Mixed Infection of Blackcurrant with a Novel Cytorhabdovirus and Black Currant-Associated Nucleorhabdovirus
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36366554
PubMed Central
PMC9697673
DOI
10.3390/v14112456
PII: v14112456
Knihovny.cz E-resources
- Keywords
- Ribes nigrum, aphid transmission, blackcurrant rhabdovirus 2, blackcurrant-associated rhabdovirus, electron microscopy, high throughput sequencing,
- MeSH
- Phylogeny MeSH
- Genome, Viral MeSH
- Coinfection * genetics MeSH
- Plant Diseases MeSH
- Open Reading Frames MeSH
- Rhabdoviridae * genetics MeSH
- Ribes * MeSH
- Plant Breeding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
A virome screen was performed on a new breeding line, KB1, of blackcurrant. Rhabdovirus-like particles were observed by electron microscopy in ultrathin sections of flower stalks, and the complete genome sequence of a novel virus, provisionally named blackcurrant rhabdovirus 2 (BCRV2), was determined and verified using high-throughput sequencing. The genomic organization of BCRV2 was characteristic of cytorhabdoviruses (family Rhabdoviridae) and included seven genes: 3 ́- N-P´-P-P3-M-G-L -5 ́. BLASTP analysis revealed that the putative L protein had the highest amino acid sequence identity (75 %) with strawberry virus 2. BCRV2 was detected in Cryptomyzusgaleopsidis, but efficient transmission by this aphid was not confirmed. Of note, we observed coinfection of the KB1 line with blackcurrant-associated rhabdovirus (BCaRV) by RT-PCR. This is likely the first evidence of the presence of a cyto- and a nucleorhabdovirus in a single host.
See more in PubMed
Bejerman N., Dietzgen R.G., Debat H. Illuminating the plant rhabdovirus landscape through metatranscriptomics data. Viruses. 2021;13:1304. doi: 10.3390/v13071304. PubMed DOI PMC
Bejerman N., Dietzgen R.G., Debat H. Unlocking the hidden genetic diversity of varicosaviruses, the neglected plant rhabdoviruses. Pathogens. 2022;11:1127. doi: 10.3390/pathogens11101127. PubMed DOI PMC
Petrzik K., Vondrák J., Barták M., Peksa O., Kubešová O. Lichens–new source or yet unknown host of higher plant viruses? Eur. J. Plant Pathol. 2014;138:549–559. doi: 10.1007/s10658-013-0246-z. DOI
Petrzik K. Bioinformatics’ analysis of the L polymerase gene lead to discrimination of new rhabdoviruses. J. Phytopathol. 2012;160:377–381. doi: 10.1111/j.1439-0434.2012.01919.x. DOI
Mifsud J.C.O., Gallagher R.V., Holmes E.C., Geoghegan J.L. Transcriptome mining expands knowledge of RNA viruses across the plant kingdom. J. Virol. 2022 doi: 10.1128/jvi.00260-22. ahead of print . PubMed DOI PMC
Dietzgen R.G., Bejerman N.E., Goodin M.M., Higgins C.M., Huot O.B., Kondo H., Martin K.M., Whitfield A.E. Diversity and epidemiology of plant rhabdoviruses. Virus Res. 2020;281:197942. doi: 10.1016/j.virusres.2020.197942. PubMed DOI
Whitfield A.E., Huot O.B., Martin K.M., Kondo H., Dietzgen R.G. Plant rhabdoviruses-their origins and vector interactions. Curr. Opin. Virol. 2018;33:196–207. doi: 10.1016/j.coviro.2018.11.002. PubMed DOI
Špak J., Koloniuk I., Tzanetakis I.E. Graft-transmissible diseases of Ribes–pathogens, impact, and control. Plant Dis. 2021;105:242–250. doi: 10.1094/PDIS-04-20-0759-FE. PubMed DOI
Roberts I.M., Jones A.T. Rhabdovirus-like and closterovirus-like particles in ultrathin sections of Ribes species with symptoms of blackcurrant reversion and gooseberry veinbanding diseases. Ann. Appl. Biol. 1997;130:77–89. doi: 10.1111/j.1744-7348.1997.tb05784.x. DOI
Přibylová J., Špak J., Kubelková D. Mixed infection of black currant (Ribes nigrum L.) plants with blackcurrant reversion associated virus and rhabdovirus-like particles with symptoms of black currant reversion disease. Acta Virol. 2002;46:253–256. PubMed
