Malignant Hyperthermia in PICU-From Diagnosis to Treatment in the Light of Up-to-Date Knowledge

. 2022 Nov 04 ; 9 (11) : . [epub] 20221104

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36360420

Grantová podpora
MUNI/A/1166/2021, MUNI/A/1178/2021) Specific University Research provided by MŠMT
FNBr,65269705 MH CZ - DRO
NU21-06-00363 AZV - Czech Health Research Council
SUp 12/18 University Hospital Brno

Malignant Hyperthermia (MH) is a rare, hereditary, life-threatening disease triggered by volatile anesthetics and succinylcholine. Rarely, MH can occur after non-pharmacological triggers too. MH was detected more often in children and young adults, which makes this topic very important for every pediatric specialist, both anesthesiologists and intensivists. MH crisis is a life-threatening severe hypermetabolic whole-body reaction. Triggers of MH are used in pediatric intensive care unit (PICU) as well, volatile anesthetics in difficult sedation, status asthmaticus or epilepticus, and succinylcholine still sometimes in airway management. Recrudescence or delayed onset of MH crisis hours after anesthesia was previously described. MH can also be a cause of rhabdomyolysis and hyperpyrexia in the PICU. In addition, patients with neuromuscular diseases are often admitted to PICU and they might be at risk for MH. The most typical symptoms of MH are hypercapnia, tachycardia, hyperthermia, and muscle rigidity. Thinking of the MH as the possible cause of deterioration of a patient's clinical condition is the key to early diagnosis and treatment. The sooner the correct treatment is commenced, the better patient´s outcome. This narrative review article aims to summarize current knowledge and guidelines about recognition, treatment, and further management of MH in PICU.

Zobrazit více v PubMed

Rosenberg H., Pollock N., Schiemann A., Bulger T., Stowell K. Malignant hyperthermia: A review. Orphanet. J. Rare. Dis. 2015;10:93. doi: 10.1186/s13023-015-0310-1. PubMed DOI PMC

Robinson R., Carpenter D., Shaw M.-A., Halsall J., Hopkins P. Mutations in RYR1 in malignant hyperthermia and central core disease. Hum. Mutat. 2006;27:977–989. doi: 10.1002/humu.20356. PubMed DOI

Carpenter D., Ringrose C., Leo V., Morris A., Robinson R.L., Halsall P.J., Hopkins P.M., Shaw M.-A. The role of CACNA1S in predisposition to malignant hyperthermia. BMC Med. Genet. 2009;10:104. doi: 10.1186/1471-2350-10-104. PubMed DOI PMC

Zaharieva I.T., Sarkozy A., Munot P., Manzur A., O’Grady G., Rendu J., Malfatti E., Amthor H., Servais L., Urtizberea J.A., et al. STAC3 variants cause a congenital myopathy with distinctive dysmorphic features and malignant hyperthermia susceptibility. Hum. Mutat. 2018;39:1980–1994. doi: 10.1002/humu.23635. PubMed DOI

European Malignant Hyperthermia Group STAC3 Variants in Susceptibility to Malignant Hyperthermia. [(accessed on 21 December 2021)]. Available online: https://www.emhg.org/stac3.

Miller D.M., Daly C., Aboelsaod E.M., Gardner L., Hobson S.J., Riasat K., Shepherd S., Robinson R.L., Bilmen J.G., Gupta P.K., et al. Genetic epidemiology of malignant hyperthermia in the UK. Br. J. Anaesth. 2018;121:944–952. doi: 10.1016/j.bja.2018.06.028. PubMed DOI PMC

Brandom B.W., Bina S., Wong C.A., Wallace T., Visoiu M., Isackson P.J., Vladutiu G.D., Sambuughin N., Muldoon S.M. Ryanodine receptor type 1 gene variants in the malignant hyperthermia-susceptible population of the United States. Anesth. Analg. 2013;116:1078–1086. doi: 10.1213/ANE.0b013e31828a71ff. PubMed DOI PMC

Kraeva N., Riazi S., Loke J., Frodis W., Crossan M.L., Nolan K., Kraev A., Maclennan D.H. Ryanodine receptor type 1 gene mutations found in the Canadian malignant hyperthermia population. Can. J. Anaesth. 2011;58:504–513. doi: 10.1007/s12630-011-9494-6. PubMed DOI

Gillies R.L., Bjorksten A.R., Du Sart D., Hockey B.M. Analysis of the entire ryanodine receptor type 1 and alpha 1 subunit of the dihydropyridine receptor (CACNA1S) coding regions for variants associated with malignant hyperthermia in Australian families. Anaesth. Intensiv. Care. 2015;43:157–166. doi: 10.1177/0310057X1504300204. PubMed DOI

