Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia maritima

. 2022 Oct 28 ; 12 (11) : . [epub] 20221028

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36358933

Halophytes are plant species widely distributed in saline habitats, such as beaches, postindustrial wastelands, irrigated lands, salt flats, and others. Excessive salt level, known to limit plant growth, is not harmful to halophytes, which have developed a variety of defense mechanisms allowing them to colonize harsh environments. Plants under stress are known to respond with several morpho-anatomical adaptations, but also to enhance the production of secondary metabolites to better cope with difficult conditions. Owing to these adaptations, halophytes are an interesting group of undemanding plants with a high potential for application in the food and pharmaceutical industries. Therefore, this review aims to present the characteristics of halophytes, describe changes in their gene expression, and discuss their synthesized metabolites of pharmacognostic and pharmacological significance. Lobularia maritima is characterized as a widely spread halophyte that has been shown to exhibit various pharmacological properties in vitro and in vivo. It is concluded that halophytes may become important sources of natural products for the treatment of various ailments and for supplementing the human diet with necessary non-nutrients and minerals. However, extensive studies are needed to deepen the knowledge of their biological potential in vivo, so that they can be introduced to the pharmaceutical and food industries.

Zobrazit více v PubMed

Flowers T.J., Colmer T.D. Salinity tolerance in halophytes. New Phytol. 2008;179:945–963. doi: 10.1111/j.1469-8137.2008.02531.x. PubMed DOI

Roohi A., Nazish B., Maleeha M., Waseem S. A critical review on halophytes: Salt tolerant plants. J. Med. Plant Res. 2011;5:7108–7118.

Qasim M., Gulzar S., Shinwari Z.K., Aziz I., Khan M.A. Traditional ethnobotanical uses of halophytes from Hub, Balochistan. Pak. J. Bot. 2010;42:1543–1551.

Hameed A., Khan M.A. Halophytes: Biology and economic potentials. Karachi Univ. J. Sci. 2011;39:40–44.

Kukula-Koch W., Koch W., Angelis A., Halabalaki M., Aligiannis N. Application of pH-zone refining hydrostatic countercurrent chromatography (hCCC) for the recovery of antioxidant phenolics and the isolation of alkaloids from Siberian barberry herb. Food Chem. 2016;203:394–401. doi: 10.1016/j.foodchem.2016.02.096. PubMed DOI

Gómez J. Phenotypic selection and response to selection in Lobularia maritima: The importance of direct and correlational components of natural selection. J. Evol. Biol. 2000;13:689–699. doi: 10.1046/j.1420-9101.2000.00196.x. DOI

Picó F.X., Retana J. The flowering pattern of the perennial herb Lobularia maritima: An unusual case in the Mediterranean basin. Acta Oecol. 2001;22:209–217. doi: 10.1016/S1146-609X(01)01114-6. DOI

Huang R.W., Liu D.F., Zhao M., Li Z.N., Li M.Y., Sue S.Z. Artificially induced polyploidization in Lobularia maritima (L.) Desv. and its effect on morphological traits. Hortscience. 2015;50:636–639. doi: 10.21273/HORTSCI.50.5.636. DOI

Huang L., Ma Y., Jiang J., Li T., Yang W., Zhang L., Wu L., Feng L., Xi Z., Xu X., et al. A chromosome-scale reference genome of Lobularia maritima, an ornamental plant with high-stress tolerance. Hortic. Res. 2020;7:197. doi: 10.1038/s41438-020-00422-w. PubMed DOI PMC

Mahajan R., Kapoor N., Bajaj B.K. Plant Genomics for Sustainable Agriculture. Springer; Singapore: 2022. Use of genomics to improve stress tolerance; pp. 291–312.

Haak D.C., Fukao T., Grene R., Hua Z., Ivanov R., Perrella G., Li S. Multilevel regulation of abiotic stress responses in plants. Front. Plant Sci. 2017;8:1564. doi: 10.3389/fpls.2017.01564. PubMed DOI PMC

Shah A.N., Tanveer M., Abbas A., Fahad S., Baloch M.S., Ahmad M.I., Saud S., Song Y. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. Plant Physiol. Biochem. 2021;158:53–64. doi: 10.1016/j.plaphy.2020.11.044. PubMed DOI

Tiwari V., Chaturvedi A.K., Mishra A., Jha B. Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiate enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea) and acts as a transcription factor. PLoS ONE. 2015;10:e0131567. doi: 10.1371/journal.pone.0131567. PubMed DOI PMC

Ye Y., Lin R., Su H., Chen H., Luo M., Yang L., Zhang M. The functional identification of glycine-rich TtASR from Tetragonia tetragonoides (Pall.) Kuntze involving in plant abiotic stress tolerance. Plant Physiol. Biochem. 2019;143:212–223. doi: 10.1016/j.plaphy.2019.09.013. PubMed DOI

Zhang G.H., Su Q., An L.J., Wu S. Characterization and expression of a vacuolar Na(+)/H(+) antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol. Biochem. 2008;46:117–126. doi: 10.1016/j.plaphy.2007.10.022. PubMed DOI

Ben-Romdhane W., Ben Saad R., Meynard D., Zouari N., Mahjoub A., Fki L., Guiderdoni E., Al-Doss A., Hassairi A. Overexpression of AlTMP2 gene from the halophyte grass Aeluropus littoralis in transgenic tobacco enhances tolerance to different abiotic stresses by improving membrane stability and deregulating some stress-related genes. Protoplasma. 2018;255:1161–1177. doi: 10.1007/s00709-018-1223-3. PubMed DOI

