Perishing rich, expanding poor: Demography and population genetic patterns in two congeneric butterflies
Language English Country England, Great Britain Media print-electronic
Document type Journal Article
Grant support
P505/10/2167
Grantová Agentura České Republiky
SS03010232
Technology Agency of the Czech Republic
PubMed
36373267
DOI
10.1111/mec.16784
Knihovny.cz E-resources
- Keywords
- Carpathians, European grasslands, Lepidoptera conservation, Nymphalidae, butterfly ecology, microsatellites, pastoral land use, population differentiation, traditional landscapes,
- MeSH
- Demography MeSH
- Ecosystem MeSH
- Humans MeSH
- Butterflies * genetics MeSH
- Genetics, Population MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
In human-altered landscapes, specialist butterflies typically form spatially restricted populations, genetically differentiated due to dispersal restrictions. Generalists, in contrast, display minimum differentiation but high genetic diversity. While local-level actions suffice to conserve specialists and landscape-level actions are necessary for generalists, minimum information exists regarding conservation of species with intermediate features. We targeted two congeneric butterflies, the recently re-expanding Argynnis adippe and the strongly declining A. niobe, co-occurring in the pastoral landscape of the Carpathian Mountains, Czech Republic. We integrated species distribution models, mark-recapture and microsatellite analysis to compare their habitat requirements, adult demography, dispersal and genetic patterns, and expanded the genetic analysis across the Carpathian Arc and beyond to delimit spatial conservation units. In two mountain valleys, both species formed interconnected populations numbering thousands of individuals. Mobility patterns suggested the populations' interconnection across the Czech Carpathians. Genetic diversity was extremely poor in the nonthreatened A. adippe and moderate in the declining A. niobe. No population differentiation was detected within the Czech Carpathians (~1500 km2 ). Low genetic diversity and no differentiation was preserved in A. adippe across East Central Europe, whereas in A. niobe, populations from Serbia were differentiated from the Carpathian Arc + Alps. The high adult mobility linked to low differentiation probably reflects the distribution of larval resources, historically widespread but sparse and currently declining for A. niobe (grazing-disturbed grounds), while currently increasing for A. adippe (abandonment scrub, disturbed woodlands). Units as large as entire mountain systems define population boundaries, and hence conservation management units, for both species.
Faculty of Sciences University South Bohemia Ceske Budejovice Czech Republic
Institute of Entomology Biological Centre CAS Ceske Budejovice Czech Republic
Muzeum regionu Valašsko Vsetín Czech Republic
Nature Conservation Agency of the Czech Republic Praha Czech Republic
See more in PubMed
Archaux, F., Lorel, C., & Villemey, A. (2018). Landscape drivers of butterfly and burnet moth diversity in lowland rural areas. Landscape Ecology, 33(10), 1725-1739. https://doi.org/10.1007/s10980-018-0697-x
Baguette, M. (2003). Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography, 26(2), 153-160. https://doi.org/10.1034/j.1600-0587.2003.03364.x
Bartonova, A., Benes, J., & Konvicka, M. (2014). Generalist-specialist continuum and life history traits of central European butterflies (Lepidoptera) - Are we missing a part of the picture? European Journal of Entomology, 111(4), 543-553. https://doi.org/10.14411/eje.2014.060
Bartonova, A. S., Konvicka, M., Maresova, J., Blahova, D., Cip, D., Skala, P., Andres, M., Hula, V., Dolek, M., Geyer, A., Bock, O., Kadlec, T., & Fric, Z. F. (2021). Extremely endangered butterflies of scattered central European dry grasslands under current habitat alteration. Insect Systematics and Diversity, 5(5), 6. https://doi.org/10.1093/isd/ixab017
Bartonova, A. S., Konvicka, M., Maresova, J., Kolev, Z., Wahlberg, N., & Fric, Z. F. (2020). Recently lost connectivity in the Western Palaearctic steppes: The case of a scarce specialist butterfly. Conservation Genetics, 21(3), 561-575. https://doi.org/10.1007/s10592-020-01271-9
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., & Bonhomme, F. (1996-2004). GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France).
Benes, J., Konvicka, M., Dvorak, J., Fric, Z., Havelda, Z., Pavlicko, A., Vrabec, V., & Weidenhoffer, Z. (Eds.). (2002). Motýli České republiky rozšíření a ochrana I, II. [Butterflies of The Czech Republic: distribution and conservation I, II]. Společnost pro ochranu motýlů. Kolín.
Boggs, C. L. (1987). Within population variation in the demography of Speyeria mormonia (Lepidoptera: Nymphalidae). Holarctic Ecology, 10(3), 175-184.
Boggs, C. L., & Ross, C. L. (1993). The effects of adult food limitation on life history traits in Speyeria mormonia (Lepidoptera, Nymphalidae). Ecology, 74(2), 433-441. https://doi.org/10.2307/1939305
Boggs, C. L., Watt, W. B., & Ehrlich, P. R. (Eds.) (Eds.). (2003). Butterflies: Ecology and evolution taking flight. University of Chicago Press.
Bonsall, M. B., Dooley, C. A., Kasparson, A., Brereton, T., Roy, D. B., & Thomas, J. A. (2014). Allee effects and the spatial dynamics of a locally endangered butterfly, the high brown fritillary (Argynnis adippe). Ecological Applications, 24(1), 108-120. https://doi.org/10.1890/13-0155.1
Borschig, C., Klein, A. M., von Wehrden, H., & Krauss, J. (2013). Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic and Applied Ecology, 14(7), 547-554. https://doi.org/10.1016/j.baae.2013.09.002
Brussard, P. F., & Ehrlich, P. R. (1970). The population structure of Erebia epipsodea (Lepidoptera: Satyridae). Ecology, 51(1), 119-129. https://doi.org/10.2307/1933605
Burke, R. J., Fitzsimmons, J. M., & Kerr, J. T. (2011). A mobility index for Canadian butterfly species based on naturalists' knowledge. Biodiversity and Conservation, 20(10), 2273-2295. https://doi.org/10.1007/s10531-011-0088-y
Carlson, C. J. (2020). Embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods in Ecology and Evolution, 11(7), 850-858. https://doi.org/10.1111/2041-210X.13389
Chapuis, M. P., & Estoup, A. (2007). Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution, 24(3), 621-631. https://doi.org/10.1093/molbev/msl191
Clarke, H. E. (2022). A provisional checklist of European butterfly larval foodplants. Nota Lepidopterologica, 45, 139-167. https://doi.org/10.3897/nl.45.72017
Clough, Y., Kirchweger, S., & Kantelhardt, J. (2020). Field sizes and the future of farmland biodiversity in European landscapes. Conservation Letters, 13(6), e12752. https://doi.org/10.1111/conl.12752
Cooch, E. G., & White, G. C. (Eds.). (2019). Program MARK, a gentle introduction, 19th edition. http://www.phidot.org/software/mark/docs/book/.(Eds.)
Cook, L. M., Brower, L. P., & Croze, H. J. (1967). The accuracy of a population estimation from multiple recapture data. Journal of Animal Ecology, 36(1), 57-60. https://doi.org/10.2307/3014
Cowley, M. J. R., Thomas, C. D., Roy, D. B., Wilson, R. J., Leon-Cortes, J. L., Gutierrez, D., Bulman, C. R., Quinn, R. M., Moss, D., & Gaston, K. J. (2001). Density-distribution relationships in British butterflies. I. the effect of mobility and spatial scale. Journal of Animal Ecology, 70(3), 410-425. https://doi.org/10.1046/j.1365-2656.2001.00508.x
Crisan, A., Sitar, C., Craioveanu, M. C., Vizauer, T. C., & Rakosy, L. (2014). Multiannual population size estimates and mobility of the endemic Pseudophilotes bavius hungarica (Lepidoptera: Lycaenidae) from Transylvania (Romania). North-Western Journal of Zoology, 10, S115-S124.
Czajkowska, M., Dawidowicz, L., Borkowska, A., Dziekanska, I., & Sielezniew, M. (2020). Population genetic structure and demography of the critically endangered Chequered blue butterfly (Scolitantides orion) in a highly isolated part of its distribution range. Insects, 11(9), 608. https://doi.org/10.3390/insects11090608
Dapporto, L., & Dennis, R. L. H. (2013). The generalist-specialist continuum: Testing predictions for distribution and trends in British butterflies. Biological Conservation, 157, 229-236. https://doi.org/10.1016/j.biocon.2012.09.016
Davies, Z. G., Wilson, R. J., Brereton, T. M., & Thomas, C. D. (2005). The re-expansion and improving status of the silver-spotted skipper butterfly (Hesperia comma) in Britain: A metapopulation success story. Biological Conservation, 124(2), 189-198. https://doi.org/10.1016/j.biocon.2005.01.029
Davis, M. L., Barker, C., Powell, I., Porter, K., & Ashton, P. (2021). Combining modelling, field data and genetic variation to understand the post-reintroduction population genetics of the marsh fritillary butterfly (Euphydryas aurinia). Journal of Insect Conservation, 25(5-6), 875-886. https://doi.org/10.1007/s10841-021-00354-3
De Moya, R. S., Savage, W. K., Tenney, C., Bao, X. S., Wahlberg, N., & Hill, R. I. (2017). Interrelationships and diversification of Argynnis Fabricius and Speyeria scudder butterflies. Systematic Entomology, 42(4), 635-649. https://doi.org/10.1111/syen.12236
De Ro, A., Vanden Broeck, A., Verschaeve, L., Jacobs, I., T'Jollyn, F., Van Dyck, H., & Maes, D. (2021). Occasional long-distance dispersal may not prevent inbreeding in a threatened butterfly. BMC Ecology and Evolution, 21, 224. https://doi.org/10.1186/s12862-021-01953-z
Debinski, M. D., & Kely, L. (1998). Decline of Iowa populations of the regal fritillary (Speyeria idalia) Drury. Journal of the Iowa Academy of Sciences, 105(1), 16-22.
Dennis, R. L. H. (1992). The ecology of butterflies in Britain. Oxford University Press.
Dennis, R. L. H. (2010). A resource-based habitat view for conservation: Butterflies in the British landscape. Wiley-Blackwell.
Earl, D. A., & von Holdt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359-361. https://doi.org/10.1007/s12686-011-9548-7
Ellis, S., Wainwright, D., Berney, F., Bulman, C., & Bourn, N. (2011). Landscape-scale conservation in practice: Lessons from northern England, UK. Journal of Insect Conservation, 15(1-2), 69-81. https://doi.org/10.1007/s10841-010-9324-0
Ellis, S., Wainwright, D., Dennis, E. B., Bourn, N. A. D., Bulman, C. R., Hobson, R., Jones, R., Middlebrook, I., Plackett, J., Smith, R. G., Wain, M., & Warren, M. S. (2019). Are habitat changes driving the decline of the UK's most threatened butterfly: The high Brown fritillary Argynnis adippe (Lepidoptera: Nymphalidae)? Journal of Insect Conservation, 23(2), 351-367. https://doi.org/10.1007/s10841-019-00134-0
Essens, T., van Langevelde, F., Vos, R. A., Van Swaay, C. A. M., & WallisDeVries, M. F. (2017). Ecological determinants of butterfly vulnerability across the European continent. Journal of Insect Conservation, 21(3), 439-450. https://doi.org/10.1007/s10841-017-9972-4
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Fahrig, L. (2017). Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution and Systematics, 48, 1-23. https://doi.org/10.1146/annurev-ecolsys-110316-022612
Fartmann, T., Müller, C., & Poniatowski, D. (2013). Effects of coppicing on butterfly communities of woodlands. Biological Conservation, 159, 396-404. https://doi.org/10.1016/j.biocon.2012.11.024
Ferster, B., & Vulinec, K. (2010). Population size and conservation of the last eastern remnants of the regal fritillary, Speyeria idalia (Drury) [Lepidoptera, Nymphalidae]; implications for temperate grassland restoration. Journal of Insect Conservation, 14(1), 31-42. https://doi.org/10.1007/s10841-009-9222-5
Forister, M. L., Cousens, B., Harrison, J. G., Anderson, K., Thorne, J. H., Waetjen, D., Nice, C. C., De Parsia, M., Hladik, M. L., Meese, R., van Vliet, H., & Shapiro, A. M. (2016). Increasing neonicotinoid use and the declining butterfly fauna of lowland California. Biology Letters, 12(8), 20160475. https://doi.org/10.1098/rsbl.2016.0475
Fox, R., Warren, M. S., Brereton, T. M., Roy, D. B., & Robinson, A. (2011). A new red list of British butterflies. Insect Conservation and Diversity, 4(3), 159-172. https://doi.org/10.1111/j.1752-4598.2010.00117.x
Fric, Z., & Konvicka, M. (2007). Dispersal kernels of butterflies: Power-law functions are invariant to marking frequency. Basic and Applied Ecology, 8(4), 377-386. https://doi.org/10.1016/j.baae.2006.06.005
Gilburn, A. S., Bunnefeld, N., Wilson, J. M., Botham, M. S., Brereton, T. M., Fox, R., & Goulson, D. (2015). Are neonicotinoid insecticides driving declines of widespread butterflies? PeerJ, 2, 1402. https://doi.org/10.7717/peerj.1402
Goudet, J. (1995). FSTAT (version 1.2): A computer program to calculate F-statistics. Journal of Heredity, 86(6), 485-486. https://doi.org/10.1093/oxfordjournals.jhered.a111627
Habel, J. C., Angerer, V., Gros, P., Teucher, M., & Eberle, J. (2022). The relevance of transition habitats for butterfly conservation. Biodiversity and Conservation, 31, 1577-1590. https://doi.org/10.1007/s10531-022-02411-y
Habel, J. C., Brückmann, S. V., Krauss, J., Schwarzer, J., Weig, A., Husemann, M., & Steffan-Dewenter, I. (2015). Fragmentation genetics of the grassland butterfly Polyommatus coridon: Stable genetic diversity or extinction debt? Conservation Genetics, 16, 549-558. https://doi.org/10.1007/s10592-014-0679-8
Habel, J. C., Rodder, D., Lens, L., & Schmitt, T. (2013). The genetic signature of ecologically different grassland lepidopterans. Biodiversity and Conservation, 22, 2401-2411. https://doi.org/10.1007/s10531-012-0407-y
Habel, J. C., & Schmitt, T. (2012). The burden of genetic diversity. Biological Conservation, 147, 270-274. https://doi.org/10.1016/j.biocon.2011.11.028
Habel, J. C., & Schmitt, T. (2018). Vanishing of the common species: Empty habitats and the role of genetic diversity. Biological Conservation, 218, 211-216. https://doi.org/10.1016/j.biocon.2017.12.018
Habel, J. C., Teucher, M., Gros, P., Schmitt, T., & Ulrich, W. (2021). Land use and climate change affects butterfly diversity across northern Austria. Landscape Ecology, 36(6), 1741-1754. https://doi.org/10.1007/s10980-021-01242-6
Hammouti, N., Schmitt, T., Seitz, A., Kosuch, J., & Veith, M. (2010). Combining mitochondrial and nuclear evidences: A refined evolutionary history of Erebia medusa (Lepidoptera: Nymphalidae: Satyrinae) in Central Europe based on the COI gene. Journal of Zoological Systematics and Evolutionary Research, 48(2), 115-125. https://doi.org/10.1111/j.1439-0469.2009.00544.x
Hanski, I. (1998). Metapopulation dynamics. Nature, 396, 41-49. https://doi.org/10.1038/23876
Hardy, O. J., & Vekemans, X. (2002). SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2, 618-620. https://doi.org/10.1046/j.1471-8286.2002.00305.x
Hejda, R., Farkač, R., & Chobot, K. (Eds.) (Eds.). (2017). Červený seznam ohrožených druhů České republiky. Bezobratlí.
Hill, J. K., Thomas, C. D., & Lewis, O. T. (1996). Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: Implications for metapopulation structure. Journal of Animal Ecology, 65(6), 725-735. https://doi.org/10.2307/5671
Hill, R. I., Ganeshan, M., Wourms, L., Kronforst, M. R., Mullen, S. P., & Savage, W. K. (2018). Effectiveness of DNA barcoding in Speyeria butterflies at small geographic scales. Diversity Basel, 10(4), 130. https://doi.org/10.3390/d10040130
Hlasny, T., Zimova, S., & Bentz, B. (2021). Scientific response to intensifying bark beetle outbreaks in Europe and North America. Forest Ecology and Management, 499, 119599. https://doi.org/10.1016/j.foreco.2021.119599
Husák, J., Tkáčiková, J., & Spitzer, L. (2013). Valašské louky a pastviny - dědictví našich předků. Muzejní společnost ve Valašském Meziříčí a Muzeum regionu Valašsko, Valašské Meziříčí, 141 pp. (in Czech, English summary).
Jersakova, J., Kindlmann, P., & Renner, S. S. (2006). Is the colour dimorphism in Dactylorhiza sambucina maintained by differential seed viability instead of frequency-dependent selection? Folia Geobotanica, 41(1), 61-76. https://doi.org/10.1007/BF02805262
Kadlec, T., Vrba, P., Kepka, P., Schmitt, T., & Konvicka, M. (2010). Tracking the decline of the once-common butterfly: Delayed oviposition, demography and population genetics in the hermit Chazara briseis. Animal Conservation, 13(2), 172-183. https://doi.org/10.1111/j.1469-1795.2009.00318.x
Keyghobadi, N., Unger, K. P., Weintraub, J. D., & Fonseca, D. M. (2006). Remnant populations of the regal fritillary (Speyeria idalia) in Pennsylvania: Local genetic structure in a high gene flow species. Conservation Genetics, 7(2), 309-313. https://doi.org/10.1007/s10592-006-9127-8
Konvicka, M., Benes, J., Cizek, O., Kopecek, F., Konvicka, O., & Vitaz, L. (2008). How too much care kills species: Grassland reserves, Agri-environmental schemes and extinction of Colias myrmidone (Lepidoptera: Pieridae) from its former stronghold. Journal of Insect Conservation, 12(5), 519-525. https://doi.org/10.1007/s10841-007-9092-7
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179-1191. https://doi.org/10.1111/1755-0998.12387
Korb, S. K., Bolshakov, L. V., Fric, Z. F., & Bartonova, A. (2016). Cluster biodiversity as a multidimensional structure evolution strategy: Checkerspot butterflies of the group Euphydryas aurinia (Rottemburg, 1775) (Lepidoptera: Nymphalidae). Systematic Entomology, 41(2), 441-457. https://doi.org/10.1111/syen.12167
Kotiaho, J. S., Kaitala, V., Komonen, A., & Paivinen, J. (2005). Predicting the risk of extinction from shared ecological characteristics. Proceedings of the National Academy of Sciences of the United States of America, 102(6), 1963-1967. https://doi.org/10.1073/pnas.0406718102
Kudrna, O. (1986). Butterflies of Europe. Volume 8. Aspects of the conservation of butterflies in Europe. AULA Verlag.
Lebreton, J. D., Burnham, K. P., Clobert, J., & Anderson, D. R. (1992). Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecological Monographs, 62(1), 67-118. https://doi.org/10.2307/2937171
Li, Y. C., Korol, A. B., Fahima, T., Beiles, A., & Nevo, E. (2002). Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Molecular Ecology, 11(12), 2453-2465. https://doi.org/10.1046/j.1365-294X.2002.01643.x
Lyons, J. I., Pierce, A. A., Barribeau, S. M., Sternberg, E. D., Mongue, A. J., & de Roode, J. C. (2012). Lack of genetic differentiation between monarch butterflies with divergent migration destinations. Molecular Ecology, 21(14), 3433-3444. https://doi.org/10.1111/j.1365-294X.2012.05613.x
Maes, D., Verovnik, R., Wiemers, M., Brosens, D., Beshkov, S., Bonelli, S., Buszko, J., Cantu-Salazar, L., Cassar, L.-F., Collins, S., Dinca, V., Djuric, M., Dusej, G., Elven, H., Franeta, F., Garcia-Pereira, P., Geryak, Y., Goffart, P., Gor, A., … Warren, M. S. (2019). Integrating national red lists for prioritising conservation actions for European butterflies. Journal of Insect Conservation, 23, 301-330. https://doi.org/10.1007/s10841-019-00127-z
Maresova, J., Bartonova, A. S., Konvicka, M., Hoye, T. T., Gilg, O., Kresse, J. C., Shapoval, N. A., Yakovlev, R. V., & Fric, Z. F. (2021). The story of endurance: Biogeography and the evolutionary history of four Holarctic butterflies with different habitat requirements. Journal of Biogeography, 48(3), 590-602. https://doi.org/10.1111/jbi.14022
Marschalek, D. A. (2020). Sex-biased recapture rates present challenges to quantifying population sizes and dispersal behavior of the regal fritillary butterfly (Speyeria idalia). Journal of Insect Conservation, 24(5), 891-899. https://doi.org/10.1007/s10841-020-00259-7
Mccullough, K., Haukos, D. A., & Albanese, G. (2021). Regal fritillary (Speyeria idalia) sex ratio in tallgrass prairie: Effects of survey timing and management regime. American Midland Naturalist, 185(1), 57-76. https://doi.org/10.1637/0003-0031-185.1.57
Meglecz, E., Pecsenye, K., Varga, Z., & Solignac, M. (1998). Comparison of differentiation pattern at allozyme and microsatellite loci in Parnassius mnemosyne (Lepidoptera) populations. Hereditas, 128(2), 95-103. https://doi.org/10.1111/j.1601-5223.1998.00095.x
Mikitova, B., Semelakova, M., & Panigaj, L. (2021). Morphological variability of Argynnis paphia (Lepidoptera: Nymphalidae) across different environmental conditions in eastern Slovakia. Biologia, 76(10), 2941-2956. https://doi.org/10.1007/s11756-021-00771-4
Mira, O., Sánchez-Prieto, C. B., Dawson, D. A., Burke, T., Tinaut, A., & Martínez, J. G. (2017). Parnassius apollo nevadensis: Identification of recent population structure and source-sink dynamics. Conservation Genetics, 18(4), 837-851. https://doi.org/10.1007/s10592-017-0931-0
Modin, H., & Ockinger, E. (2020). Mobility, habitat selection and population connectivity of the butterfly Lycaena helle in Central Sweden. Journal of Insect Conservation, 24(5), 821-831. https://doi.org/10.1007/s10841-020-00254-y
Mraz, P., & Ronikier, M. (2016). Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biological Journal of the Linnean Society, 119(3), 528-559. https://doi.org/10.1111/bij.12918
Nakahama, N., Uchida, K., Ushimaru, A., & Isagi, Y. (2018). Historical changes in grassland area determined the demography of semi-natural grassland butterflies in Japan. Heredity, 121(2), 155-168. https://doi.org/10.1038/s41437-018-0057-2
O'Brien, D. M., Boggs, C. L., & Fogel, M. L. (2004). Making eggs from nectar: The role of life history and dietary carbon turnover in butterfly. Oikos, 105(2), 279-291. https://doi.org/10.1111/j.0030-1299.2004.13012.x
Peakall, R., & Smouse, P. E. (2006). GENALEX 6: Genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
Pitro, Z., & Wolfova, J. (Eds.). (2008). Zachování biodiverzity karpatských luk. FOA, Nadační fond pro ekologické zemědělství.
Polic, D., Tamario, C., Franzen, M., Betzholtz, P. E., Yildirim, Y., & Forsman, A. (2021). Movements and occurrence in two closely related fritillary species. Ecological Entomology, 46(2), 428-439. https://doi.org/10.1111/een.12987
Polic, D., Yildirim, Y., Lee, K. M., Franzén, M., Mutanen, M., Vila, R., & Forsman, R. (2022). Linking large-scale genetic structure of three Argynnini butterfly species to geography and environment. Molecular Ecology, 31(16), 4381-4401. https://doi.org/10.1111/mec.16594
Powell, A. F. L. A., Busby, W. H., & Kindscher, K. (2007). Status of the regal fritillary (Speyeria idalia) and effects of fire management on its abundance in northeastern Kansas, USA. Journal of Insect Conservation, 11(3), 299-308. https://doi.org/10.1007/s10841-006-9045-6
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959.
Pritchard, J. K., & Wen, W. (2003). Documentation for STRUCTURE software: Version 2. http://pritch.bsd.uchicago.edu
Rada, S., Spitzer, L., Sipos, J., & Kuras, T. (2017). Habitat preferences of the grasshopper Psophus stridulus, a charismatic species of submontane pastures. Insect Conservation and Diversity, 10(4), 310-320. https://doi.org/10.1111/icad.12225
Radchuk, V., WallisDeVries, M. F., & Schtickzelle, N. (2012). Spatially and financially explicit population viability analysis of Maculinea alcon in The Netherlands. PLoS One, 7(6), e38684. https://doi.org/10.1371/journal.pone.0038684
Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3), 248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
Reinhardt, R., Harpke, A., Caspari, S., Dolek, M., Kühn, E., Musche, M., Trusch, R., Wiemers, W., & Settele, J. (2020). Verbreitungsatlas der Tagfalter und Widderchen Deutschlands. Verlag Eugen Ulmer.
Rutkowski, R., Sielezniew, M., & Szostak, A. (2009). Contrasting levels of polymorphism in cross-amplified microsatellites in two endangered xerothermophilous, obligatorily myrmecophilous, butterflies of the genus Phengaris (Maculinea) (Lepidoptera: Lycaenidae). European Journal of Entomology, 106(4), 457-469. https://doi.org/10.14411/eje.2009.058
Saarinen, E. V., Reilly, P. F., & Austin, J. D. (2016). Conservation genetics of an endangered grassland butterfly (Oarisma poweshiek) reveals historically high gene flow despite recent and rapid range loss. Insect Conservation and Diversity, 9(6), 517-528. https://doi.org/10.1111/icad.12192
Salz, A., & Fartmann, T. (2009). Coastal dunes as important strongholds for the survival of the rare Niobe fritillary (Argynnis niobe). Journal of Insect Conservation, 13(6), 643-654. https://doi.org/10.1007/s10841-009-9214-5
Salz, A., & Fartmann, T. (2017). Larval-habitat preferences of a threatened butterfly species in heavy-metal grasslands. Journal of Insect Conservation, 21(1), 129-136. https://doi.org/10.1007/s10841-017-9961-7
Sanford, M. P. (2011). Improving conservation and management of the imperilled Carson Valley silverspot butterfly Speyeria nokomis carsonensis (Lepidoptera: Nymphalidae) based on rapid assessments of distribution, habitat, and threats. Journal of Insect Conservation, 15(5), 715-725. https://doi.org/10.1007/s10841-010-9371-6
Sang, A., Teder, T., Helm, A., & Partel, M. (2010). Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biological Conservation, 143(3), 1405-1413. https://doi.org/10.1016/j.biocon.2010.03.015
Scherer, G., & Fartmann, T. (2021). Occurrence of an endangered grassland butterfly is mainly driven by habitat heterogeneity, food availability, and microclimate. Insect Science, 29, 1211-1225. https://doi.org/10.1111/1744-7917.12975
Schtickzelle, N., Le Boulenge, E., & Baguette, M. (2002). Metapopulation dynamics of the bog fritillary butterfly: Demographic processes in a patchy population. Oikos, 97(3), 349-360. https://doi.org/10.1034/j.1600-0706.2002.970305.x
Settele, J., Shreeve, T. G., Konvicka, M., & van Dyck, H. (2009). Ecology of butterflies in Europe. Cambridge University Press.
Shuey, J., Jacquart, E., Orr, S., Becker, F., Nyberg, A., Littiken, R., Anchor, T., & Luchik, D. (2016). Landscape-scale response to local habitat restoration in the regal fritillary butterfly (Speyeria idalia) (Lepidoptera: Nymphalidae). Journal of Insect Conservation, 20(5), 773-780. https://doi.org/10.1007/s10841-016-9908-4
Sielezniew, M., Rutkowski, R., Ponikwicka-Tyszko, D., Ratkiewicz, M., Dziekanska, I., & Svitra, G. (2012). Differences in genetic variability between two ecotypes of the endangered myrmecophilous butterfly Phengaris (=Maculinea) alcon- the setting of conservation priorities. Insect Conservation and Diversity, 5(3), 223-236. https://doi.org/10.1111/j.1752-4598.2011.00163.x
Simonsen, T. J., Wahlberg, N., Brower, A. V. Z., & de Jong, R. (2006). Morphology, molecules and fritillaries: Approaching a stable phylogeny for Argynnini (Lepidoptera: Nymphalidae). Insect Systematics & Evolution, 37(4), 405-418. https://doi.org/10.1163/187631206788831407
Sims, S. R. (2017). Speyeria (Lepidoptera: Nymphalidae) conservation. Insects, 8(2), 45. https://doi.org/10.3390/insects8020045
Sims, S. R., & Shapiro, A. M. (2016). Reproductive strategies and life history evolution of some California Speyeria (Nymphalidae). The Journal of the Lepidopterists' Society, 70(2), 114-120. https://doi.org/10.18473/lepi.70i2.a6
Spitzer, L., Benes, J., Dandova, J., Jaskova, V., & Konvicka, M. (2009). The large blue butterfly, Phengaris [Maculinea] Arion, as a conservation umbrella on a landscape scale: The case of the Czech Carpathians. Ecological Indicators, 9(6), 1056-1063. https://doi.org/10.1016/j.ecolind.2008.12.006
Spitzer, L., Beneš, J., & Konvička, M. (2009). Oviposition of the Niobe fritillary (Argynnis niobe (LINNAEUS, 1758)) at submountain conditions in the Czech Carpathians (Lepidoptera, Nymphalidae). Nachrichten des Entomologischen Vereins Apollo, 30(3), 165-168.
Spitzer, L., & Ostřanská, I. (2021). Sušárny ovoce: Živé dědictví (nejen) Horního Vsacka (p. 134). Muzeum regionu Valašsko (in Czech, English summary).
Stevens, V. M., Turlure, C., & Baguette, M. (2010). A meta-analysis of dispersal in butterflies. Biological Reviews, 85(3), 625-642. https://doi.org/10.1111/j.1469-185X.2009.00119.x
Swartz, M. T., Ferster, B., Vulinec, K., & Paulson, G. (2015). Measuring regal fritillary butterfly (Speyeria idalia) habitat requirements in south-Central Pennsylvania: Implications for the conservation of an imperiled butterfly. Northeastern Naturalist, 22(4), 812-829. https://doi.org/10.1656/045.022.0414
Swengel, A. B. (1997). Habitat associations of sympatric violet-feeding fritillaries (Euptoieta, Speyria, Boloria) (Lepidoptera: Nymphalidae) in tallgrass prairie. Great Lakes Entomologist, 30(1-2), 1-18.
Swengel, A. B., & Swengel, S. R. (2001). A ten-year study to monitor populations of the regal fritillary, Speyeria idalia, (Lepidoptera: Nymphalidae) in Wisconsin, USA. Great Lakes Entomologist, 34(2), 97-115.
Thomas, C. D. (2000). Dispersal and extinction in fragmented landscapes. Proceedings of the Royal Society of London. Series B, Biological Sciences, 267(1439), 139-145. https://doi.org/10.1098/rspb.2000.0978
Thomas, C. D., Wilson, R. J., & Lewis, O. T. (2002). Short-term studies underestimate 30-generation changes in a butterfly metapopulation. Proceedings of the Royal Society of London. Series B, Biological Sciences, 269(1491), 563-569. https://doi.org/10.1098/rspb.2001.1939
Tropek, R., Cizek, O., Kadlec, T., & Klecka, J. (2017). Habitat use of Hipparchia semele (Lepidoptera) in its artificial stronghold: Necessity of the resource-based habitat view in restoration of disturbed sites. Polish Journal of Ecology, 65(3), 385-399. https://doi.org/10.3161/15052249PJE2017.65.3.006
Turlure, C., Schtickzelle, N., Dubois, Q., Baguette, M., Dennis, R. L. H., & Van Dyck, H. (2019). Suitability and transferability of the resource-based habitat concept: A test with an assemblage of butterflies. Frontiers in Ecology and Evolution, 7, 127. https://doi.org/10.3389/fevo.2019.00127
Turlure, C., Vandewoestijne, S., & Baguette, M. (2014). Conservation genetics of a threatened butterfly: Comparison of allozymes, RAPDs and microsatellites. BMC Genetics, 15, 114. https://doi.org/10.1186/s12863-014-0114-7
Tuzov, V. K. (2003). Nymphalidae, Part 1. Tribe Argynnini. Argynnis, Issoria, Brenthis, Argyreus. Guide to the Butterflies of the Palearctic region. Omnes Artes, Milano.
Tvrtkovic, N., Sasic, M., Mihoci, I., Vukovic, M., & Bjelic, M. (2012). Review of the butterfly fauna (Hesperioidea & Papilionoidea) of the Dinara mountain range. Natura Croatica, 21(2), 471-481.
Uřičář, J., Jongepierová, I., & Vondřejc, T. E. (2016). Zásady péče o významné druhy motýlů Bílých Karpat. ZO ČSOP Bílé Karpaty.
Ustaoglu, E., & Collier, M. J. (2018). Farmland abandonment in Europe: An overview of drivers, consequences, and assessment of the sustainability implications. Environmental Reviews, 26(4), 396-416. https://doi.org/10.1139/er-2018-0001
Van Swaay, C. A. M., Cuttelod, A., Collins, S., Maes, D., Munguira, M. L., Sasic, M., Settele, J., Verovnik, R., Verstrael, T., Warren, M., Wiemers, M., & Wynhoff, I. (2010). European red list of butterflies. Publications Office of the European Union.
Vandewoestijne, S., & Baguette, M. (2004). Genetic population structure of the vulnerable bog fritillary butterfly. Hereditas, 141(3), 199-206. https://doi.org/10.1111/j.1601-5223.2004.01849.x
Vandewoestijne, S., Neve, G., & Baguette, M. (1999). Spatial and temporal population genetic structure of the butterfly Aglais urticae L. (Lepidoptera, Nymphalidae). Molecular Ecology, 8(9), 1539-1543. https://doi.org/10.1046/j.1365-294x.1999.00725.x
Vandewoestijne, S., & Van Dyck, H. (2010). Population genetic differences along a latitudinal cline between original and recently colonized habitat in a butterfly. PLoS One, 5(11), 13810. https://doi.org/10.1371/journal.pone.0013810
Verovnik, R., Rebeušek, F., Jež, M., Dzpiom, S., Brinovec, M., & Janžekovič, F. (2012). Atlas dnevnih metuljev (Lepidoptera: Rhopalocera) Slovenije. Center za kartografijo favne in flore.
Vodickova, V., Vrba, P., Grill, S., Bartonova, A., Kollross, J., Potocky, P., & Konvicka, M. (2019). Will refaunation by feral horse affect five checkerspot butterfly species (Melitaea Fabricius, 1807) coexisting at xeric grasslands of Podyji National Park, Czech Republic? Journal for Nature Conservation, 52, 125755. https://doi.org/10.1016/j.jnc.2019.125755
Warren, M. S. (1995). Managing local microclimates for the high Brown fritillary, Argynnis adippe. In A. S. Pullin (Ed.), Ecology and conservation of butterflies (pp. 198-210). Chapman & Hall.
Warren, M. S., Maes, D., van Swaay, C. A. M., Goffart, P., van Dyck, H., Bourn, N. A. D., Wynhoff, I., Hoare, D., & Ellis, S. (2021). The decline of butterflies in Europe: Problems, significance, and possible solutions. Proceedings of the National Academy of Sciences of the United States of America, 118(2), e200255111. https://doi.org/10.1073/pnas.2002551117
Williams, B. L., Brawn, J. D., & Paige, K. N. (2003). Landscape scale genetic effects of habitat fragmentation on a high gene flow species: Speyeria idalia (Nymphalidae). Molecular Ecology, 12(1), 11-20. https://doi.org/10.1046/j.1365-294X.2003.01700.x
Zaman, K., Tenney, C., Rush, C. E., & Hill, R. I. (2015). Population ecology of a California endemic: Speyeria adiaste clemencei. