Novel Phenotyping for Acute Heart Failure-Unsupervised Machine Learning-Based Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
857446
European Union's Horizon 2020 research and innovation programme
PubMed
35884819
PubMed Central
PMC9313459
DOI
10.3390/biomedicines10071514
PII: biomedicines10071514
Knihovny.cz E-zdroje
- Klíčová slova
- acute heart failure, clustering, machine learning,
- Publikační typ
- časopisecké články MeSH
Acute heart failure (AHF) is a life-threatening, heterogeneous disease requiring urgent diagnosis and treatment. The clinical severity and medical procedures differ according to a complex interplay between the deterioration cause, underlying cardiac substrate, and comorbidities. This study aimed to analyze the natural phenotypic heterogeneity of the AHF population and evaluate the possibilities offered by clustering (unsupervised machine-learning technique) in a medical data assessment. We evaluated data from 381 AHF patients. Sixty-three clinical and biochemical features were assessed at the admission of the patients and were included in the analysis after the preprocessing. The K-medoids algorithm was implemented to create the clusters, and optimization, based on the Davies-Bouldin index, was used. The clustering was performed while blinded to the outcome. The outcome associations were evaluated using the Kaplan-Meier curves and Cox proportional-hazards regressions. The algorithm distinguished six clusters that differed significantly in 58 variables concerning i.e., etiology, clinical status, comorbidities, laboratory parameters and lifestyle factors. The clusters differed in terms of the one-year mortality (p = 0.002). Using the clustering techniques, we extracted six phenotypes from AHF patients with distinct clinical characteristics and outcomes. Our results can be valuable for future trial constructions and customized treatment.
Department of Physiology and Patophysiology Wroclaw Medical University 50 368 Wroclaw Poland
Institute of Heart Diseases Wroclaw Medical University 50 556 Wroclaw Poland
Zobrazit více v PubMed
McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Celutkiene J., Chioncel O., et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI
Ezekowitz J.A., Kaul P., Bakal J.A., Armstrong P.W., Welsh R.C., McAlister F.A. Declining In-Hospital Mortality and Increasing Heart Failure Incidence in Elderly Patients with First Myocardial Infarction. J. Am. Coll. Cardiol. 2009;53:13–20. doi: 10.1016/j.jacc.2008.08.067. PubMed DOI
Nohria A., Tsang S.W., Fang J.C., Lewis E.F., Jarcho J.A., Mudge G.H., Stevenson L.W. Clinical Assessment Identifies Hemodynamic Profiles That Predict Outcomes in Patients Admitted with Heart Failure. J. Am. Coll. Cardiol. 2003;41:1797–1804. doi: 10.1016/S0735-1097(03)00309-7. PubMed DOI
Horiuchi Y., Tanimoto S., Latif A.H.M.M., Urayama K.Y., Aoki J., Yahagi K., Okuno T., Sato Y., Tanaka T., Koseki K., et al. Identifying Novel Phenotypes of Acute Heart Failure Using Cluster Analysis of Clinical Variables. Int. J. Cardiol. 2018;262:57–63. doi: 10.1016/j.ijcard.2018.03.098. PubMed DOI
Shah S.J., Katz D.H., Selvaraj S., Burke M.A., Yancy C.W., Gheorghiade M., Bonow R.O., Huang C.C., Deo R.C. Phenomapping for Novel Classification of Heart Failure with Preserved Ejection Fraction. Circulation. 2015;131:269–279. doi: 10.1161/CIRCULATIONAHA.114.010637. PubMed DOI PMC
Ferreira J.P., Duarte K., McMurray J.J.V., Pitt B., van Veldhuisen D.J., Vincent J., Ahmad T., Tromp J., Rossignol P., Zannad F. Data-Driven Approach to Identify Subgroups of Heart Failure with Reduced Ejection Fraction Patients with Different Prognoses and Aldosterone Antagonist Response Patterns. Circ. Heart Fail. 2018;11:e004926. doi: 10.1161/CIRCHEARTFAILURE.118.004926. PubMed DOI