Ben Romdhane W., Ben Saad R., Meynard D., Verdeil J.L., Azaza J., Zouari N., Fki L., Guiderdoni E., Al-Doss A., Hassairi A. Ectopic Expression of Aeluropus littoralis plasma membrane protein gene AlTMP1confers abiotic stress tolerance in transgenic tobacco by improving water status and cation homeostasis. Int. J. Mol. Sci. 2017;18:692. doi: 10.3390/ijms18040692. PubMed DOI PMC

Ben Saad R., Ben Halima N., Ghorbel M., Zouari N., Ben Romdhane W., Guiderdoni E., Al-Doss A., Hassairi A. AlSRG1, a novel gene encoding an RRM-type RNA-binding protein (RBP) from Aeluropus littoralis, confers salt and drought tolerance in transgenic tobacco. Environ. Exp. Bot. 2018;150:25–36. doi: 10.1016/j.envexpbot.2018.03.002. DOI

Lv S.L., Lian L.J., Tao P.L., Li Z.X., Zhang K.W., Zhang J.R. Overexpression of Thellungiella halophila H(+)-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta. 2009;229:899–910. doi: 10.1007/s00425-008-0880-4. PubMed DOI

Pei L., Wang J., Li K., Li Y., Li B., Gao F., Yang A. Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize. PLoS ONE. 2012;7:e43501. doi: 10.1371/journal.pone.0043501. PubMed DOI PMC

Nazish T., Javaid A., Ali M., Zhu Y.H., Li J., Zhang H.Y., Wu J., Xiang C.B., Wu S.J., Alfatih A. Thellungiella halophila ST5 improves salt tolerance in cotton. J. Cotton Res. 2022;5:7. doi: 10.1186/s42397-022-00112-z. DOI

Ardie S.W., Liu S., Takano T. Expression of the AKT1-type K(+) channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep. 2010;29:865–874. doi: 10.1007/s00299-010-0872-2. PubMed DOI

Li Y., Takano T., Liu S. Discovery and characterization of two novel salt-tolerance genes in Puccinellia tenuiflora. Int. J. Mol. Sci. 2014;15:16469–16483. doi: 10.3390/ijms150916469. PubMed DOI PMC

Guan Q.J., Wang Z.J., Wang X.H., Takano T., Liu S.K. A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. J. Plant Physiol. 2015;175:183–191. doi: 10.1016/j.jplph.2014.10.020. PubMed DOI

Holmes G.D., Hall N.E., Gendall A.R., Boon P.I., James E.A. Using transcriptomics to identify differential gene expression in response to salinity among Australian Phragmites australisclones. Front. Plant Sci. 2016;7:432. doi: 10.3389/fpls.2016.00432. PubMed DOI PMC

Zhao C., Xu J., Li Q., Li S., Wang P., Xiang F. Cloning and characterization of a Phragmites australis phytochelatin synthase (PaPCS) and achieving Cd tolerance in tall fescue. PLoS ONE. 2014;9:e103771. doi: 10.1371/journal.pone.0103771. PubMed DOI PMC

Zhang L., Chen L., Lu F., Liu Z., Lan S., Han G. Differentially expressed genes related to oxidoreductase activity and glutathione metabolism underlying the adaptation of Phragmites australis from the salt marsh in the Yellow River Delta, China. PeerJ. 2020;8:e10024. doi: 10.7717/peerj.10024. PubMed DOI PMC

Shao Q., Han N., Ding T., Zhou F., Wang B. SsHKT1;1 is a potassium transporter of the C3 halophyte Suaeda salsa that is involved in salt tolerance. Funct. Plant Biol. 2014;41:790–802. doi: 10.1071/FP13265. PubMed DOI

Zhang X., Liu X., Wu L., Yu G., Wang X., Ma H. The SsDREB transcription factor from the succulent halophyte Suaeda salsaenhances abiotic stress tolerance in transgenic Tobacco. Int. J. Genom. 2015;2015:875497. PubMed PMC

Mishra A., Tanna B. Halophytes: Potential resources for salt stress tolerance genes and promoters. Front. Plant Sci. 2017;8:829. doi: 10.3389/fpls.2017.00829. PubMed DOI PMC

Rahman M.M., Mostofa M.G., Keya S.S., Siddiqui M.N., Ansary M.M.U., Das A.K., Rahman M.A., Tran L.S.P. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. Int. J. Mol. Sci. 2021;22:10733. doi: 10.3390/ijms221910733. PubMed DOI PMC

Yuan F., Guo J., Shabala S., Wang B. Reproductive physiology of halophytes: Current standing. Front. Plant Sci. 2018;9:1954. doi: 10.3389/fpls.2018.01954. PubMed DOI PMC

van Zelm E., Zhang Y., Testerink C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 2020;71:403–433. doi: 10.1146/annurev-arplant-050718-100005. PubMed DOI

Bose J., Rodrigo-Moreno A., Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2014;65:1241–1257. doi: 10.1093/jxb/ert430. PubMed DOI

Himabindu Y., Chakradhar T., Reddy M.C., Kanygin A., Redding K.E., Chandrasekhar T. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ. Exp. Bot. 2016;124:39–63. doi: 10.1016/j.envexpbot.2015.11.010. DOI

