ansary M.M.U., Das A.K., Rahman M.A., Tran L.S.P. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. Int. J. Mol. Sci. 2021;22:10733. doi: 10.3390/ijms221910733. PubMed DOI PMC
Yuan F., Guo J., Shabala S., Wang B. Reproductive physiology of halophytes: Current standing. Front. Plant Sci. 2018;9:1954. doi: 10.3389/fpls.2018.01954. PubMed DOI PMC
van Zelm E., Zhang Y., Testerink C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 2020;71:403–433. doi: 10.1146/annurev-arplant-050718-100005. PubMed DOI
Bose J., Rodrigo-Moreno A., Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2014;65:1241–1257. doi: 10.1093/jxb/ert430. PubMed DOI
Himabindu Y., Chakradhar T., Reddy M.C., Kanygin A., Redding K.E., Chandrasekhar T. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ. Exp. Bot. 2016;124:39–63. doi: 10.1016/j.envexpbot.2015.11.010. DOI
Ozfidan-Konakci C., Uzilday B., Ozgur R., Yildiztugay E., Sekmen A.H., Turkan I. Halophytes as a source of salt tolerance genes and mechanisms: A case study for the Salt Lake area, Turkey. Funct. Plant Biol. 2016;43:575–589. doi: 10.1071/FP15288. PubMed DOI
Taji T., Seki M., Satou M., Sakurai T., Kobayashi M., Ishiyama K., Narusaka Y., Narusaka M., Zhu J.K., Shinozaki K. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 2004;135:1697–1709. doi: 10.1104/pp.104.039909. PubMed DOI PMC
Horie T., Karahara I., Katsuhara M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice. 2012;5:11. doi: 10.1186/1939-8433-5-11. PubMed DOI PMC
Popova O.V., Golldack D. In the halotolerant Lobularia maritima (Brassicaceae) salt adaptation correlates with activation of the vacuolar H(+)-ATPase and the vacuolar Na+/H+ antiporter. J. Plant Physiol. 2007;164:1278–1288. doi: 10.1016/j.jplph.2006.08.011. PubMed DOI
Popova O.V., Yang O., Dietz K.J., Golldack D. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation. Gene. 2008;423:142–148. doi: 10.1016/j.gene.2008.07.017. PubMed DOI
Golldack D. Molecular responses of halophytes to high salinity. In: Esser K., Lüttge U., Beyschlag W., Murata J., editors. Progress in Botany: Genetics Physiology Systematics Ecology. Springer; Berlin/Heidelberg, Germany: 2004. pp. 219–234.
Ben Hsouna A., Ghneim-Herrera T., Ben Romdhane W., Dabbous A., Ben Saad R., Brini F., Abdelly C., Ben Hamed K. Early effects of salt stress on the physiological and oxidative status of the halophyte Lobularia maritima. Funct. Plant Biol. 2020;47:912–924. doi: 10.1071/FP19303. PubMed DOI
Dassanayake M., Oh D.H., Haas J.S., Hernandez A., Hong H., Ali S., Yun D.J., Bressan R.A., Zhu J.K., Bohnert H.J., et al. The genome of the extremophile crucifer Thellungiella parvula. Nat. Genet. 2011;43:913–918. doi: 10.1038/ng.889. PubMed DOI PMC
Arnaiz A., Talavera-Mateo L., Gonzalez-Melendi P., Martinez M., Diaz I., Santamaria M.E. Arabidopsi skunitz trypsin inhibitors in defense against spider mites. Front. Plant Sci. 2018;9:986. doi: 10.3389/fpls.2018.00986. PubMed DOI PMC
Zschiesche W., Barth O., Daniel K., Bohme S., Rausche J., Humbeck K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol. 2015;207:1084–1096. doi: 10.1111/nph.13419. PubMed DOI
Pascuan C., Frare R., Alleva K., Ayub N.D., Soto G. mRNA biogenesis-related helicase eIF4AIII from Arabidopsis thaliana is an important factor for abiotic stress adaptation. Plant Cell Rep. 2016;35:1205–1208. doi: 10.1007/s00299-016-1947-5. PubMed DOI