Gonzalez A., Girard T., Dell-Kuster S., Urwyler A., Bandschapp O. BMI and malignant hyperthermia pathogenic ryanodine receptor type 1 sequence variants in Switzerland: A retrospective cohort analysis. Eur. J. Anaesthesiol. 2021;38:751–757. doi: 10.1097/EJA.0000000000001399. PubMed DOI

Klincová M., Štěpánková D., Schröderová I., Klabusayová E., Ošťádalová E., Valášková I., Fajkusová L., Zídková J., Gaillyová R., Štourač P. Malignant hyperthermia in Czechia and Slovakia. Br. J. Anaesth. 2022;129:e41–e43. doi: 10.1016/j.bja.2022.04.029. PubMed DOI

Monnier N., Krivosic-Horber R., Payen J.-F., Kozak-Ribbens G., Nivoche Y., Adnet P., Reyford H., Lunardi J. Presence of two different genetic traits in malignant hyperthermia families: Implication for genetic analysis, diagnosis, and incidence of malignant hyperthermia susceptibility. Anesthesiology. 2002;97:1067–1074. doi: 10.1097/00000542-200211000-00007. PubMed DOI

Riazi S., Kraeva N., Hopkins P.M. Malignant Hyperthermia in the Post-Genomics Era: New Perspectives on an Old Concept. Anesthesiology. 2018;128:168–180. doi: 10.1097/ALN.0000000000001878. PubMed DOI PMC

Rosenberg H., Fletcher J.E. An update on the malignant hyperthermia syndrome. Ann. Acad. Med. Singap. 1994;23:84–97. PubMed

Glahn K.P.E., Bendixen D., Girard T., Hopkins P.M., Johannsen S., Rüffert H., Snoeck M.M., Urwyler A., European Malignant Hyperthermia Group Availability of dantrolene for the management of malignant hyperthermia crises: European Malignant Hyperthermia Group guidelines. Br. J. Anaesth. 2020;125:133–140. doi: 10.1016/j.bja.2020.04.089. PubMed DOI

Stowell K.M. DNA testing for malignant hyperthermia: The reality and the dream. Anesth. Analg. 2014;118:397–406. doi: 10.1213/ANE.0000000000000063. PubMed DOI

Hopkins P.M., Girard T., Dalay S., Jenkins B., Thacker A., Patteril M., McGrady E. Malignant hyperthermia 2020: Guideline from the Association of Anaesthetists. Anaesthesia. 2021;76:655–664. doi: 10.1111/anae.15317. PubMed DOI

Rüffert H., Bastian B., Bendixen D., Girard T., Heiderich S., Hellblom A., Hopkins P.M., Johannsen S., Snoeck M.M., Urwyler A., et al. Consensus guidelines on perioperative management of malignant hyperthermia suspected or susceptible patients from the European Malignant Hyperthermia Group. Br. J. Anaesth. 2021;126:120–130. doi: 10.1016/j.bja.2020.09.029. PubMed DOI

Klingler W., Heiderich S., Girard T., Gravino E., Heffron J.J., Johannsen S., Jurkat-Rott K., Rüffert H., Schuster F., Snoeck M., et al. Functional and genetic characterization of clinical malignant hyperthermia crises: A multi-centre study. Orphanet. J. Rare. Dis. 2014;9:8. doi: 10.1186/1750-1172-9-8. PubMed DOI PMC

Strazis K.P., Fox A.W. Malignant hyperthermia: A review of published cases. Anesth. Analg. 1993;77:297–304. doi: 10.1213/00000539-199308000-00014. PubMed DOI

Ibarra Moreno C.A., Hu S., Kraeva N., Schuster F., Johannsen S., Rueffert H., Klingler W., Heytens L., Riazi S. An Assessment of Penetrance and Clinical Expression of Malignant Hyperthermia in Individuals Carrying Diagnostic Ryanodine Receptor 1 Gene Mutations. Anesthesiology. 2019;131:983–991. doi: 10.1097/ALN.0000000000002813. PubMed DOI PMC

Heytens L., Forget P., Scholtès J.L., Veyckemans F. The changing face of malignant hyperthermia: Less fulminant, more insidious. Anaesth. Intensive Care. 2015;43:506–511. doi: 10.1177/0310057X1504300415. PubMed DOI

van den Bersselaar L.R., Hellblom A., Gashi M., Kamsteeg E.-J., Voermans N.C., Jungbluth H., de Puydt J., Heytens L., Riazi S., Snoeck M.M.J. Referral Indications for Malignant Hyperthermia Susceptibility Diagnostics in Patients without Adverse Anesthetic Events in the Era of Next-generation Sequencing. Anesthesiology. 2022;136:940–953. doi: 10.1097/ALN.0000000000004199. PubMed DOI

