Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36369285
PubMed Central
PMC9652467
DOI
10.1038/s41467-022-34515-y
PII: 10.1038/s41467-022-34515-y
Knihovny.cz E-zdroje
- MeSH
- dlouhověkost * genetika MeSH
- fenotyp MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- stárnutí * fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging.
Department of Neurology Faculty of Medicine University of Bonn Bonn Germany
DZNE German Center for Neurodegenerative Diseases 80336 Munich Germany
GEMoaB GmbH Tatzberg 47 01307 Dresden Germany
Laboratory of Cancer Biology and Genetics CCR NCI NIH Bethesda MD 20892 USA
Mailman School of Public Health Columbia University 630W 168th St New York NY 10032 USA
Member of German Center for Diabetes Research 85764 Neuherberg Germany
Zobrazit více v PubMed
Tacutu R, et al. Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res. 2018;46:D1083–D1090. doi: 10.1093/nar/gkx1042. PubMed DOI PMC
Barardo D, et al. The DrugAge database of aging-related drugs. Aging Cell. 2017;16:594–597. doi: 10.1111/acel.12585. PubMed DOI PMC
Miller, R.A. Biology of Aging and Longevity. In: Hazzard’s Geriatric Medicine and Gerontology (eds. Halter, J.B. et al.) (McGraw Hill, 2009).
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039. PubMed DOI PMC
Blackwell BN, Bucci TJ, Hart RW, Turturro A. Longevity, body weight, and neoplasia in ad libitum-fed and diet-restricted C57BL6 mice fed NIH-31 open formula diet. Toxicol. Pathol. 1995;23:570–582. doi: 10.1177/019262339502300503. PubMed DOI
Pettan-Brewer C, Treuting PM. Practical pathology of aging mice. Pathobiol. Aging Age-Relat. Dis. 2011;1:7202. doi: 10.3402/pba.v1i0.7202. PubMed DOI PMC
Brayton CF, Treuting PM, Ward JM. Pathobiology of aging mice and GEM: background strains and experimental design. Vet. Pathol. 2012;49:85–105. doi: 10.1177/0300985811430696. PubMed DOI
Lipman R, Galecki A, Burke DT, Miller RA. Genetic loci that influence cause of death in a heterogeneous mouse stock. J. Gerontol. A Biol. Sci. Med Sci. 2004;59:977–983. doi: 10.1093/gerona/59.10.B977. PubMed DOI PMC
Miller RA, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med Sci. 2011;66:191–201. doi: 10.1093/gerona/glq178. PubMed DOI PMC
Xie K, et al. Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice. Nat. Commun. 2017;8:155. doi: 10.1038/s41467-017-00178-3. PubMed DOI PMC
Rose, M. R. Evolutionary biology of aging, (Oxford University Press, Oxford, 1991).
Rockstein, M., Chesky, J. A. & Sussman, M. Comparative biology and evolution of aging. In: Handbook of the biology of aging 3-34 (Van Nostrand Reinhold Company, New York, 1977).
Aspinall, R. Aging of the Organs and Systems, (Kluwer Academic Publishers, 2003).
Abdulla, A. & Rai, G.S. The biology of ageing and its clinical implications, (Radcliffe Publishing, London, 2013).
Freund A. Untangling Aging Using Dynamic, Organism-Level Phenotypic Networks. Cell Syst. 2019;8:172–181. doi: 10.1016/j.cels.2019.02.005. PubMed DOI
Neff F, et al. Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Invest. 2013;123:3272–3291. doi: 10.1172/JCI67674. PubMed DOI PMC
Bellantuono I, et al. A toolbox for the longitudinal assessment of healthspan in aging mice. Nat. Protoc. 2020;15:540–574. doi: 10.1038/s41596-019-0256-1. PubMed DOI PMC
Ehninger D, Neff F, Xie K. Longevity, aging and rapamycin. Cell Mol. Life Sci. 2014;71:4325–4346. doi: 10.1007/s00018-014-1677-1. PubMed DOI PMC
Richardson, A. & McCarter, R. Mechanism of food restriction: change of rate or change of set point. In: The potential for nutritional modulation of aging processes (eds. Ingram, D. K., Baker, G. T. & Shock, N. W.) 177–192 (Food & Nutrition Press, Inc., 1992).