Azevedo C., Betsuyaku S., Peart J., Takahashi A., Noel L., Sadanandom A., Casais C., Parker J., Shirasu K. Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J. 2006;25:2007–2016. doi: 10.1038/sj.emboj.7601084. PubMed DOI PMC
Austin M.J., Muskett P., Kahn K., Feys B.J., Jones J.D., Parker J.E. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science. 2002;295:2077–2080. doi: 10.1126/science.1067747. PubMed DOI
Cheung M.Y., Li M.W., Yung Y.L., Wen C.Q., Lam H.M. The unconventional P-loop NTPase OsYchF1 and its regulator OsGAP1 play opposite roles in salinity stress tolerance. Plant Cell Environ. 2013;36:2008–2020. doi: 10.1111/pce.12108. PubMed DOI
Dabbous A., Ben Saad R., Brini F., Farhat-Khemekhem A., Zorrig W., Abdely C., Ben Hamed K. Over-expression of a subunit E1 of a vacuolar H+-ATPase gene (LmVHA-E1) cloned from the halophyte Lobularia maritima improves the tolerance of Arabidopsis thaliana to salt and osmotic stresses. Environ. Exp. Bot. 2017;137:128–141. doi: 10.1016/j.envexpbot.2017.01.013. DOI
Ben Saad R., Ben Romdhane W., Bouteraa M.T., Jrad O., Ben Hsouna A. Lobularia maritima thioredoxin-h2 gene mitigates salt and osmotic stress damage in tobacco by modeling plant antioxidant system. Plant Growth Regul. 2022;97:101–115. doi: 10.1007/s10725-022-00805-0. DOI
Vanneste K., Maere S., Van de Peer Y. Tangled up in two: A burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philos. Trans. R. Soc. Lond B Biol. Sci. 2014;369:20130353. doi: 10.1098/rstb.2013.0353. PubMed DOI PMC
Vanneste K., Baele G., Maere S., Van de Peer Y. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res. 2014;24:1334–1347. doi: 10.1101/gr.168997.113. PubMed DOI PMC
Vij S., Tyagi A.K. A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Funct. Integr. Genom. 2008;8:301–307. doi: 10.1007/s10142-008-0078-7. PubMed DOI
Giri J., Dansana P.K., Kothari K.S., Sharma G., Vij S., Tyagi A.K. SAPs as novel regulators of abiotic stress response in plants. Bioessays. 2013;35:639–648. doi: 10.1002/bies.201200181. PubMed DOI
Ben Saad R., Zouari N., Ben Ramdhan W., Azaza J., Meynard D., Guiderdoni E., Hassairi A. Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol. Biol. 2010;72:171–190. doi: 10.1007/s11103-009-9560-4. PubMed DOI
Ben Saad R., Farhat-Khemekhem A., Ben Halima N., Ben Hamed K., Brini F., Saibi W. The LmSAP gene isolated from the halotolerant Lobularia maritima improves salt and ionic tolerance in transgenic tobacco lines. Funct. Plant Biol. 2017;45:378–391. doi: 10.1071/FP17202. PubMed DOI
Jin Y., Wang M., Fu J., Xuan N., Zhu Y., Lian Y., Jia Z., Zheng J., Wang G. Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics. 2007;90:265–275. doi: 10.1016/j.ygeno.2007.03.019. PubMed DOI
Vij S., Tyagi A.K. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol. Genet. Genom. 2006;276:565–575. doi: 10.1007/s00438-006-0165-1. PubMed DOI
Charrier A., Planchet E., Cerveau D., Gimeno-Gilles C., Verdu I., Limami A.M., Lelievre E. Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco. Planta. 2012;236:567–577. doi: 10.1007/s00425-012-1635-9. PubMed DOI
Kang M., Abdelmageed H., Lee S., Reichert A., Mysore K.S., Allen R.D. AtMBP-1, an alternative translation product of LOS2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP5. Plant J. 2013;76:481–493. doi: 10.1111/tpj.12312. PubMed DOI