Gong X. Malignant hyperthermia when dantrolene is not readily available. BMC Anesthesiol. 2021;21:119. doi: 10.1186/s12871-021-01328-3. PubMed DOI PMC

Pollock A.N., Langton E.E., Couchman K., Stowell K.M., Waddington M. Suspected malignant hyperthermia reactions in New Zealand. Anaesth. Intensive Care. 2002;30:453–461. doi: 10.1177/0310057X0203000410. PubMed DOI

Visoiu M., Young M.C., Wieland K., Brandom B.W. Anesthetic drugs and onset of malignant hyperthermia. Anesth. Analg. 2014;118:388–396. doi: 10.1213/ANE.0000000000000062. PubMed DOI

Snoeck M.M., Gielen M.J., Tangerman A., van Egmond J., Dirksen R. Contractures in skeletal muscle of malignant hyperthermia susceptible patients after in vitro exposure to sevoflurane. Acta Anaesthesiol. Scand. 2000;44:334–337. doi: 10.1034/j.1399-6576.2000.440320.x. PubMed DOI

Metterlein T., Schuster F., Kranke P., Roewer N., Anetseder M. In-vitro contracture testing for susceptibility to malignant hyperthermia: Can halothane be replaced? Eur. J. Anaesthesiol. 2011;28:251–255. doi: 10.1097/EJA.0b013e32833ed06c. PubMed DOI

Hopkins P.M. Malignant hyperthermia: Pharmacology of triggering. Br. J. Anaesth. 2011;107:48–56. doi: 10.1093/bja/aer132. PubMed DOI

Hopkins P.M., Ellis F.R., Halsall P.J. Evidence for related myopathies in exertional heat stroke and malignant hyperthermia. Lancet. 1991;338:1491–1492. doi: 10.1016/0140-6736(91)92304-K. PubMed DOI

Fink E., Brandom B.W., Torp K.D. Heatstroke in the super-sized athlete. Pediatr. Emerg. Care. 2006;22:510–513. doi: 10.1097/01.pec.0000227388.91885.4b. PubMed DOI

Groom L., Muldoon S.M., Tang Z.Z., Brandom B.W., Bayarsaikhan M., Bina S., Lee H.-S., Qiu X., Sambuughin N., Dirksen R.T. Identical de novo mutation in the type 1 ryanodine receptor gene associated with fatal, stress-induced malignant hyperthermia in two unrelated families. Anesthesiology. 2011;115:938–945. doi: 10.1097/ALN.0b013e3182320068. PubMed DOI PMC

Lavezzi W.A., Capacchione J.F., Muldoon S.M., Sambuughin N., Bina S., Steele D., Brandom B.W. Case report: Death in the emergency department: An unrecognized awake malignant hyperthermia-like reaction in a six-year-old. Anesth. Analg. 2013;116:420–423. doi: 10.1213/ANE.0b013e3182768f99. PubMed DOI

Cummings T., Der T., Karsli C. Repeated nonanesthetic malignant hyperthermia reactions in a child. Paediatr. Anaesth. 2016;26:1202–1203. doi: 10.1111/pan.13006. PubMed DOI

Timmins M.A., Rosenberg H., Larach M.G., Sterling C., Kraeva N., Riazi S. Malignant hyperthermia testing in probands without adverse anesthetic reaction. Anesthesiology. 2015;123:548–556. doi: 10.1097/ALN.0000000000000732. PubMed DOI

Reske-Nielsen C., Schlosser K., Pascucci R.C., Feldman J.A. Is It Exertional Heatstroke or Something More? A Case Report. J. Emerg. Med. 2016;51:E1–E5. doi: 10.1016/j.jemermed.2016.03.002. PubMed DOI

Zvaritch E., Gillies R., Kraeva N., Richer M., Jungbluth H., Riazi S. Fatal awake malignant hyperthermia episodes in a family with malignant hyperthermia susceptibility: A case series. Can. J. Anaesth. 2019;66:540–545. doi: 10.1007/s12630-019-01320-z. PubMed DOI

Dowling J.J., Riazi S., Litman R.S. Episodic RYR1-Related Crisis: Part of the Evolving Spectrum of RYR1-Related Myopathies and Malignant Hyperthermia-Like Illnesses. A A Pract. 2021;15:e01377. doi: 10.1213/XAA.0000000000001377. PubMed DOI PMC

