Machine Learning Approach to Understand Worsening Renal Function in Acute Heart Failure
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36358966
PubMed Central
PMC9687716
DOI
10.3390/biom12111616
PII: biom12111616
Knihovny.cz E-resources
- Keywords
- acute heart failure, artificial intelligence, cardiorenal syndrome, clustering, machine learning,
- MeSH
- Acute Disease MeSH
- Creatinine MeSH
- Kidney physiology MeSH
- Humans MeSH
- Heart Failure * MeSH
- Machine Learning MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Creatinine MeSH
Acute heart failure (AHF) is a common and severe condition with a poor prognosis. Its course is often complicated by worsening renal function (WRF), exacerbating the outcome. The population of AHF patients experiencing WRF is heterogenous, and some novel possibilities for its analysis have recently emerged. Clustering is a machine learning (ML) technique that divides the population into distinct subgroups based on the similarity of cases (patients). Given that, we decided to use clustering to find subgroups inside the AHF population that differ in terms of WRF occurrence. We evaluated data from the three hundred and twelve AHF patients hospitalized in our institution who had creatinine assessed four times during hospitalization. Eighty-six variables evaluated at admission were included in the analysis. The k-medoids algorithm was used for clustering, and the quality of the procedure was judged by the Davies-Bouldin index. Three clinically and prognostically different clusters were distinguished. The groups had significantly (p = 0.004) different incidences of WRF. Inside the AHF population, we successfully discovered that three groups varied in renal prognosis. Our results provide novel insight into the AHF and WRF interplay and can be valuable for future trial construction and more tailored treatment.
Department of Physiology and Patophysiology Wroclaw Medical University 50 368 Wroclaw Poland
Faculty of Electrical Engineering Warsaw University of Technology 00 614 Warszawa Poland
Institute of Heart Diseases Wroclaw Medical University 50 556 Wroclaw Poland
See more in PubMed
Savarese G., Becher P.M., Lund L.H., Seferovic P., Rosano G.M.C., Coats A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2022:1–16. doi: 10.1093/cvr/cvac013. PubMed DOI
McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI
Ronco C., Haapio M., House A.A., Anavekar N., Bellomo R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008;52:1527–1539. doi: 10.1016/j.jacc.2008.07.051. PubMed DOI
Gottlieb S.S., Abraham W., Butler J., Forman D.E., Loh E., Massie B.M., O’Connor C.M., Rich M.W., Stevenson L.W., Young J., et al. The prognostic importance of different definitions of worsening renal function in congestive heart failure. J. Card. Fail. 2002;8:136–141. doi: 10.1054/jcaf.2002.125289. PubMed DOI
Bellomo R., Ronco C., Mehta R.L., Asfar P., Boisramé-Helms J., Darmon M., Diehl J.-L., Duranteau J., Hoste E.A.J., Olivier J.-B., et al. Acute kidney injury in the ICU: From injury to recovery: Reports from the 5th Paris International Conference. Ann. Intensiv. Care. 2017;7:49. doi: 10.1186/s13613-017-0260-y. PubMed DOI PMC
Maeder M.T., Rickli H., Pfisterer M.E., Muzzarelli S., Ammann P., Fehr T., Hack D., Weilenmann D., Dieterle T., Kiencke S., et al. Incidence, clinical predictors, and prognostic impact of worsening renal function in elderly patients with chronic heart failure on intensive medical therapy. Am. Heart J. 2012;163:407–414.e1. doi: 10.1016/j.ahj.2011.12.003. PubMed DOI
Damman K., Navis G., Voors A.A., Asselbergs F., Smilde T.D., Cleland J.G., van Veldhuisen D.J., Hillege H.L. Worsening Renal Function and Prognosis in Heart Failure: Systematic Review and Meta-Analysis. J. Card. Fail. 2007;13:599–608. doi: 10.1016/j.cardfail.2007.04.008. PubMed DOI
Ghazi L., Ahmad T., Wilson F.P. A Clinical Framework for Evaluating Machine Learning Studies. Heart Fail. 2022;10:648–650. doi: 10.1016/j.jchf.2022.07.002. PubMed DOI
Pondel M., Korczak J. Information Technology for Management: Emerging Research and Applications. Springer; Cham, Switzerland: 2018. Recommendations based on collective intelligence–case of customer segmentation.