Kang M., Fokar M., Abdelmageed H., Allen R.D. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Mol. Biol. 2011;75:451–466. doi: 10.1007/s11103-011-9748-2. PubMed DOI
Stroher E., Wang X.J., Roloff N., Klein P., Husemann A., Dietz K.J. Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. Mol. Plant. 2009;2:357–367. doi: 10.1093/mp/ssn084. PubMed DOI
Zahur M., Maqbool A., Irfan M., Jamal A., Shahid N., Aftab B., Husnain T. Identification and characterization of a novel gene encoding myb-box binding zinc finger protein in Gossypium arboreum. Biol. Plant. 2012;56:641–647. doi: 10.1007/s10535-012-0255-3. DOI
Saad R.B., Hsouna A.B., Saibi W., Hamed K.B., Brini F., Ghneim-Herrera T. A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes. J. Plant Physiol. 2018;231:234–243. doi: 10.1016/j.jplph.2018.09.019. PubMed DOI
Ben Saad R., Ben Romdhane W., Mihoubi W., Ben Hsouna A., Brini F. A Lobularia maritima LmSAP protein modulates gibberellic acid homeostasis via its A20 domain under abiotic stress conditions. PLoS ONE. 2020;15:e0233420. doi: 10.1371/journal.pone.0233420. PubMed DOI PMC
Giri J., Vij S., Dansana P.K., Tyagi A.K. Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol. 2011;191:721–732. doi: 10.1111/j.1469-8137.2011.03740.x. PubMed DOI
Huang J., Wang M.M., Jiang Y., Bao Y.M., Huang X., Sun H., Xu D.Q., Lan H.X., Zhang H.S. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene. 2008;420:135–144. doi: 10.1016/j.gene.2008.05.019. PubMed DOI
Kanneganti V., Gupta A.K. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol. Biol. 2008;66:445–462. doi: 10.1007/s11103-007-9284-2. PubMed DOI
Mukhopadhyay A., Vij S., Tyagi A.K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA. 2004;101:6309–6314. doi: 10.1073/pnas.0401572101. PubMed DOI PMC
Zouari N., Ben Saad R., Legavre T., Azaza J., Sabau X., Jaoua M., Masmoudi K., Hassairi A. Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene. 2007;404:61–69. doi: 10.1016/j.gene.2007.08.021. PubMed DOI
Ben Saad R., Ben Ramdhan W., Zouari N., Azaza J., Mieulet D., Guiderdoni E., Ellouz R., Hassairi A. Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Mol. Breed. 2012;30:521–533. doi: 10.1007/s11032-011-9641-3. DOI
Ben Saad R., Fabre D., Mieulet D., Meynard D., Dingkuhn M., AL-DOSS A., Guiderdoni E., Hassairi A. Expression of the Aeluropus littoralisAlSAP gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis. Plant Cell Environ. 2012;35:626–643. doi: 10.1111/j.1365-3040.2011.02441.x. PubMed DOI
Ghneim-Herrera T., Selvaraj M.G., Meynard D., Fabre D., Pena A., Ben Romdhane W., Ben Saad R., Ogawa S., Rebolledo M.C., Ishitani M., et al. Expression of the Aeluropus littoralisAlSAPgene enhances rice yield under field drought at the reproductive stage. Front. Plant Sci. 2017;8:994. doi: 10.3389/fpls.2017.00994. PubMed DOI PMC
Ben Romdhane W., Ben Saad R., Meynard D., Zouari N., Tarroum M., Ali A., Droc G., Périn C., Morel J., Fki L., et al. Expression of an A20/AN1 stress-associated protein from Aeluropus littoralis in rice deregulates stress-related genes. J. Plant Growth Regul. 2021;41:848–862. doi: 10.1007/s00344-021-10344-z. DOI
Ben Saad R., Safi H., Ben Hsouna A., Brini F., Ben Romdhane W. Functional domain analysis of LmSAP protein reveals the crucial role of the zinc-finger A20 domain in abiotic stress tolerance. Protoplasma. 2019;256:1333–1344. doi: 10.1007/s00709-019-01390-2. PubMed DOI