Glahn K.P.E., Ellis F.R., Halsall P.J., Müller C.R., Snoeck M.M.J., Urwyler A., Wappler F., European Malignant Hyperthermia Group Recognizing and managing a malignant hyperthermia crisis: Guidelines from the European Malignant Hyperthermia Group. Br. J. Anaesth. 2010;105:417–420. doi: 10.1093/bja/aeq243. PubMed DOI

MHAUS Managing a Crisis. [(accessed on 3 August 2022)]. Available online: https://www.mhaus.org/healthcare-professionals/managing-a-crisis/

Larach M.G., Localio A.R., Allen G.C., Denborough M.A., Ellis F.R., Gronert G.A., Kaplan R.F., Muldoon S.M., Nelson T.E., Ording H. A clinical grading scale to predict malignant hyperthermia susceptibility. Anesthesiology. 1994;80:771–779. doi: 10.1097/00000542-199404000-00008. PubMed DOI

Burkman J.M., Posner K.L., Domino K.B. Analysis of the clinical variables associated with recrudescence after malignant hyperthermia reactions. Anesthesiology. 2007;106:901–906; quiz 1077–1078. doi: 10.1097/01.anes.0000265148.86566.68. PubMed DOI

Hopkins P.M. Recrudescence of malignant hyperthermia. Anesthesiology. 2007;106:893–894. doi: 10.1097/01.anes.0000265144.63696.af. PubMed DOI

Min J.Y., Hong S.H., Kim S.J., Chung M.Y. Delayed-onset malignant hyperthermia in the postanesthetic care unit: A case report. J. Int. Med. Res. 2021;49:3000605211044201. doi: 10.1177/03000605211044201. PubMed DOI PMC

Litman R.S., Flood C.D., Kaplan R.F., Kim Y.L., Tobin J.R. Postoperative malignant hyperthermia: An analysis of cases from the North American Malignant Hyperthermia Registry. Anesthesiology. 2008;109:825–829. doi: 10.1097/ALN.0b013e31818958e5. PubMed DOI

Papadimos T.J., Almasri M., Padgett J.C., Rush J.E. A suspected case of delayed onset malignant hyperthermia with desflurane anesthesia. Anesth. Analg. 2004;98:548–549. doi: 10.1213/01.ANE.0000097172.44227.0D. PubMed DOI

Schleelein L.E., Litman R.S. Hyperthermia in the pediatric intensive care unit—Is it malignant hyperthermia? Paediatr. Anaesth. 2009;19:1113–1118. doi: 10.1111/j.1460-9592.2009.03120.x. PubMed DOI

Gorsky K., Cuninghame S., Chen J., Jayaraj K., Withington D., Francoeur C., Slessarev M., Jerath A. Use of inhalational anaesthetic agents in paediatric and adult patients for status asthmaticus, status epilepticus and difficult sedation scenarios: A protocol for a systematic review. BMJ Open. 2021;11:e051745. doi: 10.1136/bmjopen-2021-051745. PubMed DOI PMC

Schutte D., Zwitserloot A.M., Houmes R., de Hoog M., Draaisma J.M., Lemson J. Sevoflurane therapy for life-threatening asthma in children. Br. J. Anaesth. 2013;111:967–970. doi: 10.1093/bja/aet257. PubMed DOI

Nacoti M., Colombo J., Fochi O., Bonacina D., Fazzi F., Bellani G., Bonanomi E. Sevoflurane improves respiratory mechanics and gas exchange in a case series of infants with severe bronchiolitis-induced acute respiratory distress syndrome. Clin. Case Rep. 2018;6:920–925. doi: 10.1002/ccr3.1490. PubMed DOI PMC

Carrié S., Anderson T.A. Volatile anesthetics for status asthmaticus in pediatric patients: A comprehensive review and case series. Paediatr. Anaesth. 2015;25:460–467. doi: 10.1111/pan.12577. PubMed DOI

Mencía S., Palacios A., García M., Llorente A.M., Ordóñez O., Toledo B., López-Herce J. An Exploratory Study of Sevoflurane as an Alternative for Difficult Sedation in Critically Ill Children. Pediatr. Crit. Care Med. 2018;19:e335–e341. doi: 10.1097/PCC.0000000000001538. PubMed DOI

Stetefeld H.R., Schaal A., Scheibe F., Nichtweiß J., Lehmann F., Müller M., Gerner S.T., Huttner H.B., Luger S., Fuhrer H., et al. Isoflurane in (Super-) Refractory Status Epilepticus: A Multicenter Evaluation. Neurocrit. Care. 2021;35:631–639. doi: 10.1007/s12028-021-01250-z. PubMed DOI PMC