Meszaros, L., Hoffmann, A., Wihan, J. & Winkler, J. Current Symptomatic and Disease-Modifying Treatments in Multiple System Atrophy. Int. J. Mol. Sci.21, 2775 (2020). PubMed PMC
Hampel H, et al. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat. Rev. Drug Disco. 2010;9:560–574. doi: 10.1038/nrd3115. PubMed DOI
Cummings J, Fox N. Defining Disease Modifying Therapy for Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2017;4:109–115. PubMed PMC
Espay, A. & Stecher, B. Symptomatic vs. Disease-Modifying Therapies. in Brain Fables: The Hidden History of Neurodegenerative Diseases and a Blueprint to Conquer Them 87–93 (Cambridge University Press, 2020).
Vellai T, et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426:620. doi: 10.1038/426620a. PubMed DOI
Kapahi P, et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 2004;14:885–890. doi: 10.1016/j.cub.2004.03.059. PubMed DOI PMC
Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. 2004;131:3897–3906. doi: 10.1242/dev.01255. PubMed DOI
Pan KZ, et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell. 2007;6:111–119. doi: 10.1111/j.1474-9726.2006.00266.x. PubMed DOI PMC
Harrison DE, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–395. doi: 10.1038/nature08221. PubMed DOI PMC
Chen C, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2009;2:ra75. doi: 10.1126/scisignal.2000559. PubMed DOI PMC
Bjedov I, et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010;11:35–46. doi: 10.1016/j.cmet.2009.11.010. PubMed DOI PMC
Anisimov VN, et al. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle. 2011;10:4230–4236. doi: 10.4161/cc.10.24.18486. PubMed DOI
Robida-Stubbs S, et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15:713–724. doi: 10.1016/j.cmet.2012.04.007. PubMed DOI PMC
Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493:338–345. doi: 10.1038/nature11861. PubMed DOI PMC
Zhang Y, et al. Rapamycin Extends Life and Health in C57BL/6 Mice. J. Gerontol. A Biol. Sci. Med Sci. 2014;69:119–130. doi: 10.1093/gerona/glt056. PubMed DOI PMC
Wu JJ, et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep. 2013;4:913–920. doi: 10.1016/j.celrep.2013.07.030. PubMed DOI PMC
Miller RA, et al. Rapamycin-Mediated Lifespan Increase in Mice is Dose and Sex-Dependent and Appears Metabolically Distinct from Dietary Restriction. Aging Cell. 2014;13:468–477. doi: 10.1111/acel.12194. PubMed DOI PMC
Fok WC, et al. Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome. PLoS One. 2014;9:e83988. doi: 10.1371/journal.pone.0083988. PubMed DOI PMC
Arriola Apelo SI, Pumper CP, Baar EL, Cummings NE, Lamming DW. Intermittent Administration of Rapamycin Extends the Life Span of Female C57BL/6J Mice. J. Gerontol. A Biol. Sci. Med Sci. 2016;71:876–881. doi: 10.1093/gerona/glw064. PubMed DOI PMC
Bitto, A. et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife5, e16351 (2016). PubMed PMC
Wang T, et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 2017;18:57. doi: 10.1186/s13059-017-1186-2. PubMed DOI PMC
Schinaman JM, Rana A, Ja WW, Clark RI, Walker DW. Rapamycin modulates tissue aging and lifespan independently of the gut microbiota in Drosophila. Sci. Rep. 2019;9:7824. doi: 10.1038/s41598-019-44106-5. PubMed DOI PMC
Ferrara-Romeo I, et al. The mTOR pathway is necessary for survival of mice with short telomeres. Nat. Commun. 2020;11:1168. doi: 10.1038/s41467-020-14962-1. PubMed DOI PMC
Strong R, et al. Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects. Aging Cell. 2020;19:e13269. doi: 10.1111/acel.13269. PubMed DOI PMC
Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–464. doi: 10.1038/366461a0. PubMed DOI
Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics. 1988;118:75–86. doi: 10.1093/genetics/118.1.75. PubMed DOI PMC