Tiwari V., Chaturvedi A.K., Mishra A., Jha B. The transcriptional regulatory mechanism of the peroxisomal ascorbate peroxidase (pAPX) gene cloned from an extreme halophyte, Salicornia brachiata. Plant Cell Physiol. 2014;55:201–217. doi: 10.1093/pcp/pct172. PubMed DOI
Tiwari V., Patel M.K., Chaturvedi A.K., Mishra A., Jha B. Functional characterization of the Tau class glutathione-S-transferases gene (SbGSTU) promoter of Salicornia brachiata under salinity and osmotic Stress. PLoS ONE. 2016;11:e0148494. doi: 10.1371/journal.pone.0148494. PubMed DOI PMC
Sun Q., Gao F., Zhao L., Li K., Zhang J. Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila. BMC Plant Biol. 2010;10:90. doi: 10.1186/1471-2229-10-90. PubMed DOI PMC
Yin X., Zhao Y., Luo D., Zhang H. Isolating the promoter of a stress-induced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica Iljin. Biochim. Biophys. Acta. 2002;1577:452–456. doi: 10.1016/S0167-4781(02)00495-5. PubMed DOI
Guo L., Yu Y., Xia X., Yin W. Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC Plant Biol. 2010;10:18. doi: 10.1186/1471-2229-10-18. PubMed DOI PMC
Ben Saad R., Ben Romdhane W., Zouari N., Ben Hsouna A., Harbaoui M., Brini F., Ghneim-Herrera T. Characterization of a novel LmSAP gene promoter from Lobularia maritima: Tissue specificity and environmental stress responsiveness. PLoS ONE. 2020;15:e0236943. doi: 10.1371/journal.pone.0236943. PubMed DOI PMC
Ben Saad R., Ben Romdhan W., Zouari N., Azaza J., Mieulet D., Verdeil J.L., Guiderdoni E., Hassairi A. Promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco. Transgenic Res. 2011;20:1003–1018. doi: 10.1007/s11248-010-9474-6. PubMed DOI
Ben-Saad R., Meynard D., Ben-Romdhane W., Mieulet D., Verdeil J.L., Al-Doss A., Guiderdoni E., Hassairi A. The promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs a stress-inducible expression pattern in transgenic rice plants. Plant Cell Rep. 2015;34:1791–1806. doi: 10.1007/s00299-015-1825-6. PubMed DOI
Said-Al Ahl H.A.H., Omer E.A. Medicinal and aromatic plants production under salt stress. A review. Herba Pol. 2011;57:72–87.
Kłosowska K. Plant responses to salinity. Kosmos. 2010;59:539–549.
Eryılmaz F. The relationships between salt stress and anthocyanin content in higher plants. Biotechnol. Biotechnol. Equip. 2006;20:47–52. doi: 10.1080/13102818.2006.10817303. DOI
Bourgou S., Kchouk M., Bellila A., Marzouk B. Effect of salinity on phenolic composition and biological activity of Nigella sativa. Acta Hortic. 2010;853:57–60. doi: 10.17660/ActaHortic.2010.853.5. DOI
Kovacik J., Klejdus B., Hedbavny J., Backor M. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology. 2009;18:544–554. doi: 10.1007/s10646-009-0312-7. PubMed DOI
Baatour O., Kaddour R., Aidi Wannes W., Lachaâl M., Marzouk B. Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana) Acta Physiol. Plant. 2009;32:45–51. doi: 10.1007/s11738-009-0374-4. DOI
Said-Al Ahl H., Hussein M. Effect of water stress and potassium humate on the productivity of oregano plant using saline and fresh water irrigation. Ozean J. Appl. Sci. 2010;3:125–141.
Said-Al A., Meawad A., Abou-Zeid E., Ali M. Response of different basil varieties to soil salinity. Int. Agrophys. 2010;24:183–188.