Zeiler F.A., Zeiler K.J., Teitelbaum J., Gillman L.M., West M. Modern inhalational anesthetics for refractory status epilepticus. Can. J. Neurol. Sci. 2015;42:106–115. doi: 10.1017/cjn.2014.121. PubMed DOI

L’Erario M., Roperto R.M., Rosati A. Sevoflurane as bridge therapy for plasma exchange and Anakinra in febrile infection-related epilepsy syndrome. Epilepsia Open. 2021;6:788–792. doi: 10.1002/epi4.12545. PubMed DOI PMC

Pasrija D., Assioun J., Sallam M., Prout A. Inhalational Anesthesia for Near-fatal Pediatric Asthma Complicated by Malignant Hyperthermia. Cureus. 2021;13:e19032. doi: 10.7759/cureus.19032. PubMed DOI PMC

Larach M.G., Klumpner T.T., Brandom B.W., Vaughn M.T., Belani K.G., Herlich A., Kim T.W., Limoncelli J., Riazi S., Sivak E.L., et al. Succinylcholine Use and Dantrolene Availability for Malignant Hyperthermia Treatment: Database Analyses and Systematic Review. Anesthesiology. 2019;130:41–54. doi: 10.1097/ALN.0000000000002490. PubMed DOI

Rosenberg H., Gronert G.A. Intractable cardiac arrest in children given succinylcholine. Anesthesiology. 1992;77:1054. doi: 10.1097/00000542-199211000-00040. PubMed DOI

Tarquinio K.M., Howell J.D., Montgomery V., Turner D.A., Hsing D.D., Parker M.M., Brown C.A., Walls R.M., Nadkarni V.M., Nishisaki A., et al. Current medication practice and tracheal intubation safety outcomes from a prospective multicenter observational cohort study. Pediatr. Crit. Care Med. 2015;16:210–218. doi: 10.1097/PCC.0000000000000319. PubMed DOI

Klucka J., Kosinova M., Zacharowski K., De Hert S., Kratochvil M., Toukalkova M., Stoudek R., Zelinkova H., Stourac P. Rapid sequence induction: An international survey. Eur. J. Anaesthesiol. 2020;37:435–442. doi: 10.1097/EJA.0000000000001194. PubMed DOI PMC

Gelbart B., DeMarco R., David Hussey A., Namachivayam S.P., McRae R., Quinlan C., Duke T. Rhabdomyolysis in a Tertiary PICU: A 10-Year Study. Pediatr. Crit. Care Med. 2018;19:e51–e57. doi: 10.1097/PCC.0000000000001397. PubMed DOI

Muldoon S., Deuster P., Voelkel M., Capacchione J., Bunger R. Exertional heat illness, exertional rhabdomyolysis, and malignant hyperthermia: Is there a link? Curr. Sports Med. Rep. 2008;7:74–80. doi: 10.1097/01.CSMR.0000313392.79569.e7. PubMed DOI

Laitano O., Murray K.O., Leon L.R. Overlapping Mechanisms of Exertional Heat Stroke and Malignant Hyperthermia: Evidence vs. Conjecture. Sports Med. 2020;50:1581–1592. doi: 10.1007/s40279-020-01318-4. PubMed DOI

Kruijt N., den Bersselaar L.V., Snoeck M., Kramers K., Riazi S., Bongers C., Treves S., Jungbluth H., Voermans N. RYR1-Related Rhabdomyolysis: A Spectrum of Hypermetabolic States Due to Ryanodine Receptor Dysfunction. Curr. Pharm. Des. 2022;28:2–14. doi: 10.2174/1381612827666210804095300. PubMed DOI

Van den Bersselaar L.R., Kruijt N., Bongers C.C.W.G., Jungbluth H., Treves S., Riazi S., Snoeck M.M.J., Voermans N.C. Comment on “Overlapping Mechanisms of Exertional Heat Stroke and Malignant Hyperthermia: Evidence vs. Conjecture". Sports Med. 2022;52:669–672. doi: 10.1007/s40279-021-01569-9. PubMed DOI

Bertorini T.E. Myoglobinuria, malignant hyperthermia, neuroleptic malignant syndrome and serotonin syndrome. Neurol. Clin. 1997;15:649–671. doi: 10.1016/S0733-8619(05)70338-8. PubMed DOI