Ozfidan-Konakci C., Uzilday B., Ozgur R., Yildiztugay E., Sekmen A.H., Turkan I. Halophytes as a source of salt tolerance genes and mechanisms: A case study for the Salt Lake area, Turkey. Funct. Plant Biol. 2016;43:575–589. doi: 10.1071/FP15288. PubMed DOI

Taji T., Seki M., Satou M., Sakurai T., Kobayashi M., Ishiyama K., Narusaka Y., Narusaka M., Zhu J.K., Shinozaki K. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 2004;135:1697–1709. doi: 10.1104/pp.104.039909. PubMed DOI PMC

Horie T., Karahara I., Katsuhara M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice. 2012;5:11. doi: 10.1186/1939-8433-5-11. PubMed DOI PMC

Popova O.V., Golldack D. In the halotolerant Lobularia maritima (Brassicaceae) salt adaptation correlates with activation of the vacuolar H(+)-ATPase and the vacuolar Na+/H+ antiporter. J. Plant Physiol. 2007;164:1278–1288. doi: 10.1016/j.jplph.2006.08.011. PubMed DOI

Popova O.V., Yang O., Dietz K.J., Golldack D. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation. Gene. 2008;423:142–148. doi: 10.1016/j.gene.2008.07.017. PubMed DOI

Golldack D. Molecular responses of halophytes to high salinity. In: Esser K., Lüttge U., Beyschlag W., Murata J., editors. Progress in Botany: Genetics Physiology Systematics Ecology. Springer; Berlin/Heidelberg, Germany: 2004. pp. 219–234.

Ben Hsouna A., Ghneim-Herrera T., Ben Romdhane W., Dabbous A., Ben Saad R., Brini F., Abdelly C., Ben Hamed K. Early effects of salt stress on the physiological and oxidative status of the halophyte Lobularia maritima. Funct. Plant Biol. 2020;47:912–924. doi: 10.1071/FP19303. PubMed DOI

Dassanayake M., Oh D.H., Haas J.S., Hernandez A., Hong H., Ali S., Yun D.J., Bressan R.A., Zhu J.K., Bohnert H.J., et al. The genome of the extremophile crucifer Thellungiella parvula. Nat. Genet. 2011;43:913–918. doi: 10.1038/ng.889. PubMed DOI PMC

Arnaiz A., Talavera-Mateo L., Gonzalez-Melendi P., Martinez M., Diaz I., Santamaria M.E. Arabidopsi skunitz trypsin inhibitors in defense against spider mites. Front. Plant Sci. 2018;9:986. doi: 10.3389/fpls.2018.00986. PubMed DOI PMC

Zschiesche W., Barth O., Daniel K., Bohme S., Rausche J., Humbeck K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol. 2015;207:1084–1096. doi: 10.1111/nph.13419. PubMed DOI

Pascuan C., Frare R., Alleva K., Ayub N.D., Soto G. mRNA biogenesis-related helicase eIF4AIII from Arabidopsis thaliana is an important factor for abiotic stress adaptation. Plant Cell Rep. 2016;35:1205–1208. doi: 10.1007/s00299-016-1947-5. PubMed DOI

Azevedo C., Betsuyaku S., Peart J., Takahashi A., Noel L., Sadanandom A., Casais C., Parker J., Shirasu K. Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J. 2006;25:2007–2016. doi: 10.1038/sj.emboj.7601084. PubMed DOI PMC

Austin M.J., Muskett P., Kahn K., Feys B.J., Jones J.D., Parker J.E. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science. 2002;295:2077–2080. doi: 10.1126/science.1067747. PubMed DOI

Cheung M.Y., Li M.W., Yung Y.L., Wen C.Q., Lam H.M. The unconventional P-loop NTPase OsYchF1 and its regulator OsGAP1 play opposite roles in salinity stress tolerance. Plant Cell Environ. 2013;36:2008–2020. doi: 10.1111/pce.12108. PubMed DOI

Dabbous A., Ben Saad R., Brini F., Farhat-Khemekhem A., Zorrig W., Abdely C., Ben Hamed K. Over-expression of a subunit E1 of a vacuolar H+-ATPase gene (LmVHA-E1) cloned from the halophyte Lobularia maritima improves the tolerance of Arabidopsis thaliana to salt and osmotic stresses. Environ. Exp. Bot. 2017;137:128–141. doi: 10.1016/j.envexpbot.2017.01.013. DOI

Ben Saad R., Ben Romdhane W., Bouteraa M.T., Jrad O., Ben Hsouna A. Lobularia maritima thioredoxin-h2 gene mitigates salt and osmotic stress damage in tobacco by modeling plant antioxidant system. Plant Growth Regul. 2022;97:101–115. doi: 10.1007/s10725-022-00805-0. DOI

Vanneste K., Maere S., Van de Peer Y. Tangled up in two: A burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philos. Trans. R. Soc. Lond B Biol. Sci. 2014;369:20130353. doi: 10.1098/rstb.2013.0353. PubMed DOI PMC

Vanneste K., Baele G., Maere S., Van de Peer Y. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res. 2014;24:1334–1347. doi: 10.1101/gr.168997.113. PubMed DOI PMC

Vij S., Tyagi A.K. A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Funct. Integr. Genom. 2008;8:301–307. doi: 10.1007/s10142-008-0078-7. PubMed DOI

Giri J., Dansana P.K., Kothari K.S., Sharma G., Vij S., Tyagi A.K. SAPs as novel regulators of abiotic stress response in plants. Bioessays. 2013;35:639–648. doi: 10.1002/bies.201200181. PubMed DOI