Baghalian K., Haghiry A., Naghavi M.R., Mohammadi A. Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.) Sci. Hortic. 2008;116:437–441. doi: 10.1016/j.scienta.2008.02.014. DOI
Neffati M., Marzouk B. Roots volatiles and fatty acids of coriander (Coriandrum sativum L.) grown in saline medium. Acta Physiol. Plant. 2009;31:455–461. doi: 10.1007/s11738-008-0253-4. DOI
Stępień P., Kłbus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plant. 2006;50:610–616. doi: 10.1007/s10535-006-0096-z. DOI
Handa A.K., Fatima T., Mattoo A.K. Polyamines: Bio-molecules with diverse functions in plant and human health and disease. Front. Chem. 2018;6:10. doi: 10.3389/fchem.2018.00010. PubMed DOI PMC
Benjamin J.J., Lucini L., Jothiramshekar S., Parida A. Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes. Plant Physiol. Biochem. 2019;135:528–545. doi: 10.1016/j.plaphy.2018.11.006. PubMed DOI
Bueno M., Cordovilla M.P. Polyamines in halophytes. Front. Plant Sci. 2019;10:439. doi: 10.3389/fpls.2019.00439. PubMed DOI PMC
Ben Hassine A., Ghanem M.E., Bouzid S., Lutts S. Abscisic acid has contrasting effects on salt excretion and polyamine concentrations of an inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus. Ann. Bot. 2009;104:925–936. doi: 10.1093/aob/mcp174. PubMed DOI PMC
Reginato M.A., Abdala G.I., Miersch O., Ruiz O.A., Moschetti E., Luna V. Changes in the levels of jasmonates and free polyamines induced by Na2SO4 and NaCl in roots and leaves of the halophyte Prosopis strombulifera. Biologia. 2012;67:689–697. doi: 10.2478/s11756-012-0052-7. DOI
Liu J.H., Wang W., Wu H., Gong X., Moriguchi T. Polyamines function in stress tolerance: From synthesis to regulation. Front. Plant Sci. 2015;6:827. doi: 10.3389/fpls.2015.00827. PubMed DOI PMC
Gharbi E., Martinez J.P., Benahmed H., Fauconnier M.L., Lutts S., Quinet M. Salicylic acid differently impacts ethylene and polyamine synthesis in the glycophyte Solanum lycopersicum and the wild-related halophyte Solanum chilense exposed to mild salt stress. Physiol. Plant. 2016;158:152–167. doi: 10.1111/ppl.12458. PubMed DOI
Ruiz K.B., Rapparini F., Bertazza G., Silva H., Torrigiani P., Biondi S. Comparing salt-induced responses at the transcript level in a salares and coastal-lowlands landrace of quinoa (Chenopodium quinoa Willd) Environ. Exp. Bot. 2017;140:150. doi: 10.1016/j.envexpbot.2017.06.004. DOI
Sanchez D.H., Siahpoosh M.R., Roessner U., Udvardi M., Kopka J. Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol. Plant. 2008;132:209–219. doi: 10.1111/j.1399-3054.2007.00993.x. PubMed DOI
Liu X., Yang C., Zhang L., Li L., Liu S., Yu J., You L., Zhou D., Xia C., Zhao J., et al. Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology. 2011;20:1422–1431. doi: 10.1007/s10646-011-0699-9. PubMed DOI
Kumari A., Das P., Parida A.K., Agarwal P.K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 2015;6:537. doi: 10.3389/fpls.2015.00537. PubMed DOI PMC
Bueno M., Cordovilla M.D. Spermidine pretreatments mitigate the effects of saline stress by improving growth and saline excretion in Frankenia pulverulenta. Agronomy. 2021;11:1515. doi: 10.3390/agronomy11081515. DOI
Bauer G.A., Bazzaz F.A., Minocha R., Long S., Magill A., Aber J., Berntson G.M. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States. For. Ecol. Manag. 2004;196:173–186. doi: 10.1016/j.foreco.2004.03.032. DOI
Mattoo A.K., Sobolev A.P., Neelam A., Goyal R.K., Handa A.K., Segre A.L. Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol. 2006;142:1759–1770. doi: 10.1104/pp.106.084400. PubMed DOI PMC
Bor M., Özdemir F. Manipulating metabolic pathways for development of salt-tolerant crops. In: Kumar V., Wani S.H., Suprasanna P., Tran L.-S.P., editors. Salinity Responses and Tolerance in Plants, Volume 1: Targeting Sensory, Transport and Signaling Mechanisms. Springer International Publishing; Cham, Switzerland: 2018. pp. 235–256.