Zymliński R., Sokolski M., Siwolowski P., Biegus J., Nawrocka S., Jankowska E., Todd J., Yerramilli R., Estis J., Banasiak W., et al. Elevated troponin I level assessed by a new high-sensitive assay and the risk of poor outcomes in patients with acute heart failure. Int. J. Cardiol. 2017;230:646–652. doi: 10.1016/j.ijcard.2017.01.012. PubMed DOI
Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V., González-Juanatey J.R., Harjola V.-P., Jankowska E.A., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016;37:2129–2200. doi: 10.1093/eurheartj/ehw128. PubMed DOI
McMurray J.J., Adamopoulos S., Anker S.D., Auricchio A., Böhm M., Dickstein K., Falk V., Filippatos G., Fonseca C., Gomez-Sanchez M.A., et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2012;33:1787–1847. doi: 10.1093/eurheartj/ehs104. PubMed DOI
Khwaja A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron. 2012;120:c179–c184. doi: 10.1159/000339789. PubMed DOI
Tan P., Steinbach M., Karpatne A., Kumar V. Introduction to Data Mining. 2nd ed. Pearson; San Antonio, TX, USA: 2018.
Davies D.L., Bouldin D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979;PAMI-1:224–227. doi: 10.1109/TPAMI.1979.4766909. PubMed DOI
Holgado J.L., Lopez C., Fernandez A., Sauri I., Uso R., Trillo J.L., Vela S., Nuñez J., Redon J., Ruiz A. Acute kidney injury in heart failure: A population study. ESC Heart Fail. 2020;7:415–422. doi: 10.1002/ehf2.12595. PubMed DOI PMC
Chen J.-J., Lee T.-H., Kuo G., Yen C.-L., Chen S.-W., Chu P.-H., Fan P.-C., Wu V.C.-C., Chang C.-H. Acute Kidney Disease After Acute Decompensated Heart Failure. Kidney Int. Rep. 2022;7:526–536. doi: 10.1016/j.ekir.2021.12.033. PubMed DOI PMC
Mullens W., Abrahams Z., Francis G.S., Sokos G., Taylor D.O., Starling R.C., Young J.B., Tang W.W. Importance of Venous Congestion for Worsening of Renal Function in Advanced Decompensated Heart Failure. J. Am. Coll. Cardiol. 2009;53:589–596. doi: 10.1016/j.jacc.2008.05.068. PubMed DOI PMC
Błaziak M., Urban S., Wietrzyk W., Jura M., Iwanek G., Stańczykiewicz B., Kuliczkowski W., Zymliński R., Pondel M., Berka P., et al. An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review. Biomedicines. 2022;10:2188. doi: 10.3390/biomedicines10092188. PubMed DOI PMC
Schrub F., Oger E., Bidaut A., Hage C., Charton M., Daubert J.C., Leclercq C., Linde C., Lund L., Donal E. Heart failure with preserved ejection fraction: A clustering approach to a heterogenous syndrome. Arch. Cardiovasc. Dis. 2020;113:381–390. doi: 10.1016/j.acvd.2020.03.012. PubMed DOI
Casebeer A., Horter L., Hayden J., Simmons J., Evers T. Phenotypic clustering of heart failure with preserved ejection fraction reveals different rates of hospitalization. J. Cardiovasc. Med. 2020;22:45–52. doi: 10.2459/JCM.0000000000001116. PubMed DOI
Henneges C., Morbach C., Sahiti F., Scholz N., Frantz S., Ertl G., Angermann C.E., Störk S. Sex-specific bimodal clustering of left ventricular ejection fraction in patients with acute heart failure. ESC Heart Fail. 2021;9:786–790. doi: 10.1002/ehf2.13618. PubMed DOI PMC
Tsoi K.K., Chan N.B., Yiu K.K., Poon S.K., Lin B., Ho K. Machine Learning Clustering for Blood Pressure Variability Applied to Systolic Blood Pressure Intervention Trial (SPRINT) and the Hong Kong Community Cohort. Hypertension. 2020;76:569–576. doi: 10.1161/HYPERTENSIONAHA.119.14213. PubMed DOI
Janssen D.J., Rechberger S., Wouters E.F., Schols J.M., Johnson M.J., Currow D.C., Curtis J.R., Spruit M.A. Clustering of 27,525,663 Death Records from the United States Based on Health Conditions Associated with Death: An Example of big Health Data Exploration. J. Clin. Med. 2019;8:922. doi: 10.3390/jcm8070922. PubMed DOI PMC
Urban S., Błaziak M., Jura M., Iwanek G., Zdanowicz A., Guzik M., Borkowski A., Gajewski P., Biegus J., Siennicka A., et al. Novel Phenotyping for Acute Heart Failure—Unsupervised Machine Learning-Based Approach. Biomedicines. 2022;10:1514. doi: 10.3390/biomedicines10071514. PubMed DOI PMC
Shah S.J., Katz D., Selvaraj S., Burke M.A., Yancy C.W., Gheorghiade M., Bonow R.O., Huang C.-C., Deo R.C. Phenomapping for Novel Classification of Heart Failure With Preserved Ejection Fraction. Circulation. 2015;131:269–279. doi: 10.1161/CIRCULATIONAHA.114.010637. PubMed DOI PMC
Yagi R., Takei M., Kohsaka S., Shiraishi Y., Ikemura N., Shoji S., Niimi N., Higuchi S., Goda A., Kohno T., et al. Phenomapping in patients experiencing worsening renal function during hospitalization for acute heart failure. ESC Heart Fail. 2021;8:5192–5203. doi: 10.1002/ehf2.13598. PubMed DOI PMC
Komajda M., Anker S.D., Cowie M.R., Filippatos G.S., Mengelle B., Ponikowski P., Tavazzi L. on behalf of the QUALIFY Investigators Physicians’ adherence to guideline-recommended medications in heart failure with reduced ejection fraction: Data from the QUALIFY global survey. Eur. J. Heart Fail. 2016;18:514–522. doi: 10.1002/ejhf.510. PubMed DOI
Gheorghiade M., Filippatos G. Reassessing treatment of acute heart failure syndromes: The ADHERE Registry. Eur. Heart J. Suppl. 2005;7:B13–B19. doi: 10.1093/eurheartj/sui008. DOI
Ruppar T.M., Cooper P.S., Mehr D.R., Delgado J.M., Dunbar-Jacob J.M. Medication Adherence Interventions Improve Heart Failure Mortality and Readmission Rates: Systematic Review and Meta-Analysis of Controlled Trials. J. Am. Heart Assoc. 2016;5:e002606. doi: 10.1161/JAHA.115.002606. PubMed DOI PMC
Dunlay S.M., Roger S.M.D.V.L., Redfield S.M.D.V.L.R.M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2017;14:591–602. doi: 10.1038/nrcardio.2017.65. PubMed DOI
Albar Z., Albakri M., Hajjari J., Karnib M., Janus S.E., Al-Kindi S.G. Inflammatory Markers and Risk of Heart Failure With Reduced to Preserved Ejection Fraction. Am. J. Cardiol. 2022;167:68–75. doi: 10.1016/j.amjcard.2021.11.045. PubMed DOI
Guzik M., Sokolski M., Hurkacz M., Zdanowicz A., Iwanek G., Marciniak D., Zymliński R., Ponikowski P., Biegus J. Serum Osmolarity and Vasopressin Concentration in Acute Heart Failure—Influence on Clinical Course and Outcome. Biomedicines. 2022;10:2034. doi: 10.3390/biomedicines10082034. PubMed DOI PMC
Anker S.D., Butler J., Filippatos G., Ferreira J.P., Bocchi E., Böhm M., Brunner–La Rocca H.-P., Choi D.-J., Chopra V., Chuquiure-Valenzuela E., et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021;385:1451–1461. doi: 10.1056/NEJMoa2107038. PubMed DOI
Figtree G.A., Rådholm K., Barrett T.D., Perkovic V., Mahaffey K.W., De Zeeuw D., Fulcher G., Matthews D.R., Shaw W., Neal B. Effects of Canagliflozin on Heart Failure Outcomes Associated With Preserved and Reduced Ejection Fraction in Type 2 Diabetes Mellitus. Circulation. 2019;139:2591–2593. doi: 10.1161/CIRCULATIONAHA.119.040057. PubMed DOI