Ben Saad R., Zouari N., Ben Ramdhan W., Azaza J., Meynard D., Guiderdoni E., Hassairi A. Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol. Biol. 2010;72:171–190. doi: 10.1007/s11103-009-9560-4. PubMed DOI

Ben Saad R., Farhat-Khemekhem A., Ben Halima N., Ben Hamed K., Brini F., Saibi W. The LmSAP gene isolated from the halotolerant Lobularia maritima improves salt and ionic tolerance in transgenic tobacco lines. Funct. Plant Biol. 2017;45:378–391. doi: 10.1071/FP17202. PubMed DOI

Jin Y., Wang M., Fu J., Xuan N., Zhu Y., Lian Y., Jia Z., Zheng J., Wang G. Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics. 2007;90:265–275. doi: 10.1016/j.ygeno.2007.03.019. PubMed DOI

Vij S., Tyagi A.K. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol. Genet. Genom. 2006;276:565–575. doi: 10.1007/s00438-006-0165-1. PubMed DOI

Charrier A., Planchet E., Cerveau D., Gimeno-Gilles C., Verdu I., Limami A.M., Lelievre E. Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco. Planta. 2012;236:567–577. doi: 10.1007/s00425-012-1635-9. PubMed DOI

Kang M., Abdelmageed H., Lee S., Reichert A., Mysore K.S., Allen R.D. AtMBP-1, an alternative translation product of LOS2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP5. Plant J. 2013;76:481–493. doi: 10.1111/tpj.12312. PubMed DOI

Kang M., Fokar M., Abdelmageed H., Allen R.D. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Mol. Biol. 2011;75:451–466. doi: 10.1007/s11103-011-9748-2. PubMed DOI

Stroher E., Wang X.J., Roloff N., Klein P., Husemann A., Dietz K.J. Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. Mol. Plant. 2009;2:357–367. doi: 10.1093/mp/ssn084. PubMed DOI

Zahur M., Maqbool A., Irfan M., Jamal A., Shahid N., Aftab B., Husnain T. Identification and characterization of a novel gene encoding myb-box binding zinc finger protein in Gossypium arboreum. Biol. Plant. 2012;56:641–647. doi: 10.1007/s10535-012-0255-3. DOI

Saad R.B., Hsouna A.B., Saibi W., Hamed K.B., Brini F., Ghneim-Herrera T. A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes. J. Plant Physiol. 2018;231:234–243. doi: 10.1016/j.jplph.2018.09.019. PubMed DOI

Ben Saad R., Ben Romdhane W., Mihoubi W., Ben Hsouna A., Brini F. A Lobularia maritima LmSAP protein modulates gibberellic acid homeostasis via its A20 domain under abiotic stress conditions. PLoS ONE. 2020;15:e0233420. doi: 10.1371/journal.pone.0233420. PubMed DOI PMC

Giri J., Vij S., Dansana P.K., Tyagi A.K. Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol. 2011;191:721–732. doi: 10.1111/j.1469-8137.2011.03740.x. PubMed DOI

Huang J., Wang M.M., Jiang Y., Bao Y.M., Huang X., Sun H., Xu D.Q., Lan H.X., Zhang H.S. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene. 2008;420:135–144. doi: 10.1016/j.gene.2008.05.019. PubMed DOI

Kanneganti V., Gupta A.K. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol. Biol. 2008;66:445–462. doi: 10.1007/s11103-007-9284-2. PubMed DOI

Mukhopadhyay A., Vij S., Tyagi A.K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA. 2004;101:6309–6314. doi: 10.1073/pnas.0401572101. PubMed DOI PMC

Zouari N., Ben Saad R., Legavre T., Azaza J., Sabau X., Jaoua M., Masmoudi K., Hassairi A. Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene. 2007;404:61–69. doi: 10.1016/j.gene.2007.08.021. PubMed DOI

Ben Saad R., Ben Ramdhan W., Zouari N., Azaza J., Mieulet D., Guiderdoni E., Ellouz R., Hassairi A. Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Mol. Breed. 2012;30:521–533. doi: 10.1007/s11032-011-9641-3. DOI

Ben Saad R., Fabre D., Mieulet D., Meynard D., Dingkuhn M., AL-DOSS A., Guiderdoni E., Hassairi A. Expression of the Aeluropus littoralisAlSAP gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis. Plant Cell Environ. 2012;35:626–643. doi: 10.1111/j.1365-3040.2011.02441.x. PubMed DOI

Ghneim-Herrera T., Selvaraj M.G., Meynard D., Fabre D., Pena A., Ben Romdhane W., Ben Saad R., Ogawa S., Rebolledo M.C., Ishitani M., et al. Expression of the Aeluropus littoralisAlSAPgene enhances rice yield under field drought at the reproductive stage. Front. Plant Sci. 2017;8:994. doi: 10.3389/fpls.2017.00994. PubMed DOI PMC

Ben Romdhane W., Ben Saad R., Meynard D., Zouari N., Tarroum M., Ali A., Droc G., Périn C., Morel J., Fki L., et al. Expression of an A20/AN1 stress-associated protein from Aeluropus littoralis in rice deregulates stress-related genes. J. Plant Growth Regul. 2021;41:848–862. doi: 10.1007/s00344-021-10344-z. DOI

Ben Saad R., Safi H., Ben Hsouna A., Brini F., Ben Romdhane W. Functional domain analysis of LmSAP protein reveals the crucial role of the zinc-finger A20 domain in abiotic stress tolerance. Protoplasma. 2019;256:1333–1344. doi: 10.1007/s00709-019-01390-2. PubMed DOI