Segar M.W., Patel K.V., Ayers C., Basit M., Tang W.H.W., Willett D., Berry J., Grodin J.L., Pandey A. Phenomapping of Patients with Heart Failure with Preserved Ejection Fraction Using Machine Learning-Based Unsupervised Cluster Analysis. Eur. J. Heart Fail. 2020;22:148–158. doi: 10.1002/ejhf.1621. PubMed DOI
Yagi R., Takei M., Kohsaka S., Shiraishi Y., Ikemura N., Shoji S., Niimi N., Higuchi S., Goda A., Kohno T., et al. Phenomapping in Patients Experiencing Worsening Renal Function during Hospitalization for Acute Heart Failure. ESC Heart Fail. 2021;8:5192. doi: 10.1002/ehf2.13598. PubMed DOI PMC
Ahmad T., Pencina M.J., Schulte P.J., O’Brien E., Whellan D.J., Piña I.L., Kitzman D.W., Lee K.L., O’Connor C.M., Felker G.M. Clinical Implications of Chronic Heart Failure Phenotypes Defined by Cluster Analysis. J. Am. Coll. Cardiol. 2014;64:1765–1774. doi: 10.1016/j.jacc.2014.07.979. PubMed DOI PMC
Zymliński R., Sokolski M., Siwolowski P., Biegus J., Nawrocka S., Jankowska E.A., Todd J., Yerramilli R., Estis J., Banasiak W., et al. Elevated Troponin I Level Assessed by a New High-Sensitive Assay and the Risk of Poor Outcomes in Patients with Acute Heart Failure. Int. J. Cardiol. 2017;230:646–652. doi: 10.1016/j.ijcard.2017.01.012. PubMed DOI
Henneges C., Morbach C., Sahiti F., Scholz N., Frantz S., Ertl G., Angermann C.E., Störk S. Sex-Specific Bimodal Clustering of Left Ventricular Ejection Fraction in Patients with Acute Heart Failure. ESC Heart Fail. 2021;9:786–790. doi: 10.1002/ehf2.13618. PubMed DOI PMC
Nowak R.M., Reed B.P., DiSomma S., Nanayakkara P., Moyer M., Millis S., Levy P. Presenting Phenotypes of Acute Heart Failure Patients in the ED: Identification and Implications. Am. J. Emerg Med. 2017;35:536–542. doi: 10.1016/j.ajem.2016.12.003. PubMed DOI
Ahmad T., Desai N., Wilson F., Schulte P., Dunning A., Jacoby D., Allen L., Fiuzat M., Rogers J., Felker G.M., et al. Clinical Implications of Cluster Analysis-Based Classification of Acute Decompensated Heart Failure and Correlation with Bedside Hemodynamic Profiles. PLoS ONE. 2016;11:e0145881. doi: 10.1371/journal.pone.0145881. PubMed DOI PMC
Peters S.A.E., Muntner P., Woodward M. Sex Differences in the Prevalence of, and Trends in, Cardiovascular Risk Factors, Treatment, and Control in the United States, 2001 to 2016. Circulation. 2019;139:1025–1035. doi: 10.1161/CIRCULATIONAHA.118.035550. PubMed DOI
Ference B.A., Ginsberg H.N., Graham I., Ray K.K., Packard C.J., Bruckert E., Hegele R.A., Krauss R.M., Raal F.J., Schunkert H., et al. Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017;38:2459. doi: 10.1093/eurheartj/ehx144. PubMed DOI PMC
Nordestgaard B.G., Chapman M.J., Ray K., Borén J., Andreotti F., Watts G.F., Ginsberg H., Amarenco P., Catapano A., Descamps O.S., et al. Lipoprotein(a) as a Cardiovascular Risk Factor: Current Status. Eur. Heart J. 2010;31:2844. doi: 10.1093/eurheartj/ehq386. PubMed DOI PMC
Iorga A., Cunningham C.M., Moazeni S., Ruffenach G., Umar S., Eghbali M. The Protective Role of Estrogen and Estrogen Receptors in Cardiovascular Disease and the Controversial Use of Estrogen Therapy. Biol. Sex Differ. 2017;8:33. doi: 10.1186/s13293-017-0152-8. PubMed DOI PMC
Xiang D., Liu Y., Zhou S., Zhou E., Wang Y. Protective Effects of Estrogen on Cardiovascular Disease Mediated by Oxidative Stress. Oxidative Med. Cell. Longev. 2021;2021:5523516. doi: 10.1155/2021/5523516. PubMed DOI PMC
