Microstructural Characteristics of Al-Ti-B Inoculation Wires and Their Addition to the AlSi7Mg0.3 Alloy
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36363220
PubMed Central
PMC9653614
DOI
10.3390/ma15217626
PII: ma15217626
Knihovny.cz E-resources
- Keywords
- Al-Ti-B, AlSi7Mg0.3, grain size, inoculation, intermetallics,
- Publication type
- Journal Article MeSH
Commercially supplied inoculation wires have a guaranteed chemical composition but not the size and distribution of individual phases, which are very important for nucleation. Therefore, two commercial alloys used for the inoculation of Al-Si alloys (AlTi3B1 and AlTi5B1) are investigated in this paper. The emphasis is placed on their structural analysis and the size and distribution of individual intermetallic phases. Furthermore, the grain refinement effect will be tested by adding these alloys to the AlSi7Mg0.3 alloy and testing the optimal amount of added inoculation wires. The results showed that the size and distribution of the individual phases in AlTi3B1 and AlTi5B1 meet the requirements for the successful inoculation of aluminum alloys, the intermetallic phases based on the TiAl3 phase are fine enough, and there is no agglomeration that would reduce the number of nuclei. This assumption was confirmed by adding these inoculants to the AlSi7Mg0.3 alloy, and it was found that the most ideal amount of inoculants added is 0.01 wt % when the structure was refined by approximately 32%.
See more in PubMed
Greer A.L., Cooper P.S., Meredith M.W., Schneider W., Schumacher P., Spittle J.A., Tronche A. Grain Refinement of Aluminium Alloys by Inoculation. Adv. Eng. Mater. 2003;5:81–91. doi: 10.1002/adem.200390013. DOI
Sunitha K., Gurusami K. Study of Al-Si alloys grain refinement by inoculation. Mater. Today Proc. 2021;43:1825–1829. doi: 10.1016/j.matpr.2020.10.684. DOI
Huang B., Liu Y., Zhou Z., Cheng W., Liu X. Selective laser melting of 7075 aluminum alloy inoculated by Al–Ti–B: Grain refinement and superior mechanical properties. Vacuum. 2022;200:111030. doi: 10.1016/j.vacuum.2022.111030. DOI
Wannasin J., Canyook R., Wisutmethangoon S., Flemings M.C. Grain refinement behavior of an aluminum alloy by inoculation and dynamic nucleation. Acta Mater. 2013;61:3897–3903. doi: 10.1016/j.actamat.2013.03.029. DOI
Nowak M., Bolzoni L., Hari Babu N. Grain refinement of Al–Si alloys by Nb–B inoculation. Part I: Concept development and effect on binary alloys. Mater. Des. (1980-2015) 2015;66:366–375. doi: 10.1016/j.matdes.2014.08.066. DOI
Bolzoni L., Nowak M., Hari Babu N. Grain refinement of Al–Si alloys by Nb–B inoculation. Part II: Application to commercial alloys. Mater. Des. (1980–2015) 2015;66:376–383. doi: 10.1016/j.matdes.2014.08.067. DOI
Zhang Y., Zheng H., Liu Y., Shi L., Xu R., Tian X. Cluster-assisted nucleation of silicon phase in hypoeutectic Al–Si alloy with further inoculation. Acta Mater. 2014;70:162–173. doi: 10.1016/j.actamat.2014.01.061. DOI
Birol Y. Effect of silicon content in grain refining hypoeutectic Al–Si foundry alloys with boron and titanium additions. Mater. Sci. Technol. 2012;28:385–389. doi: 10.1179/1743284711Y.0000000049. DOI
Sritharan T., Li H. Influence of titanium to boron ratio on the ability to grain refine aluminium-silicon alloys. J. Mater. Process. Technol. 1997;63:585–589. doi: 10.1016/S0924-0136(96)02688-X. DOI
Abdelhamied S.M.S. Effect of AlTi6 grain refiner on morphology, corrosion and mechanical properties of the commercial purity AA1050 aluminum alloy. Metall. Res. Technol. 2017;114:309. doi: 10.1051/metal/2017007. DOI
Chen Z., Wang T., Gao L., Fu H., Li T. Grain refinement and tensile properties improvement of aluminum foundry alloys by inoculation with Al–B master alloy. Mater. Sci. Eng. A. 2012;553:32–36. doi: 10.1016/j.msea.2012.05.088. DOI