Paden M.S., Franjic L., Halcomb S.E. Hyperthermia caused by drug interactions and adverse reactions. Emerg. Med. Clin. N. Am. 2013;31:1035–1044. doi: 10.1016/j.emc.2013.07.003. PubMed DOI

Caroff S.N., Watson C.B., Rosenberg H. Drug-induced Hyperthermic Syndromes in Psychiatry. Clin. Psychopharmacol. Neurosci. 2021;19:1–11. doi: 10.9758/cpn.2021.19.1.1. PubMed DOI PMC

Kruijt N., van den Bersselaar L.R., Wijma J., Verbeeck W., Coenen M.J.H., Neville J., Snoeck M., Kamsteeg E.J., Jungbluth H., Kramers C., et al. HyperCKemia and rhabdomyolysis in the neuroleptic malignant and serotonin syndromes: A literature review. Neuromuscul. Disord. 2020;30:949–958. doi: 10.1016/j.nmd.2020.10.010. PubMed DOI

Ortiz J.F., Wirth M., Eskander N., Cozar J.C., Fatade O., Rathod B. The Genetic Foundations of Serotonin Syndrome, Neuroleptic Malignant Syndrome, and Malignant Hyperthermia: Is There a Genetic Association Between These Disorders? Cureus. 2020;12:e10635. doi: 10.7759/cureus.10635. PubMed DOI PMC

Kant S., Liebelt E. Recognizing serotonin toxicity in the pediatric emergency department. Pediatr. Emerg. Care. 2012;28:817–821; quiz 822–824. doi: 10.1097/PEC.0b013e31826289d9. PubMed DOI

Picmonic. Malignant Hyperthermia vs. Neuroleptic Malignant Syndrome vs. Serotonin Syndrome. [(accessed on 21 August 2022)]. Available online: https://www.picmonic.com/learn/malignant-hyperthermia-vs-neuroleptic-malignant-syndrome-vs-serotonin-syndrome_8256.

Litman R.S., Griggs S.M., Dowling J.J., Riazi S. Malignant Hyperthermia Susceptibility and Related Diseases. Anesthesiology. 2018;128:159–167. doi: 10.1097/ALN.0000000000001877. PubMed DOI

Snoeck M., van Engelen B.G.M., Küsters B., Lammens M., Meijer R., Molenaar J.P.F., Raaphorst J., Verschuuren-Bemelmans C.C., Straathof C.S.M., Sie L.T.L., et al. RYR1-related myopathies: A wide spectrum of phenotypes throughout life. Eur. J. Neurol. 2015;22:1094–1112. doi: 10.1111/ene.12713. PubMed DOI

Bamaga A.K., Riazi S., Amburgey K., Ong S., Halliday W., Diamandis P., Guerguerian A.-M., Dowling J.J., Yoon G. Neuromuscular conditions associated with malignant hyperthermia in paediatric patients: A 25-year retrospective study. Neuromuscul. Disord. 2016;26:201–206. doi: 10.1016/j.nmd.2016.02.007. PubMed DOI

Schieren M., Defosse J., Böhmer A., Wappler F., Gerbershagen M.U. Anaesthetic management of patients with myopathies. Eur. J. Anaesthesiol. 2017;34:641–649. doi: 10.1097/EJA.0000000000000672. PubMed DOI

UpToDate Conditions associated with malignant hyperthermia or rhabdomyolysis. [(accessed on 4 August 2022)]. Available online: https://www.uptodate.com/contents/image?imageKey=ANEST%2F65645.

orphanAnaesthesia Rare Diseases. [(accessed on 4 August 2022)]. Available online: https://www.orphananesthesia.eu/en/rare-diseases/published-guidelines.html.

Van de Voorde P., Turner N.M., Djakow J., de Lucas N., Martinez-Mejias A., Biarent D., Bingham R., Brissaud O., Hoffmann F., Johannesdottir G.B., et al. European Resuscitation Council Guidelines 2021: Paediatric Life Support. Resuscitation. 2021;161:327–387. doi: 10.1016/j.resuscitation.2021.02.015. PubMed DOI

Hardy J.-B., Gouin A., Damm C., Compère V., Veber B., Dureuil B. The use of a checklist improves anaesthesiologists’ technical and non-technical performance for simulated malignant hyperthermia management. Anaesth. Crit. Care Pain. Med. 2018;37:17–23. doi: 10.1016/j.accpm.2017.07.009. PubMed DOI

Klincová M., Štěpánková D., Kostroňová P., Kotrhová P. Malignant Hyperthermia. 2020. [(accessed on 3 August 2022)]. Available online: https://www.akutne.cz/index-en.php?pg=education--awarded-interactive-algorithms-in-years-2012-2021&tid=453.