Flurkey K, Papaconstantinou J, Harrison DE. The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech. Ageing Dev. 2002;123:121–130. doi: 10.1016/S0047-6374(01)00339-6. PubMed DOI
Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A. Delayed occurrence of fatal neoplastic diseases in ames dwarf mice: correlation to extended longevity. J. Gerontol. A Biol. Sci. Med Sci. 2003;58:291–296. doi: 10.1093/gerona/58.4.B291. PubMed DOI
Ikeno Y, et al. Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J. Gerontol. A Biol. Sci. Med Sci. 2009;64:522–529. doi: 10.1093/gerona/glp017. PubMed DOI PMC
Masternak MM, Panici JA, Bonkowski MS, Hughes LF, Bartke A. Insulin sensitivity as a key mediator of growth hormone actions on longevity. J. Gerontol. A Biol. Sci. Med Sci. 2009;64:516–521. doi: 10.1093/gerona/glp024. PubMed DOI PMC
Sun, L.Y. et al. Longevity is impacted by growth hormone action during early postnatal period. Elife6, e24059 (2017). PubMed PMC
Mattison JA, et al. Studies of aging in ames dwarf mice: Effects of caloric restriction. J. Am. Aging Assoc. 2000;23:9–16. PubMed PMC
Brown-Borg HM, et al. Growth hormone signaling is necessary for lifespan extension by dietary methionine. Aging Cell. 2014;13:1019–1027. doi: 10.1111/acel.12269. PubMed DOI PMC
Aguiar-Oliveira MH, Bartke A. Growth Hormone Deficiency: Health and Longevity. Endocr. Rev. 2019;40:575–601. doi: 10.1210/er.2018-00216. PubMed DOI PMC
Vitale G, Pellegrino G, Vollery M, Hofland LJ. ROLE of IGF-1 System in the Modulation of Longevity: Controversies and New Insights From a Centenarians’ Perspective. Front Endocrinol. (Lausanne) 2019;10:27. doi: 10.3389/fendo.2019.00027. PubMed DOI PMC
Duran-Ortiz S, et al. Growth hormone receptor gene disruption in mature-adult mice improves male insulin sensitivity and extends female lifespan. Aging Cell. 2021;20:e13506. doi: 10.1111/acel.13506. PubMed DOI PMC
Lamming, D. W. Extending Lifespan by Inhibiting the Mechanistic Target of Rapamycin (mTOR). In: Anti-aging Drugs: From Basic Research to Clinical Practice (ed. Vaiserman, A.M.) 352-375 (The Royal Society of Chemistry, 2017).
Zhang S, et al. Constitutive reductions in mTOR alter cell size, immune cell development, and antibody production. Blood. 2011;117:1228–1238. doi: 10.1182/blood-2010-05-287821. PubMed DOI PMC
Zhang S, et al. B cell-specific deficiencies in mTOR limit humoral immune responses. J. Immunol. 2013;191:1692–1703. doi: 10.4049/jimmunol.1201767. PubMed DOI PMC
Eicher EM, Beamer WG. Inherited ateliotic dwarfism in mice. Characteristics of the mutation, little, on chromosome 6. J. Hered. 1976;67:87–91. doi: 10.1093/oxfordjournals.jhered.a108682. PubMed DOI
Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA. 2001;98:6736–6741. doi: 10.1073/pnas.111158898. PubMed DOI PMC
Ward DD, et al. Association of retinal layer measurements and adult cognitive function: A population-based study. Neurology. 2020;95:e1144–e1152. doi: 10.1212/WNL.0000000000010146. PubMed DOI
McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 1935;10:63–79. doi: 10.1093/jn/10.1.63. PubMed DOI
Goodrick CL, Ingram DK, Reynolds MA, Freeman JR, Cider N. Effects of intermittent feeding upon body weight and lifespan in inbred mice: interaction of genotype and age. Mech. Ageing Dev. 1990;55:69–87. doi: 10.1016/0047-6374(90)90107-Q. PubMed DOI
Someya S, et al. Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc. Natl Acad. Sci. USA. 2009;106:19432–19437. doi: 10.1073/pnas.0908786106. PubMed DOI PMC
Henson, S. M. & Aspinall, R. Aging and the Immune System. In: Aging of Organs and Systems (ed. Aspinall, R.) 225-242 (Kluwer Academic Publishers, 2003).
Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat. Immunol. 2004;5:133–139. doi: 10.1038/ni1033. PubMed DOI
Dorshkind K, Montecino-Rodriguez E, Signer RA. The ageing immune system: is it ever too old to become young again? Nat. Rev. Immunol. 2009;9:57–62. doi: 10.1038/nri2471. PubMed DOI
Bonda TA, et al. Remodeling of the intercalated disc related to aging in the mouse heart. J. Cardiol. 2016;68:261–268. doi: 10.1016/j.jjcc.2015.10.001. PubMed DOI
Mason JW, et al. Electrocardiographic reference ranges derived from 79,743 ambulatory subjects. J. Electrocardiol. 2007;40:228–234. doi: 10.1016/j.jelectrocard.2006.09.003. PubMed DOI
Wilkinson, J. E. et al. Rapamycin slows aging in mice. Aging Cell11, 675–682 (2012). PubMed PMC
Bartke A. Growth Hormone and Aging: Updated Review. World J. Mens. Health. 2019;37:19–30. doi: 10.5534/wjmh.180018. PubMed DOI PMC
Bartke A, Quainoo N. Impact of Growth Hormone-Related Mutations on Mammalian Aging. Front Genet. 2018;9:586. doi: 10.3389/fgene.2018.00586. PubMed DOI PMC
Garcia, J. M., Merriam, G. R. & Kargi, A. Y. Growth Hormone in Aging. In: Endotext (eds. Feingold, K. R. et al.) (South Dartmouth (MA), 2000).
Kim SS, Lee CK. Growth signaling and longevity in mouse models. BMB Rep. 2019;52:70–85. doi: 10.5483/BMBRep.2019.52.1.299. PubMed DOI PMC
Carrie I, Debray M, Bourre JM, Frances H. Age-induced cognitive alterations in OF1 mice. Physiol. Behav. 1999;66:651–656. doi: 10.1016/S0031-9384(99)00003-7. PubMed DOI
GTEx-Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–1330. doi: 10.1126/science.aaz1776. PubMed DOI PMC
Shan T, et al. Adipocyte-specific deletion of mTOR inhibits adipose tissue development and causes insulin resistance in mice. Diabetologia. 2016;59:1995–2004. doi: 10.1007/s00125-016-4006-4. PubMed DOI PMC
Selman C. Dietary restriction and the pursuit of effective mimetics. Proc. Nutr. Soc. 2014;73:260–270. doi: 10.1017/S0029665113003832. PubMed DOI
Speakman JR, Mitchell SE. Caloric restriction. Mol. Asp. Med. 2011;32:159–221. doi: 10.1016/j.mam.2011.07.001. PubMed DOI
Bordner KA, et al. Parallel declines in cognition, motivation, and locomotion in aging mice: association with immune gene upregulation in the medial prefrontal cortex. Exp. Gerontol. 2011;46:643–659. PubMed PMC
Sprott RL, Eleftheriou BE. Open-field behavior in aging inbred mice. Gerontologia. 1974;20:155–162. doi: 10.1159/000212009. PubMed DOI
Alderman JM, et al. Neuroendocrine inhibition of glucose production and resistance to cancer in dwarf mice. Exp. Gerontol. 2009;44:26–33. doi: 10.1016/j.exger.2008.05.014. PubMed DOI PMC
Keshavarz, M., Xie, K., Schaaf, K., Bano, D. & Ehninger, D. Targeting the “hallmarks of aging” to slow aging and treat age-related disease: fact or fiction? Mol. Psychiatry10.1038/s41380-022-01680-x (2022). PubMed PMC
Blagosklonny MV. Validation of anti-aging drugs by treating age-related diseases. Aging. 2009;1:281–288. doi: 10.18632/aging.100034. PubMed DOI PMC
Blagosklonny MV. Rapamycin and quasi-programmed aging: four years later. Cell Cycle. 2010;9:1859–1862. doi: 10.4161/cc.9.10.11872. PubMed DOI
Xiang L, He G. Caloric restriction and antiaging effects. Ann. Nutr. Metab. 2011;58:42–48. doi: 10.1159/000323748. PubMed DOI
Blagosklonny MV. Prospective treatment of age-related diseases by slowing down aging. Am. J. Pathol. 2012;181:1142–1146. doi: 10.1016/j.ajpath.2012.06.024. PubMed DOI
Sohal RS, Forster MJ. Caloric restriction and the aging process: a critique. Free Radic. Biol. Med. 2014;73:366–382. doi: 10.1016/j.freeradbiomed.2014.05.015. PubMed DOI PMC
Blagosklonny MV. From rapalogs to anti-aging formula. Oncotarget. 2017;8:35492–35507. doi: 10.18632/oncotarget.18033. PubMed DOI PMC
Klimova B, Novotny M, Kuca K. Anti-Aging Drugs - Prospect of Longer Life? Curr. Med Chem. 2018;25:1946–1953. doi: 10.2174/0929867325666171129215251. PubMed DOI
Flanagan EW, Most J, Mey JT, Redman LM. Calorie Restriction and Aging in Humans. Annu Rev. Nutr. 2020;40:105–133. doi: 10.1146/annurev-nutr-122319-034601. PubMed DOI PMC
Mueller, L. D., Rauser, C. L. & Rose, M. R. Aging Stops: Late Life, Evolutionary Biology, and Gerontology. In: Does Aging Stop? (Oxford University Press, New York, 2011).