Tiwari V., Chaturvedi A.K., Mishra A., Jha B. The transcriptional regulatory mechanism of the peroxisomal ascorbate peroxidase (pAPX) gene cloned from an extreme halophyte, Salicornia brachiata. Plant Cell Physiol. 2014;55:201–217. doi: 10.1093/pcp/pct172. PubMed DOI

Tiwari V., Patel M.K., Chaturvedi A.K., Mishra A., Jha B. Functional characterization of the Tau class glutathione-S-transferases gene (SbGSTU) promoter of Salicornia brachiata under salinity and osmotic Stress. PLoS ONE. 2016;11:e0148494. doi: 10.1371/journal.pone.0148494. PubMed DOI PMC

Sun Q., Gao F., Zhao L., Li K., Zhang J. Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila. BMC Plant Biol. 2010;10:90. doi: 10.1186/1471-2229-10-90. PubMed DOI PMC

Yin X., Zhao Y., Luo D., Zhang H. Isolating the promoter of a stress-induced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica Iljin. Biochim. Biophys. Acta. 2002;1577:452–456. doi: 10.1016/S0167-4781(02)00495-5. PubMed DOI

Guo L., Yu Y., Xia X., Yin W. Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC Plant Biol. 2010;10:18. doi: 10.1186/1471-2229-10-18. PubMed DOI PMC

Ben Saad R., Ben Romdhane W., Zouari N., Ben Hsouna A., Harbaoui M., Brini F., Ghneim-Herrera T. Characterization of a novel LmSAP gene promoter from Lobularia maritima: Tissue specificity and environmental stress responsiveness. PLoS ONE. 2020;15:e0236943. doi: 10.1371/journal.pone.0236943. PubMed DOI PMC

Ben Saad R., Ben Romdhan W., Zouari N., Azaza J., Mieulet D., Verdeil J.L., Guiderdoni E., Hassairi A. Promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco. Transgenic Res. 2011;20:1003–1018. doi: 10.1007/s11248-010-9474-6. PubMed DOI

Ben-Saad R., Meynard D., Ben-Romdhane W., Mieulet D., Verdeil J.L., Al-Doss A., Guiderdoni E., Hassairi A. The promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs a stress-inducible expression pattern in transgenic rice plants. Plant Cell Rep. 2015;34:1791–1806. doi: 10.1007/s00299-015-1825-6. PubMed DOI

Said-Al Ahl H.A.H., Omer E.A. Medicinal and aromatic plants production under salt stress. A review. Herba Pol. 2011;57:72–87.

Kłosowska K. Plant responses to salinity. Kosmos. 2010;59:539–549.

Eryılmaz F. The relationships between salt stress and anthocyanin content in higher plants. Biotechnol. Biotechnol. Equip. 2006;20:47–52. doi: 10.1080/13102818.2006.10817303. DOI

Bourgou S., Kchouk M., Bellila A., Marzouk B. Effect of salinity on phenolic composition and biological activity of Nigella sativa. Acta Hortic. 2010;853:57–60. doi: 10.17660/ActaHortic.2010.853.5. DOI

Kovacik J., Klejdus B., Hedbavny J., Backor M. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology. 2009;18:544–554. doi: 10.1007/s10646-009-0312-7. PubMed DOI

Baatour O., Kaddour R., Aidi Wannes W., Lachaâl M., Marzouk B. Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana) Acta Physiol. Plant. 2009;32:45–51. doi: 10.1007/s11738-009-0374-4. DOI

Said-Al Ahl H., Hussein M. Effect of water stress and potassium humate on the productivity of oregano plant using saline and fresh water irrigation. Ozean J. Appl. Sci. 2010;3:125–141.

Said-Al A., Meawad A., Abou-Zeid E., Ali M. Response of different basil varieties to soil salinity. Int. Agrophys. 2010;24:183–188.

Baghalian K., Haghiry A., Naghavi M.R., Mohammadi A. Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.) Sci. Hortic. 2008;116:437–441. doi: 10.1016/j.scienta.2008.02.014. DOI

Neffati M., Marzouk B. Roots volatiles and fatty acids of coriander (Coriandrum sativum L.) grown in saline medium. Acta Physiol. Plant. 2009;31:455–461. doi: 10.1007/s11738-008-0253-4. DOI

Stępień P., Kłbus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plant. 2006;50:610–616. doi: 10.1007/s10535-006-0096-z. DOI

Handa A.K., Fatima T., Mattoo A.K. Polyamines: Bio-molecules with diverse functions in plant and human health and disease. Front. Chem. 2018;6:10. doi: 10.3389/fchem.2018.00010. PubMed DOI PMC

Benjamin J.J., Lucini L., Jothiramshekar S., Parida A. Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes. Plant Physiol. Biochem. 2019;135:528–545. doi: 10.1016/j.plaphy.2018.11.006. PubMed DOI

Bueno M., Cordovilla M.P. Polyamines in halophytes. Front. Plant Sci. 2019;10:439. doi: 10.3389/fpls.2019.00439. PubMed DOI PMC

Ben Hassine A., Ghanem M.E., Bouzid S., Lutts S. Abscisic acid has contrasting effects on salt excretion and polyamine concentrations of an inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus. Ann. Bot. 2009;104:925–936. doi: 10.1093/aob/mcp174. PubMed DOI PMC

Reginato M.A., Abdala G.I., Miersch O., Ruiz O.A., Moschetti E., Luna V. Changes in the levels of jasmonates and free polyamines induced by Na2SO4 and NaCl in roots and leaves of the halophyte Prosopis strombulifera. Biologia. 2012;67:689–697. doi: 10.2478/s11756-012-0052-7. DOI

Liu J.H., Wang W., Wu H., Gong X., Moriguchi T. Polyamines function in stress tolerance: From synthesis to regulation. Front. Plant Sci. 2015;6:827. doi: 10.3389/fpls.2015.00827. PubMed DOI PMC

Gharbi E., Martinez J.P., Benahmed H., Fauconnier M.L., Lutts S., Quinet M. Salicylic acid differently impacts ethylene and polyamine synthesis in the glycophyte Solanum lycopersicum and the wild-related halophyte Solanum chilense exposed to mild salt stress. Physiol. Plant. 2016;158:152–167. doi: 10.1111/ppl.12458. PubMed DOI

Ruiz K.B., Rapparini F., Bertazza G., Silva H., Torrigiani P., Biondi S. Comparing salt-induced responses at the transcript level in a salares and coastal-lowlands landrace of quinoa (Chenopodium quinoa Willd) Environ. Exp. Bot. 2017;140:150. doi: 10.1016/j.envexpbot.2017.06.004. DOI

Sanchez D.H., Siahpoosh M.R., Roessner U., Udvardi M., Kopka J. Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol. Plant. 2008;132:209–219. doi: 10.1111/j.1399-3054.2007.00993.x. PubMed DOI

Liu X., Yang C., Zhang L., Li L., Liu S., Yu J., You L., Zhou D., Xia C., Zhao J., et al. Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology. 2011;20:1422–1431. doi: 10.1007/s10646-011-0699-9. PubMed DOI

Kumari A., Das P., Parida A.K., Agarwal P.K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 2015;6:537. doi: 10.3389/fpls.2015.00537. PubMed DOI PMC

Bueno M., Cordovilla M.D. Spermidine pretreatments mitigate the effects of saline stress by improving growth and saline excretion in Frankenia pulverulenta. Agronomy. 2021;11:1515. doi: 10.3390/agronomy11081515. DOI

Bauer G.A., Bazzaz F.A., Minocha R., Long S., Magill A., Aber J., Berntson G.M. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States. For. Ecol. Manag. 2004;196:173–186. doi: 10.1016/j.foreco.2004.03.032. DOI

Mattoo A.K., Sobolev A.P., Neelam A., Goyal R.K., Handa A.K., Segre A.L. Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol. 2006;142:1759–1770. doi: 10.1104/pp.106.084400. PubMed DOI PMC

Bor M., Özdemir F. Manipulating metabolic pathways for development of salt-tolerant crops. In: Kumar V., Wani S.H., Suprasanna P., Tran L.-S.P., editors. Salinity Responses and Tolerance in Plants, Volume 1: Targeting Sensory, Transport and Signaling Mechanisms. Springer International Publishing; Cham, Switzerland: 2018. pp. 235–256.

Hildebrandt T.M., Nunes Nesi A., Araujo W.L., Braun H.P. Amino acid catabolism in plants. Mol. Plant. 2015;8:1563–1579. doi: 10.1016/j.molp.2015.09.005. PubMed DOI

Chen D., Shao Q., Yin L., Younis A., Zheng B. Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 2018;9:1945. doi: 10.3389/fpls.2018.01945. PubMed DOI PMC

Mutlu F., Bozcuk S. Effects of salinity on the contents of polyamines and some other compounds in sunflower plants differing in salt tolerance. Russ. J. Plant Physiol. 2005;52:29–34. doi: 10.1007/s11183-005-0005-x. DOI

De-Yun M., Lin-Lin H.O.U., Sha Y., Jing-Jing M., Feng G.U.O., Xin-Guo L.I., Wan Shu-Bo a. Exogenous polyamines alleviating salt stress on peanuts (Arachis hypogaea) grown in pots. Chin. J. Plant Ecol. 2015;39:1209–1215. doi: 10.17521/cjpe.2015.0117. DOI

Takahashi Y., Tahara M., Yamada Y., Mitsudomi Y., Koga K. Characterization of the polyamine biosynthetic pathways and salt stress response in Brachypodium distachyon. J. Plant Growth Regul. 2018;37:625–634. doi: 10.1007/s00344-017-9761-z. DOI

Hernándiz A.E., Aucique-Perez C.E., Ćavar Zeljković S., Štefelová N., Salcedo Sarmiento S., Spíchal L., De Diego N. Priming with small molecule-based biostimulants to improve abiotic stress tolerance in Arabidopsis thaliana. Plants. 2022;11:1287. doi: 10.3390/plants11101287. PubMed DOI PMC

Cavar Zeljkovic S., Aucique-Perez C.E., Stefelova N., De Diego N. Optimizing growing conditions for hydroponic farming of selected medicinal and aromatic plants. Food Chem. 2022;375:131845. doi: 10.1016/j.foodchem.2021.131845. PubMed DOI

Ben Hsouna A., Hfaiedh M., Ben Slima S., Ben Romdhane W., Akacha B.B., Bouterra M.T., Dhifi W., Mnif W., Brini F., Ben Saad R., et al. Antioxidant and hepatoprotective effects of novel heteropolysaccharide isolated from Lobularia maritima on CCl4-induced liver injury in rats. Food Sci. Nutr. 2022;10:2271–2284. doi: 10.1002/fsn3.2836. PubMed DOI PMC