Solomon S.D., McMurray J.J., Claggett B., de Boer R.A., DeMets D., Hernandez A.F., Inzucchi S.E., Kosiborod M.N., Lam C.S., Martinez F., et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022;387:1089–1098. doi: 10.1056/NEJMoa2206286. PubMed DOI
Ess M., Mussner-Seeber C., Mariacher S., Lorsbach-Koehler A., Pachinger O., Frick M., Ulmer H., Poelzl G. Gamma-Glutamyltransferase Rather Than Total Bilirubin Predicts Outcome in Chronic Heart Failure. J. Card. Fail. 2011;17:577–584. doi: 10.1016/j.cardfail.2011.02.012. PubMed DOI
Seppä K., Laippala P., Saarni M. Macrocytosis as a Consequence of Alcohol Abuse among Patients in General Practice. Alcohol. Clin. Exp. Res. 1991;15:871–876. doi: 10.1111/j.1530-0277.1991.tb00615.x. PubMed DOI
Ponikowski P., Banasiak W. Chemosensitivity in chronic heart failure. [(accessed on 25 September 2022)];Heart Fail. Monit. 2001 1:126–131. Available online: https://europepmc.org/article/med/12634897. PubMed
Wasung M.E., Chawla L.S., Madero M. Biomarkers of renal function, which and when? Clin. Chim. Acta. 2015;438:350–357. doi: 10.1016/j.cca.2014.08.039. PubMed DOI
Ahmad T., Jackson K., Rao V.S., Tang W.W., Brisco-Bacik M.A., Chen H.H., Felker G.M., Hernandez A.F., O’Connor C.M., Sabbisetti V.S., et al. Worsening Renal Function in Patients With Acute Heart Failure Undergoing Aggressive Diuresis Is Not Associated With Tubular Injury. Circulation. 2018;137:2016–2028. doi: 10.1161/CIRCULATIONAHA.117.030112. PubMed DOI PMC
Sokolski M., Zymlinski R., Biegus J., Siwołowski P., Nawrocka-Millward S., Todd J., Yerramilli M.R., Estis J., Jankowska E.A., Banasiak W., et al. Urinary levels of novel kidney biomarkers and risk of true worsening renal function and mortality in patients with acute heart failure. Eur. J. Heart Fail. 2017;19:760–767. doi: 10.1002/ejhf.746. PubMed DOI
Urban S., Blaziak M., Biegus J., Zymlinski R. Ultrafiltration in acute heart failure: Current knowledge and fields for further research. Adv. Clin. Exp. Med. 2021;30:737–746. doi: 10.17219/acem/135347. PubMed DOI
Costanzo M.R. Verdict In: Congestion Guilty! JACC Heart Fail. 2015;3:762–764. doi: 10.1016/j.jchf.2015.06.004. PubMed DOI
Brisco M.A., Zile M., Hanberg J.S., Wilson F., Parikh C., Coca S., Tang W.W., Testani J.M. Relevance of Changes in Serum Creatinine During a Heart Failure Trial of Decongestive Strategies: Insights From the DOSE Trial. J. Card. Fail. 2016;22:753–760. doi: 10.1016/j.cardfail.2016.06.423. PubMed DOI PMC
Costanzo M.R., Chawla L.S., Tumlin J.A., Herzog C.A., McCullough P.A., Kellum J.A., Ronco C. The role of early and sufficient isolated venovenous ultrafiltration in heart failure patients with pul-monary and systemic congestion. Rev. Cardiovasc. Med. 2013;14:123–133. doi: 10.3909/ricm0685. PubMed DOI
Horiuchi Y., Tanimoto S., Latif A.M., Urayama K.Y., Aoki J., Yahagi K., Okuno T., Sato Y., Tanaka T., Koseki K., et al. Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables. Int. J. Cardiol. 2018;262:57–63. doi: 10.1016/j.ijcard.2018.03.098. PubMed DOI
Nowak R.M., Reed B.P., DiSomma S., Nanayakkara P., Moyer M., Millis S., Levy P. Presenting phenotypes of acute heart failure patients in the ED: Identification and implications. Am. J. Emerg. Med. 2017;35:536–542. doi: 10.1016/j.ajem.2016.12.003. PubMed DOI
Arora P., Varshney S. Analysis of K-Means and K-Medoids Algorithm For Big Data. Procedia Comput. Sci. 2016;78:507–512. doi: 10.1016/j.procs.2016.02.095. DOI