Petr, M. A. et al. A cross-sectional study of functional and metabolic changes during aging through the lifespan in male mice. Elife10, e62952 (2021). PubMed PMC
Yang AC, et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature. 2020;583:425–430. doi: 10.1038/s41586-020-2453-z. PubMed DOI PMC
Schaum N, et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature. 2020;583:596–602. doi: 10.1038/s41586-020-2499-y. PubMed DOI PMC
Tabula Muris C. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020;583:590–595. doi: 10.1038/s41586-020-2496-1. PubMed DOI PMC
Ximerakis M, et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 2019;22:1696–1708. doi: 10.1038/s41593-019-0491-3. PubMed DOI
Fischer KE, et al. A cross-sectional study of male and female C57BL/6Nia mice suggests lifespan and healthspan are not necessarily correlated. Aging (Albany NY) 2016;8:2370–2391. doi: 10.18632/aging.101059. PubMed DOI PMC
Hayflick L. When does aging begin? Res Aging. 1984;6:99–103. doi: 10.1177/0164027584006001005. PubMed DOI
Papadopoli, D. et al. mTOR as a central regulator of lifespan and aging. F1000Res.810.12688/f1000research.17196.1 (2019). PubMed PMC
Martineau CN, Brown AEX, Laurent P. Multidimensional phenotyping predicts lifespan and quantifies health in Caenorhabditis elegans. PLoS Comput Biol. 2020;16:e1008002. doi: 10.1371/journal.pcbi.1008002. PubMed DOI PMC
Zhang WB, et al. Extended Twilight among Isogenic C. elegans Causes a Disproportionate Scaling between Lifespan and Health. Cell Syst. 2016;3:333–345 e334. doi: 10.1016/j.cels.2016.09.003. PubMed DOI PMC
Rockwood K, Mitnitski A. Frailty in relation to the accumulation of deficits. J. Gerontol. A Biol. Sci. Med Sci. 2007;62:722–727. doi: 10.1093/gerona/62.7.722. PubMed DOI
Fried LP, et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med Sci. 2001;56:M146–M156. doi: 10.1093/gerona/56.3.M146. PubMed DOI
Bell CG, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019;20:249. doi: 10.1186/s13059-019-1824-y. PubMed DOI PMC
Xie K, et al. Epigenetic alterations in longevity regulators, reduced life span, and exacerbated aging-related pathology in old father offspring mice. Proc. Natl Acad. Sci. USA. 2018;115:E2348–E2357. doi: 10.1073/pnas.1707337115. PubMed DOI PMC
Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med Sci. 2014;69(Suppl 1):S4–S9. doi: 10.1093/gerona/glu057. PubMed DOI
Shavlakadze T, et al. Age-Related Gene Expression Signature in Rats Demonstrate Early, Late, and Linear Transcriptional Changes from Multiple Tissues. Cell Rep. 2019;28:3263–3273 e3263. doi: 10.1016/j.celrep.2019.08.043. PubMed DOI
Mair W, Goymer P, Pletcher SD, Partridge L. Demography of dietary restriction and death in Drosophila. Science. 2003;301:1731–1733. doi: 10.1126/science.1086016. PubMed DOI
Hughes BG, Hekimi S. Different Mechanisms of Longevity in Long-Lived Mouse and Caenorhabditis elegans Mutants Revealed by Statistical Analysis of Mortality Rates. Genetics. 2016;204:905–920. doi: 10.1534/genetics.116.192369. PubMed DOI PMC
Hahm JH, et al. C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nat. Commun. 2015;6:8919. doi: 10.1038/ncomms9919. PubMed DOI PMC
Zhao Y, et al. Two forms of death in ageing Caenorhabditis elegans. Nat. Commun. 2017;8:15458. doi: 10.1038/ncomms15458. PubMed DOI PMC
Podshivalova K, Kerr RA, Kenyon C. How a Mutation that Slows Aging Can Also Disproportionately Extend End-of-Life Decrepitude. Cell Rep. 2017;19:441–450. doi: 10.1016/j.celrep.2017.03.062. PubMed DOI PMC
Stroustrup N, et al. The temporal scaling of Caenorhabditis elegans ageing. Nature. 2016;530:103–107. doi: 10.1038/nature16550. PubMed DOI PMC