Cain C.L., Riess M.L., Gettrust L., Novalija J. Malignant hyperthermia crisis: Optimizing patient outcomes through simulation and interdisciplinary collaboration. AORN J. 2014;99:301–308; quiz 309–311. doi: 10.1016/j.aorn.2013.06.012. PubMed DOI PMC

Mejía V., Gonzalez C., Delfino A.E., Altermatt F.R., Corvetto M.A. Acquiring skills in malignant hyperthermia crisis management: Comparison of high-fidelity simulation versus computer-based case study. Braz. J. Anesthesiol. 2018;68:292–298. doi: 10.1016/j.bjan.2018.01.005. PubMed DOI PMC

Bilmen J.G., Hopkins P.M. The use of charcoal filters in malignant hyperthermia: Have they found their place? Anaesthesia. 2019;74:13–16. doi: 10.1111/anae.14407. PubMed DOI

Snyder H.R., Davis C.S., Bickerton R.K., Halliday R.P. 1-[(5-arylfurfurylidene)amino]hydantoins. A new class of muscle relaxants. J. Med. Chem. 1967;10:807–810. doi: 10.1021/jm00317a011. PubMed DOI

Kolb M.E., Horne M.L., Martz R. Dantrolene in human malignant hyperthermia. Anesthesiology. 1982;56:254–262. doi: 10.1097/00000542-198204000-00005. PubMed DOI

Britt B.A., Kalow W. Malignant hyperthermia: A statistical review. Can. Anaesth. Soc. J. 1970;17:293–315. doi: 10.1007/BF03004694. PubMed DOI

Denborough M. Malignant hyperthermia. Lancet. 1998;352:1131–1136. doi: 10.1016/S0140-6736(98)03078-5. PubMed DOI

Brandom B.W., Larach M.G., Chen M.-S.A., Young M.C. Complications associated with the administration of dantrolene 1987 to 2006: A report from the North American Malignant Hyperthermia Registry of the Malignant Hyperthermia Association of the United States. Anesth. Analg. 2011;112:1115–1123. doi: 10.1213/ANE.0b013e31820b5f1f. PubMed DOI PMC

Grodofsky S., Levitt C., Schlichter R.A., Stanton D.C., Liu R., Chen L. Upper extremity deep vein thrombosis in a patient treated for malignant hyperthermia. J. Clin. Anesth. 2013;25:350–352. doi: 10.1016/j.jclinane.2013.02.004. PubMed DOI

MHAUS Frequently Asked Questions: Dantrolene. [(accessed on 4 August 2022)]. Available online: https://www.mhaus.org/faqs/

MHAUS How Much Dantrolene Should be Available in Facilities Where Volatile Agents Are Not Available or Administered, and Succinylcholine is Only Stocked on Site for Emergency Purposes? [(accessed on 4 August 2022)]. Available online: https://www.mhaus.org/healthcare-professionals/mhaus-recommendations/how-much-dantrolene-should-be-available-in-facilities-where-volatile-agents-are-not-available-or-administered-and-succinylcholine-is-only-stocked-on-site-for-emergency-purposes/

Pérez G., Manrique G., García J., de la Mata S., Sanz D., López-Herce J. Use of a Servo-Controlled Cooling Gel Pad System to Regulate Body Temperature in Critically Ill Children. Pediatr. Crit. Care Med. 2020;21:e1094–e1098. doi: 10.1097/PCC.0000000000002563. PubMed DOI

Yunge M., Cordero J., Martinez D., Bustos R., Wegner A., Castro M., Arrau L., Diaz B., Dalmazzo R., Hickmann L., et al. Effectiveness of Two Targeted Temperature Management Methods After Pediatric Postcardiac Arrest: A Multicenter International Study. Pediatr. Crit. Care Med. 2019;20:e77–e82. doi: 10.1097/PCC.0000000000001813. PubMed DOI

Duke A.M., Hopkins P.M., Calaghan S.C., Halsall J.P., Steele D.S. Store-operated Ca2+ entry in malignant hyperthermia-susceptible human skeletal muscle. J. Biol. Chem. 2010;285:25645–25653. doi: 10.1074/jbc.M110.104976. PubMed DOI PMC

Nellis M.E., Karam O., Valentine S.L., Bateman S.T., Remy K.E., Lacroix J., Cholette J.M., Bembea M.M., Russell R.T., Steiner M.E., et al. Executive Summary of Recommendations and Expert Consensus for Plasma and Platelet Transfusion Practice in Critically Ill Children: From the Transfusion and Anemia EXpertise Initiative-Control/Avoidance of Bleeding (TAXI-CAB) Pediatr. Crit. Care Med. 2022;23:34–51. doi: 10.1097/PCC.0000000000002851. PubMed DOI PMC