Shekhar S., Travis O.K., He X., Roman R.J., Fan F. Menopause and Ischemic Stroke: A Brief Review. MOJ Toxicol. 2017;3:59. doi: 10.15406/MOJT.2017.03.00059. PubMed DOI PMC
Lisabeth L., Bushnell C. Menopause and Stroke: An Epidemiologic Review. Lancet Neurol. 2012;11:82. doi: 10.1016/S1474-4422(11)70269-1. PubMed DOI PMC
Ronco C., Haapio M., House A.A., Anavekar N., Bellomo R. Cardiorenal Syndrome. J. Am. Coll. Cardiol. 2008;52:1527–1539. doi: 10.1016/j.jacc.2008.07.051. PubMed DOI
Dignass A., Farrag K., Stein J. Limitations of Serum Ferritin in Diagnosing Iron Deficiency in Inflammatory Conditions. Int. J. Chronic Dis. 2018;2018:9394060. doi: 10.1155/2018/9394060. PubMed DOI PMC
Loncar G., Obradovic D., Thiele H., von Haehling S., Lainscak M. Iron Deficiency in Heart Failure. ESC Heart Fail. 2021;8:2368. doi: 10.1002/ehf2.13265. PubMed DOI PMC
Alnuwaysir R.I.S., Hoes M.F., van Veldhuisen D.J., van der Meer P., Beverborg N.G. Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. J. Clin. Med. 2022;11:125. doi: 10.3390/jcm11010125. PubMed DOI PMC
von Haehling S., Ebner N., Evertz R., Ponikowski P., Anker S.D. Iron Deficiency in Heart Failure: An Overview. JACC Heart Fail. 2019;7:36–46. doi: 10.1016/j.jchf.2018.07.015. PubMed DOI
Hoes M.F., Grote Beverborg N., Kijlstra J.D., Kuipers J., Swinkels D.W., Giepmans B.N.G., Rodenburg R.J., van Veldhuisen D.J., de Boer R.A., van der Meer P. Iron Deficiency Impairs Contractility of Human Cardiomyocytes through Decreased Mitochondrial Function. Eur. J. Heart Fail. 2018;20:910. doi: 10.1002/ejhf.1154. PubMed DOI PMC
Anand I.S., Gupta P. Anemia and Iron Deficiency in Heart Failure. Circulation. 2018;138:80–98. doi: 10.1161/CIRCULATIONAHA.118.030099. PubMed DOI
Bornstein A.B., Rao S.S., Marwaha K. Left Ventricular Hypertrophy. StatPearls; Treasure Island, FL, USA: 2021. PubMed
Dunlay S.M., Roger V.L., Redfield M.M. Epidemiology of Heart Failure with Preserved Ejection Fraction. Nat. Rev. Cardiol. 2017;14:591–602. doi: 10.1038/nrcardio.2017.65. PubMed DOI
Ather S., Chan W., Bozkurt B., Aguilar D., Ramasubbu K., Zachariah A.A., Wehrens X.H.T., Deswal A. Impact of Noncardiac Comorbidities on Morbidity and Mortality in a Predominantly Male Population with Heart Failure and Preserved versus Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2012;59:998–1005. doi: 10.1016/j.jacc.2011.11.040. PubMed DOI PMC
Biegus J., Zymliński R., Sokolski M., Todd J., Cotter G., Metra M., Jankowska E.A., Banasiak W., Ponikowski P. Serial Assessment of Spot Urine Sodium Predicts Effectiveness of Decongestion and Outcome in Patients with Acute Heart Failure. Eur. J. Heart Fail. 2019;21:624–633. doi: 10.1002/ejhf.1428. PubMed DOI
Kamper R.S., Alcazar J., Andersen L.L., Haddock B., Jørgensen N.R., Hovind P., Suetta C. Associations between Inflammatory Markers, Body Composition, and Physical Function: The Copenhagen Sarcopenia Study. J. Cachexia Sarcopenia Muscle. 2021;12:1641–1652. doi: 10.1002/jcsm.12832. PubMed DOI PMC
Milo-Cotter O., Cotter-Davison B., Lombardi C., Sun H., Bettari L., Bugatti S., Rund M., Metra M., Kaluski E., Kobrin I., et al. Neurohormonal Activation in Acute Heart Failure: Results from VERITAS. Cardiology. 2011;119:96–105. doi: 10.1159/000330409. PubMed DOI
Amor-Salamanca A., Guzzo-Merello G., González-López E., Domínguez F., Restrepo-Córdoba A., Cobo-Marcos M., Gómez-Bueno M., Segovia-Cubero J., Alonso-Pulpón L., García-Pavía P. Prognostic Impact and Predictors of Ejection Fraction Recovery in Patients with Alcoholic Cardiomyopathy. Rev. Esp. Cardiol. 2018;71:612–619. doi: 10.1016/j.rec.2017.11.032. (In English and Spanish) PubMed DOI