Cohen AA, Levasseur M, Raina P, Fried LP, Fulop T. Is Aging Biology Ageist? J. Gerontol. A Biol. Sci. Med Sci. 2020;75:1653–1655. doi: 10.1093/gerona/glz190. PubMed DOI
Le Couteur DG, Simpson SJ. Adaptive senectitude: the prolongevity effects of aging. J. Gerontol. A Biol. Sci. Med Sci. 2011;66:179–182. doi: 10.1093/gerona/glq171. PubMed DOI
Fuchs H, et al. Mouse phenotyping. Methods. 2011;53:120–135. doi: 10.1016/j.ymeth.2010.08.006. PubMed DOI
Gailus-Durner V, et al. Systemic first-line phenotyping. Methods Mol. Biol. 2009;530:463–509. doi: 10.1007/978-1-59745-471-1_25. PubMed DOI
Rogers DC, et al. Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm. Genome. 1997;8:711–713. doi: 10.1007/s003359900551. PubMed DOI
Jones BJ, Roberts DJ. A rotarod suitable for quantitative measurements of motor incoordination in naive mice. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1968;259:211. doi: 10.1007/BF00537801. PubMed DOI
Schoensiegel F, et al. High throughput echocardiography in conscious mice: training and primary screens. Ultraschall Med. 2011;32(Suppl 1):S124–S129. PubMed
Roth DM, Swaney JS, Dalton ND, Gilpin EA, Ross J., Jr. Impact of anesthesia on cardiac function during echocardiography in mice. Am. J. Physiol. Heart Circ. Physiol. 2002;282:H2134–H2140. doi: 10.1152/ajpheart.00845.2001. PubMed DOI
Fischer MD, et al. Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One. 2009;4:e7507. doi: 10.1371/journal.pone.0007507. PubMed DOI PMC
Schmucker C, Schaeffel F. In vivo biometry in the mouse eye with low coherence interferometry. Vis. Res. 2004;44:2445–2456. doi: 10.1016/j.visres.2004.05.018. PubMed DOI
Prusky GT, Alam NM, Beekman S, Douglas RM. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol. Vis. Sci. 2004;45:4611–4616. doi: 10.1167/iovs.04-0541. PubMed DOI
Rathkolb B, et al. Blood Collection from Mice and Hematological Analyses on Mouse Blood. Curr. Protoc. Mouse Biol. 2013;3:101–119. doi: 10.1002/9780470942390.mo130054. PubMed DOI
Weaver JL, Broud DD, McKinnon K, Germolec DR. Serial phenotypic analysis of mouse peripheral blood leukocytes. Toxicol. Mech. Methods. 2002;12:95–118. doi: 10.1080/10517230290075341. PubMed DOI
Roederer M, Nozzi JL, Nason MC. SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytom. A. 2011;79:167–174. doi: 10.1002/cyto.a.21015. PubMed DOI PMC
Baumgarth N, Roederer M. A practical approach to multicolor flow cytometry for immunophenotyping. J. Immunol. Methods. 2000;243:77–97. doi: 10.1016/S0022-1759(00)00229-5. PubMed DOI
Hou Z, et al. A cost-effective RNA sequencing protocol for large-scale gene expression studies. Sci. Rep. 2015;5:9570. doi: 10.1038/srep09570. PubMed DOI PMC
Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009;25:1841–1842. doi: 10.1093/bioinformatics/btp328. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Li Y, Tomko RJ, Jr., Hochstrasser M. Proteasomes: Isolation and Activity Assays. Curr. Protoc. Cell Biol. 2015;67:3 43 41–43 43 20. doi: 10.1002/0471143030.cb0343s67. PubMed DOI PMC
Driver AS, Kodavanti PR, Mundy WR. Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol. 2000;22:175–181. doi: 10.1016/S0892-0362(99)00069-0. PubMed DOI
Aziz, N. A. et al. Seroprevalence and correlates of SARS-CoV-2 neutralizing antibodies: Results from a population-based study in Bonn, Germany. Nat. Commun.12, 2117 (2020). PubMed PMC
Estrada S, et al. FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. Magn. Reson Med. 2020;83:1471–1483. doi: 10.1002/mrm.28022. PubMed DOI PMC
Ehninger, D. Deep Phenotyping and Lifetime Trajectories Reveal Limited Effects of Longevity Regulators on the Aging Process in C57BL/6J Mice. Zenodo10.5281/zenodo.7142629 (2022). PubMed PMC