El-Nawawy A.A., Elshinawy M.I., Khater D.M., Moustafa A.A., Hassanein N.M., Wali Y.A., Nazir H.F. Outcome of Early Hemostatic Intervention in Children with Sepsis and Nonovert Disseminated Intravascular Coagulation Admitted to PICU: A Randomized Controlled Trial. Pediatr. Crit. Care Med. 2021;22:e168–e177. doi: 10.1097/PCC.0000000000002578. PubMed DOI

Chung H.U., Rwei A.Y., Hourlier-Fargette A., Xu S., Lee K., Dunne E.C., Xie Z., Liu C., Carlini A., Kim D.H., et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 2020;26:418–429. doi: 10.1038/s41591-020-0792-9. PubMed DOI PMC

Singh Y., Villaescusa J.U., da Cruz E.M., Tibby S.M., Bottari G., Saxena R., Guillén M., Herce J.L., Di Nardo M., Cecchetti C., et al. Recommendations for hemodynamic monitoring for critically ill children-expert consensus statement issued by the cardiovascular dynamics section of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC) Crit. Care. 2020;24:620. doi: 10.1186/s13054-020-03326-2. PubMed DOI PMC

Smith H.A.B., Besunder J.B., Betters K.A., Johnson P.N., Srinivasan V., Stormorken A., Farrington E., Golianu B., Godshall A.J., Acinelli L., et al. 2022 Society of Critical Care Medicine Clinical Practice Guidelines on Prevention and Management of Pain, Agitation, Neuromuscular Blockade, and Delirium in Critically Ill Pediatric Patients with Consideration of the ICU Environment and Early Mobility. Pediatr. Crit. Care Med. 2022;23:e74–e110. doi: 10.1097/PCC.0000000000002873. PubMed DOI

Laurence A.S., Vanner G.K., Collins W., Hopkins P.M. Serum and urinary myoglobin following an aborted malignant hyperthermia reaction. Anaesthesia. 1996;51:958–961. doi: 10.1111/j.1365-2044.1996.tb14965.x. PubMed DOI

Contact MHAUS. [(accessed on 1 August 2022)]. Available online: https://my.mhaus.org/page/contactmhaus.

MH Units EMHG. [(accessed on 1 August 2022)]. Available online: https://www.emhg.org/mh-units-map.

The European Malignant Hyperpyrexia Group A protocol for the investigation of malignant hyperpyrexia (MH) susceptibility. Br. J. Anaesth. 1984;56:1267–1269. doi: 10.1093/bja/56.11.1267. PubMed DOI

Hopkins P.M., Rüffert H., Snoeck M.M., Girard T., Glahn K.P.E., Ellis F.R., Müller C.R., Urwyler A., European Malignant Hyperthermia Group European Malignant Hyperthermia Group guidelines for investigation of malignant hyperthermia susceptibility. Br. J. Anaesth. 2015;115:531–539. doi: 10.1093/bja/aev225. PubMed DOI

Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC

European Malignant Hyperthermia Group Scoring Matrix for Classification of Genetic Variants in Malignant Hyperthermia Susceptibility. [(accessed on 21 December 2021)]. Available online: https://www.emhg.org/genetic-scoring-matrix.

Johnston J.J., Dirksen R.T., Girard T., Gonsalves S.G., Hopkins P.M., Riazi S., Saddic L.A., Sambuughin N., Saxena R., Stowell K., et al. Variant curation expert panel recommendations for RYR1 pathogenicity classifications in malignant hyperthermia susceptibility. Genet. Med. 2021;23:1288–1295. doi: 10.1038/s41436-021-01125-w. PubMed DOI PMC

European Malignant Hyperthermia Group Diagnostic MH Mutations. [(accessed on 1 August 2022)]. Available online: https://www.emhg.org/diagnostic-mutations.

Ording H., Brancadoro V., Cozzolino S., Ellis F.R., Glauber V., Gonano E.F., Halsall P.J., Hartung E., Heffron J.J., Heytens L., et al. In vitro contracture test for diagnosis of malignant hyperthermia following the protocol of the European MH Group: Results of testing patients surviving fulminant MH and unrelated low-risk subjects. The European Malignant Hyperthermia Group. Acta Anaesthesiol. Scand. 1997;41:955–966. doi: 10.1111/j.1399-6576.1997.tb04820.x. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...