Hildebrandt T.M., Nunes Nesi A., Araujo W.L., Braun H.P. Amino acid catabolism in plants. Mol. Plant. 2015;8:1563–1579. doi: 10.1016/j.molp.2015.09.005. PubMed DOI
Chen D., Shao Q., Yin L., Younis A., Zheng B. Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 2018;9:1945. doi: 10.3389/fpls.2018.01945. PubMed DOI PMC
Mutlu F., Bozcuk S. Effects of salinity on the contents of polyamines and some other compounds in sunflower plants differing in salt tolerance. Russ. J. Plant Physiol. 2005;52:29–34. doi: 10.1007/s11183-005-0005-x. DOI
De-Yun M., Lin-Lin H.O.U., Sha Y., Jing-Jing M., Feng G.U.O., Xin-Guo L.I., Wan Shu-Bo a. Exogenous polyamines alleviating salt stress on peanuts (Arachis hypogaea) grown in pots. Chin. J. Plant Ecol. 2015;39:1209–1215. doi: 10.17521/cjpe.2015.0117. DOI
Takahashi Y., Tahara M., Yamada Y., Mitsudomi Y., Koga K. Characterization of the polyamine biosynthetic pathways and salt stress response in Brachypodium distachyon. J. Plant Growth Regul. 2018;37:625–634. doi: 10.1007/s00344-017-9761-z. DOI
Hernándiz A.E., Aucique-Perez C.E., Ćavar Zeljković S., Štefelová N., Salcedo Sarmiento S., Spíchal L., De Diego N. Priming with small molecule-based biostimulants to improve abiotic stress tolerance in Arabidopsis thaliana. Plants. 2022;11:1287. doi: 10.3390/plants11101287. PubMed DOI PMC
Cavar Zeljkovic S., Aucique-Perez C.E., Stefelova N., De Diego N. Optimizing growing conditions for hydroponic farming of selected medicinal and aromatic plants. Food Chem. 2022;375:131845. doi: 10.1016/j.foodchem.2021.131845. PubMed DOI
Ben Hsouna A., Hfaiedh M., Ben Slima S., Ben Romdhane W., Akacha B.B., Bouterra M.T., Dhifi W., Mnif W., Brini F., Ben Saad R., et al. Antioxidant and hepatoprotective effects of novel heteropolysaccharide isolated from Lobularia maritima on CCl4-induced liver injury in rats. Food Sci. Nutr. 2022;10:2271–2284. doi: 10.1002/fsn3.2836. PubMed DOI PMC
Marrelli M., Argentieri M.P., Avato P., Conforti F. Lobularia maritima (L.) Desv. Aerial Parts Methanolic Extract: In Vitro Screening of Biological Activity. Plants. 2020;9:89. doi: 10.3390/plants9010089. PubMed DOI PMC
Kouidhi S., Zidi O., Abdelwahed S., Souissi Y., Trabelsi N., Redissi A., Hamdi M., Trabelsi E., Amara Y., Bhiri T., et al. Investigation of the chemical composition and antioxidant and antimicrobial activities of Lobularia maritima: Potent therapeutic applications. J. Chem. 2021;2021:1981680. doi: 10.1155/2021/1981680. DOI
Tatsuzawa F., Usuki R., Toki K., Saito N., Shinoda K., Shigihara A., Honda T. Acylated pelargonidin 3-sambubioside-5-glucosides from the red-purple flowers of Lobularia maritima. J. Jpn. Soc. Hortic. Sci. 2010;79:84–90. doi: 10.2503/jjshs1.79.84. DOI
Ben Hsouna A., Dhibi S., Dhifi W., Ben Saad R., Brini F., Hfaidh N., Mnif W. Essential oil from halophyte Lobularia maritima: Protective effects against CCl4-induced hepatic oxidative damage in rats and inhibition of the production of proinflammatory gene expression by lipopolysaccharide-stimulated RAW 264.7 macrophages. RSC Adv. 2019;9:36758–36770. doi: 10.1039/C9RA05885K. PubMed DOI PMC
Asrar H., Hussain T., Qasim M., Nielsen B.L., Gul B., Khan M.A. Salt induced modulations in antioxidative defense system of Desmostachya bipinnata. Plant Physiol. Biochem. 2020;147:113–124. doi: 10.1016/j.plaphy.2019.12.012. PubMed DOI
Ben Hsouna A., Dhibi S., Dhifi W., Ben Saad R., Brini F., Hfaidh N., Almeida J., Mnif W. Lobularia maritima leave extract, a nutraceutical agent with antioxidant activity, protects against CCl4-induced liver injury in mice. Drug Chem. Toxicol. 2022;45:604–616. doi: 10.1080/01480545.2020.1742730. PubMed DOI
Asmaa D., Samira M. Phytochemical screening and comparative analysis of bioactive phenolic compounds composition of Lobularia maritima L. grown in two different locations in the western Algeria. J. Biochem. Int. 2018:9–16.