Marrelli M., Argentieri M.P., Avato P., Conforti F. Lobularia maritima (L.) Desv. Aerial Parts Methanolic Extract: In Vitro Screening of Biological Activity. Plants. 2020;9:89. doi: 10.3390/plants9010089. PubMed DOI PMC

Kouidhi S., Zidi O., Abdelwahed S., Souissi Y., Trabelsi N., Redissi A., Hamdi M., Trabelsi E., Amara Y., Bhiri T., et al. Investigation of the chemical composition and antioxidant and antimicrobial activities of Lobularia maritima: Potent therapeutic applications. J. Chem. 2021;2021:1981680. doi: 10.1155/2021/1981680. DOI

Tatsuzawa F., Usuki R., Toki K., Saito N., Shinoda K., Shigihara A., Honda T. Acylated pelargonidin 3-sambubioside-5-glucosides from the red-purple flowers of Lobularia maritima. J. Jpn. Soc. Hortic. Sci. 2010;79:84–90. doi: 10.2503/jjshs1.79.84. DOI

Ben Hsouna A., Dhibi S., Dhifi W., Ben Saad R., Brini F., Hfaidh N., Mnif W. Essential oil from halophyte Lobularia maritima: Protective effects against CCl4-induced hepatic oxidative damage in rats and inhibition of the production of proinflammatory gene expression by lipopolysaccharide-stimulated RAW 264.7 macrophages. RSC Adv. 2019;9:36758–36770. doi: 10.1039/C9RA05885K. PubMed DOI PMC

Asrar H., Hussain T., Qasim M., Nielsen B.L., Gul B., Khan M.A. Salt induced modulations in antioxidative defense system of Desmostachya bipinnata. Plant Physiol. Biochem. 2020;147:113–124. doi: 10.1016/j.plaphy.2019.12.012. PubMed DOI

Ben Hsouna A., Dhibi S., Dhifi W., Ben Saad R., Brini F., Hfaidh N., Almeida J., Mnif W. Lobularia maritima leave extract, a nutraceutical agent with antioxidant activity, protects against CCl4-induced liver injury in mice. Drug Chem. Toxicol. 2022;45:604–616. doi: 10.1080/01480545.2020.1742730. PubMed DOI

Asmaa D., Samira M. Phytochemical screening and comparative analysis of bioactive phenolic compounds composition of Lobularia maritima L. grown in two different locations in the western Algeria. J. Biochem. Int. 2018:9–16.

Michalak M. Plant-derived antioxidants: Significance in skin health and the ageing process. Int. J. Mol. Sci. 2022;23:585. doi: 10.3390/ijms23020585. PubMed DOI PMC

Nunes C.D.R., Barreto Arantes M., Menezes de Faria Pereira S., Leandro da Cruz L., de Souza Passos M., Pereira de Moraes L., Vieira I.J.C., Barros de Oliveira D. Plants as sources of anti-inflammatory agents. Molecules. 2020;25:3726. doi: 10.3390/molecules25163726. PubMed DOI PMC

Azab A., Nassar A., Azab A.N. Anti-inflammatory activity of natural products. Molecules. 2016;21:1321. doi: 10.3390/molecules21101321. PubMed DOI PMC

Aravindaram K., Yang N.S. Anti-inflammatory plant natural products for cancer therapy. Planta Med. 2010;76:1103–1117. doi: 10.1055/s-0030-1249859. PubMed DOI

Yun J.W. Possible anti-obesity therapeutics from nature-a review. Phytochemistry. 2010;71:1625–1641. doi: 10.1016/j.phytochem.2010.07.011. PubMed DOI

Kawser Hossain M., Abdal Dayem A., Han J., Yin Y., Kim K., Kumar Saha S., Yang G.M., Choi H.Y., Cho S.G. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int. J. Mol. Sci. 2016;17:569. doi: 10.3390/ijms17040569. PubMed DOI PMC

Owusu E., Ahorlu M.M., Afutu E., Akumwena A., Asare G.A. Antimicrobial activity of selected medicinal plants from a Sub-Saharan african country against bacterial pathogens from post-operative Wound Infections. Med. Sci. 2021;9:23. doi: 10.3390/medsci9020023. PubMed DOI PMC

Kurhekar J.V. Tannins-antimicrobial chemical components. Int. J. Technol. Sci. 2016;9:5–9.

Nirumand M.C., Hajialyani M., Rahimi R., Farzaei M.H., Zingue S., Nabavi S.M., Bishayee A. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms. Int. J. Mol. Sci. 2018;19:765. doi: 10.3390/ijms19030765. PubMed DOI PMC

Eltamany E.E., Nafie M.S., Khodeer D.M., El-Tanahy A.H.H., Abdel-Kader M.S., Badr J.M., Abdelhameed R.F.A. Rubia tinctorum root extracts: Chemical profile and management of type II diabetes mellitus. RSC Adv. 2020;24:24159–24168. doi: 10.1039/D0RA03442H. PubMed DOI PMC

Alshehri S.A., Wahab S., Abullais S.S., Das G., Hani U., Ahmad W., Amir M., Ahmad A., Kandasamy G., Vasudevan R. Pharmacological Efficacy of Tamarix aphylla: A Comprehensive Review. Plants. 2021;11:118. doi: 10.3390/plants11010118. PubMed DOI PMC

Chaieb M., Boukhris M. Flore Succincte et Illustrée des Zones Arides et Sahariennes de Tunisie. Associations pour la protection de la nature et de l’environnement; Sfax, Tunisia: 1998.