Wu L.P., Yang T., Liu H.W., Postman J., Li R. Molecular characterization of a novel rhabdovirus infecting blackcurrant identified by high-throughput sequencing. Arch. Virol. 2018;163:1363–1366. doi: 10.1007/s00705-018-3709-x. PubMed DOI
Zrelovs N., Resevica G., Kalnciema I., Niedra H., Lācis G., Bartulsons T., Moročko-Bičevska I., Stalažs A., Drevinska K., Zeltins A., et al. First report of blackcurrant-associated rhabdovirus in blackcurrants in Latvia. Plant Dis. 2022;106:1078. doi: 10.1094/PDIS-06-21-1288-PDN. PubMed DOI
Fránová J., Sarkisova T., Jakešová H., Koloniuk I. Molecular and biological properties of two putative new cytorhabdoviruses infecting Trifolium pratense. Plant Pathol. 2019;68:1276–1286. doi: 10.1111/ppa.13065. DOI
Dietzgen R.G., Kondo H., Goodin M.M., Kurath G., Vasilakis N. The family Rhabdoviridae: Mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res. 2017;227:158–170. doi: 10.1016/j.virusres.2016.10.010. PubMed DOI PMC
Masny A., Pluta S., Seliga L. Breeding value of selected blackcurrant (Ribes nigrum L.) genotypes for early-age fruit yield and its quality. Euphytica. 2018;214:89. doi: 10.1007/s10681-018-2172-9. DOI
Johansen E., Edwards M.C., Hampton R.O. Seed transmission of viruses: Current perspectives. Annu. Rev. Phytopathol. 1994;32:363–386. doi: 10.1146/annurev.py.32.090194.002051. DOI
Xu Y.G., Zhao Y.Q., Duan H.M., Sui N., Yuan F., Song J. Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa. BMC Genom. 2017;18:727. doi: 10.1186/s12864-017-4104-9. PubMed DOI PMC
Lee D.-S., Kim J., Jun M., Shin S., Lee S.-J., Lim S. Complete genome sequence of a putative novel cytorhabdovirus isolated from Rudbeckia sp. Arch. Virol. 2022;167:2381–2385. doi: 10.1007/s00705-022-05556-x. PubMed DOI
Harry M., Solignac M., Lachaise D. Molecular evidence for parallel evolution of adaptive syndromes in fig-breeding Lissocephala (Drosophilidae) Mol. Phylogenet. Evol. 1998;9:542–551. doi: 10.1006/mpev.1998.0508. PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Thompson J.R., Wetzel S., Klerks M.M., Vašková D., Schoen C.D., Špak J., Jelkmann W. Multiplex RT-PCR detection of four aphid-borne strawberry viruses in Fragaria spp. in combination with a plant mRNA specific internal control. J. Virol. Methods. 2003;111:85–93. doi: 10.1016/S0166-0934(03)00164-2. PubMed DOI
R Development Core Team . R: A Language and Environmnet for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2014.
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016.
Walker P.J., Freitas-Astúa J., Bejerman N., Blasdell K.R., Breyta R., Dietzgen R.G., Fooks A.R., Kondo H., Kurath G., Kuzmin I.V., et al. ICTV virus taxonomy profile: Rhabdoviridae 2022. J. Gen. Virol. 2022;103:001689. doi: 10.1099/jgv.0.001689. PubMed DOI
Medberry A., Tzanetakis I.E. Identification, characterization, and detection of a novel strawberry cytorhabdovirus. Plant Dis. 2022;106:2784–2787. doi: 10.1094/PDIS-11-21-2449-SC. PubMed DOI
CABI . Crop Protection Compendium. CAB International; Wallingford, UK: 2022. [(accessed on 1 September 2022)]. Available online: www.cabi.org/cpc.
Holman J. Host Plant Catalog of Aphids: Palaearctic Region. Springer; Berlin/Heidelberg, Germany: 2009. pp. 917–920.
Syller J. Facilitative and antagonistic interactions between plant viruses in mixed infections: Plant virus interactions in mixed infections. Mol. Plant Pathol. 2012;13:204–216. doi: 10.1111/j.1364-3703.2011.00734.x. PubMed DOI PMC
Valentova L., Rejlova M., Franova J., Cmejla R. Symptomless infection by strawberry virus 1 (StrV-1) leads to losses in strawberry yields. Plant Pathol. 2022;71:1220–1228. doi: 10.1111/ppa.13548. DOI