Michalak M. Plant-derived antioxidants: Significance in skin health and the ageing process. Int. J. Mol. Sci. 2022;23:585. doi: 10.3390/ijms23020585. PubMed DOI PMC
Nunes C.D.R., Barreto Arantes M., Menezes de Faria Pereira S., Leandro da Cruz L., de Souza Passos M., Pereira de Moraes L., Vieira I.J.C., Barros de Oliveira D. Plants as sources of anti-inflammatory agents. Molecules. 2020;25:3726. doi: 10.3390/molecules25163726. PubMed DOI PMC
Azab A., Nassar A., Azab A.N. Anti-inflammatory activity of natural products. Molecules. 2016;21:1321. doi: 10.3390/molecules21101321. PubMed DOI PMC
Aravindaram K., Yang N.S. Anti-inflammatory plant natural products for cancer therapy. Planta Med. 2010;76:1103–1117. doi: 10.1055/s-0030-1249859. PubMed DOI
Yun J.W. Possible anti-obesity therapeutics from nature-a review. Phytochemistry. 2010;71:1625–1641. doi: 10.1016/j.phytochem.2010.07.011. PubMed DOI
Kawser Hossain M., Abdal Dayem A., Han J., Yin Y., Kim K., Kumar Saha S., Yang G.M., Choi H.Y., Cho S.G. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int. J. Mol. Sci. 2016;17:569. doi: 10.3390/ijms17040569. PubMed DOI PMC
Owusu E., Ahorlu M.M., Afutu E., Akumwena A., Asare G.A. Antimicrobial activity of selected medicinal plants from a Sub-Saharan african country against bacterial pathogens from post-operative Wound Infections. Med. Sci. 2021;9:23. doi: 10.3390/medsci9020023. PubMed DOI PMC
Kurhekar J.V. Tannins-antimicrobial chemical components. Int. J. Technol. Sci. 2016;9:5–9.
Nirumand M.C., Hajialyani M., Rahimi R., Farzaei M.H., Zingue S., Nabavi S.M., Bishayee A. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms. Int. J. Mol. Sci. 2018;19:765. doi: 10.3390/ijms19030765. PubMed DOI PMC
Eltamany E.E., Nafie M.S., Khodeer D.M., El-Tanahy A.H.H., Abdel-Kader M.S., Badr J.M., Abdelhameed R.F.A. Rubia tinctorum root extracts: Chemical profile and management of type II diabetes mellitus. RSC Adv. 2020;24:24159–24168. doi: 10.1039/D0RA03442H. PubMed DOI PMC
Alshehri S.A., Wahab S., Abullais S.S., Das G., Hani U., Ahmad W., Amir M., Ahmad A., Kandasamy G., Vasudevan R. Pharmacological Efficacy of Tamarix aphylla: A Comprehensive Review. Plants. 2021;11:118. doi: 10.3390/plants11010118. PubMed DOI PMC
Chaieb M., Boukhris M. Flore Succincte et Illustrée des Zones Arides et Sahariennes de Tunisie. Associations pour la protection de la nature et de l’environnement; Sfax, Tunisia: 1998.
Ksouri R., Megdiche W., Falleh H., Trabelsi N., Boulaaba M., Smaoui A., Abdelly C. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C. R. Biol. 2008;331:865–873. doi: 10.1016/j.crvi.2008.07.024. PubMed DOI
Kubica P., Szopa A., Dominiak J., Luczkiewicz M., Ekiert H. Verbena officinalis (Common Vervain)—A Review on the Investigations of This Medicinally Important Plant Species. Planta Med. 2020;86:1241–1257. doi: 10.1055/a-1232-5758. PubMed DOI
Graham J.G., Quinn M.L., Fabricant D.S., Farnsworth N.R. Plants used against cancer-an extension of the work of Jonathan Hartwell. J. Ethnopharmacol. 2020;73:347–377. doi: 10.1016/S0378-8741(00)00341-X. PubMed DOI
McCutcheon A.R., Roberts T.E., Gibbons E., Ellis S.M., Babiuk L.A., Hancock R.E.W., Tower G.H.N. Antiviral screening of British Colombian medicinal plants. J. Ethnopharmacol. 1995;49:101–110. doi: 10.1016/0378-8741(95)90037-3. PubMed DOI PMC
Candela R.G., Rosselli S., Bruno M., Fontana G. A Review of the Phytochemistry, Traditional Uses and Biological Activities of the Essential Oils of Genus Teucrium. Planta Med. 2021;87:432–479. doi: 10.1055/a-1293-5768. PubMed DOI
Satiyavati G.C., Raina M.K., Sharma M. Medicinal Plants of India. Indian Council of Medical Research; New Dehli, India: 1996.