Ksouri R., Megdiche W., Falleh H., Trabelsi N., Boulaaba M., Smaoui A., Abdelly C. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C. R. Biol. 2008;331:865–873. doi: 10.1016/j.crvi.2008.07.024. PubMed DOI

Kubica P., Szopa A., Dominiak J., Luczkiewicz M., Ekiert H. Verbena officinalis (Common Vervain)—A Review on the Investigations of This Medicinally Important Plant Species. Planta Med. 2020;86:1241–1257. doi: 10.1055/a-1232-5758. PubMed DOI

Graham J.G., Quinn M.L., Fabricant D.S., Farnsworth N.R. Plants used against cancer-an extension of the work of Jonathan Hartwell. J. Ethnopharmacol. 2020;73:347–377. doi: 10.1016/S0378-8741(00)00341-X. PubMed DOI

McCutcheon A.R., Roberts T.E., Gibbons E., Ellis S.M., Babiuk L.A., Hancock R.E.W., Tower G.H.N. Antiviral screening of British Colombian medicinal plants. J. Ethnopharmacol. 1995;49:101–110. doi: 10.1016/0378-8741(95)90037-3. PubMed DOI PMC

Candela R.G., Rosselli S., Bruno M., Fontana G. A Review of the Phytochemistry, Traditional Uses and Biological Activities of the Essential Oils of Genus Teucrium. Planta Med. 2021;87:432–479. doi: 10.1055/a-1293-5768. PubMed DOI

Satiyavati G.C., Raina M.K., Sharma M. Medicinal Plants of India. Indian Council of Medical Research; New Dehli, India: 1996.

Ravi S.K., Ramesh B.N., Mundugaru R., Vincent B. Multiple pharmacological activities of Caesalpinia crista against aluminium-induced neurodegeneration in rats: Relevance for Alzheimer’s disease. Environ. Toxicol. Pharmacol. 2018;58:202–211. doi: 10.1016/j.etap.2018.01.008. PubMed DOI

Bandaranayake W.M. Bioactivities, bioactive compounds and chemical constituents of mangrove Plants. Wetl. Ecol. Manag. 2002;10:421–452. doi: 10.1023/A:1021397624349. DOI

Chen P.S., Li J.H., Liu T.Y., Lin T.C. Folk medicine Terminalia catappa and its major tannin component, punicalagin, are effective against bleomycin-induced genotoxicity in Chinese hamster ovary cells. Cancer Lett. 2000;152:115–122. doi: 10.1016/S0304-3835(99)00395-X. PubMed DOI

Yeh C.B., Yu Y.L., Lin C.W., Chiou H.L., Hsieh M.J., Yang S.F. Terminalia catappa attenuates urokinase-type plasminogen activator expression through Erk pathways in Hepatocellular carcinoma. BMC Complement. Altern. Med. 2014;14:141. doi: 10.1186/1472-6882-14-141. PubMed DOI PMC

Guil-Guerrero J.L., Torija Isana M.E., Gimenez Martinez J.J. Composicion nutricional del hinojo marino (Crithmum maritimum L.) Alimentaria. 1996;34:65–72.

Fuochi V., Barbagallo I., Distefano A., Puglisi F., Palmeri R., Di Rosa M., Giallongo C., Longhitano L., Fontana P., Sferrazzo G., et al. Biological properties of Cakile maritima Scop. (Brassicaceae) extracts. Eur. Rev. Med. Pharmacol. Sci. 2019;23:2280–2292. doi: 10.26355/eurrev_201903_17277. PubMed DOI

Murshid S.S.A., Atoum D., Abou-Hussein D.R., Abdallah H.M., Hareeri R.H., Almukadi H., Edrada-Ebel R. Genus Salsola: Chemistry, Biological Activities and Future Prospective-A Review. Plants. 2022;11:714. doi: 10.3390/plants11060714. PubMed DOI PMC

Seca A.M., Grigore A., Pinto D.C., Silva A.M. The genus Inula and their metabolites: From ethnopharmacological to medicinal uses. J. Ethnopharmacol. 2014;154:286–310. doi: 10.1016/j.jep.2014.04.010. PubMed DOI

Ali-Shtayeh M.S., Abu Ghdeib S.I. Antifungal activity of plant extracts against dermatophytes. Mycoses. 1999;42:665–672. doi: 10.1046/j.1439-0507.1999.00499.x. PubMed DOI

Taïbi K., Aït Abderrahim L., Boussaid M., Taibi F., Achir M., Souana K., Benaissa T., Farhi K.H., Naamani F.Z., Nait Said K. Unraveling the ethnopharmacological potential of medicinal plants used in Algerian traditional medicine for urinary diseases. Eur. J. Integr. Med. 2021;44:101339. doi: 10.1016/j.eujim.2021.101339. DOI

Renkema J.M., Smith D. Effects of sweet alyssum flowers and their volatile compounds on Drosophila suzukii(Matsumura) in the laboratory. J. Appl. Entomol. 2020;144:968–971. doi: 10.1111/jen.12803. DOI

Wang H., Zhang M., Han X., Cong J., Wang S., He S., Wei D., Zhang Y., Qin J., Sampietro D.A. Insecticidal and repellent efficacy of the essential oil from Lobularia maritima and trans-3-pentenenitrile against insect pests of stored grains. Int. J. Food Prop. 2020;23:1125–1135. doi: 10.1080/10942912.2020.1778723. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...