Chen Z., Kang H., Fan G., Li J., Lu Y., Jie J., Zhang Y., Li T., Jian X., Wang T. Grain refinement of hypoeutectic Al-Si alloys with B. Acta Mater. 2016;120:168–178. doi: 10.1016/j.actamat.2016.08.045. DOI
Birol Y. A novel Al–Ti–B alloy for grain refining Al–Si foundry alloys. J. Alloy. Compd. 2009;486:219–222. doi: 10.1016/j.jallcom.2009.07.064. DOI
Wang T., Fu H., Chen Z., Xu J., Zhu J., Cao F., Li T. A novel fading-resistant Al–3Ti–3B grain refiner for Al–Si alloys. J. Alloy. Compd. 2012;511:45–49. doi: 10.1016/j.jallcom.2011.09.009. DOI
Mohammadnejad A., Bahrami A., Tafaghodi Khajavi L. Microstructure and Mechanical Properties of Spark Plasma Sintered Nanocrystalline TiAl-xB Composites (0.0 < x < 1.5 at.%) Containing Carbon Nanotubes. J. Mater. Eng. Perform. 2021;30:4380–4392. doi: 10.1007/s11665-021-05773-6. DOI
Moustafa E.B., Mosleh A.O. Effect of (Ti–B) modifier elements and FSP on 5052 aluminum alloy. J. Alloy. Compd. 2020;823:153745. doi: 10.1016/j.jallcom.2020.153745. DOI
Yang J., Bao S., Akhtar S., Li Y. The Interactions Between Oxide Film Inclusions and Inoculation Particles TiB2 in Aluminum Melt. Metall. Mater. Trans. B. 2021;52:2497–2508. doi: 10.1007/s11663-021-02160-3. DOI
Karabay S., Uzman I. Inoculation of transition elements by addition of AlB2 and AlB12 to decrease detrimental effect on the conductivity of 99.6% aluminium in CCL for manufacturing of conductor. J. Mater. Process. Technol. 2005;160:174–182. doi: 10.1016/j.jmatprotec.2004.06.015. DOI
Dong X., Zhang Y., Amirkhanlou S., Ji S. High performance gravity cast Al9Si0.45Mg0.4Cu alloy inoculated with AlB2 and TiB2. J. Mater. Process. Technol. 2018;252:604–611. doi: 10.1016/j.jmatprotec.2017.10.028. DOI
Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors. Mater. Des. 2006;27:821–832. doi: 10.1016/j.matdes.2005.06.005. DOI
Prasada Rao A.K. Influence of Vanadium on the Microstructure of A319 Alloy. Trans. Indian Inst. Met. 2011;64:447–451. doi: 10.1007/s12666-011-0109-2. DOI
Uludağ M. Influence of Al-B grain refiner on porosity formation of directionally solidified Al-Si alloys. China Foundry. 2020;17:372–377. doi: 10.1007/s41230-020-0012-8. DOI
Schuster J.C., Palm M. Reassessment of the binary Aluminum-Titanium phase diagram. J. Phase Equilibria Diffus. 2006;27:255–277. doi: 10.1361/154770306X109809. DOI
Bolibruchova D., Tillova E. Zlievarenské Zliatiny Al-Si. University of Zilina; Zilina, Slovakia: 2005.
McCartney D.G. Grain refining of aluminium and its alloys using inoculants. Int. Mater. Rev. 1989;34:247–260. doi: 10.1179/imr.1989.34.1.247. DOI
Spittle J.A., Sadli S. Effect of alloy variables on grain refinement of binary aluminium alloys with Al–Ti–B. Mater. Sci. Technol. 1995;11:533–537. doi: 10.1179/mst.1995.11.6.533. DOI
Mohanty P.S., Gruzleski J.E. Mechanism of grain refinement in aluminium. Acta Metall. Et Mater. 1995;43:2001–2012. doi: 10.1016/0956-7151(94)00405-7. DOI
Kumar G.S.V., Murty B.S., Chakraborty M. Grain refinement response of LM25 alloy towards Al–Ti–C and Al–Ti–B grain refiners. J. Alloy. Compd. 2009;472:112–120. doi: 10.1016/j.jallcom.2008.04.095. DOI
Li P., Liu S., Zhang L., Liu X. Grain refinement of A356 alloy by Al–Ti–B–C master alloy and its effect on mechanical properties. Mater. Des. 2013;47:522–528. doi: 10.1016/j.matdes.2012.12.033. DOI
Prema S., Chandrashekharaiah T.M., Begum P.F. Effect of Grain Refiners and/or Modifiers on the Microstructure and Mechanical Properties of Al-Si Alloy (LM6) Mater. Sci. Forum. 2019;969:794–799. doi: 10.4028/www.scientific.net/MSF.969.794. DOI
Wang Y., Que Z., Hashimoto T., Zhou X., Fan Z. Mechanism for Si Poisoning of Al-Ti-B Grain Refiners in Al Alloys. Metall. Mater. Trans. A. 2020;51:5743–5757. doi: 10.1007/s11661-020-05950-7. DOI
Michna S.T. Aluminium Materials and Technologies from A to Z. Adin; Prešov, Slovakia: 2007.