Ravi S.K., Ramesh B.N., Mundugaru R., Vincent B. Multiple pharmacological activities of Caesalpinia crista against aluminium-induced neurodegeneration in rats: Relevance for Alzheimer’s disease. Environ. Toxicol. Pharmacol. 2018;58:202–211. doi: 10.1016/j.etap.2018.01.008. PubMed DOI
Bandaranayake W.M. Bioactivities, bioactive compounds and chemical constituents of mangrove Plants. Wetl. Ecol. Manag. 2002;10:421–452. doi: 10.1023/A:1021397624349. DOI
Chen P.S., Li J.H., Liu T.Y., Lin T.C. Folk medicine Terminalia catappa and its major tannin component, punicalagin, are effective against bleomycin-induced genotoxicity in Chinese hamster ovary cells. Cancer Lett. 2000;152:115–122. doi: 10.1016/S0304-3835(99)00395-X. PubMed DOI
Yeh C.B., Yu Y.L., Lin C.W., Chiou H.L., Hsieh M.J., Yang S.F. Terminalia catappa attenuates urokinase-type plasminogen activator expression through Erk pathways in Hepatocellular carcinoma. BMC Complement. Altern. Med. 2014;14:141. doi: 10.1186/1472-6882-14-141. PubMed DOI PMC
Guil-Guerrero J.L., Torija Isana M.E., Gimenez Martinez J.J. Composicion nutricional del hinojo marino (Crithmum maritimum L.) Alimentaria. 1996;34:65–72.
Fuochi V., Barbagallo I., Distefano A., Puglisi F., Palmeri R., Di Rosa M., Giallongo C., Longhitano L., Fontana P., Sferrazzo G., et al. Biological properties of Cakile maritima Scop. (Brassicaceae) extracts. Eur. Rev. Med. Pharmacol. Sci. 2019;23:2280–2292. doi: 10.26355/eurrev_201903_17277. PubMed DOI
Murshid S.S.A., Atoum D., Abou-Hussein D.R., Abdallah H.M., Hareeri R.H., Almukadi H., Edrada-Ebel R. Genus Salsola: Chemistry, Biological Activities and Future Prospective-A Review. Plants. 2022;11:714. doi: 10.3390/plants11060714. PubMed DOI PMC
Seca A.M., Grigore A., Pinto D.C., Silva A.M. The genus Inula and their metabolites: From ethnopharmacological to medicinal uses. J. Ethnopharmacol. 2014;154:286–310. doi: 10.1016/j.jep.2014.04.010. PubMed DOI
Ali-Shtayeh M.S., Abu Ghdeib S.I. Antifungal activity of plant extracts against dermatophytes. Mycoses. 1999;42:665–672. doi: 10.1046/j.1439-0507.1999.00499.x. PubMed DOI
Taïbi K., Aït Abderrahim L., Boussaid M., Taibi F., Achir M., Souana K., Benaissa T., Farhi K.H., Naamani F.Z., Nait Said K. Unraveling the ethnopharmacological potential of medicinal plants used in Algerian traditional medicine for urinary diseases. Eur. J. Integr. Med. 2021;44:101339. doi: 10.1016/j.eujim.2021.101339. DOI
Renkema J.M., Smith D. Effects of sweet alyssum flowers and their volatile compounds on Drosophila suzukii(Matsumura) in the laboratory. J. Appl. Entomol. 2020;144:968–971. doi: 10.1111/jen.12803. DOI
Wang H., Zhang M., Han X., Cong J., Wang S., He S., Wei D., Zhang Y., Qin J., Sampietro D.A. Insecticidal and repellent efficacy of the essential oil from Lobularia maritima and trans-3-pentenenitrile against insect pests of stored grains. Int. J. Food Prop. 2020;23:1125–1135. doi: 10.1080/10942912.2020.1778723. DOI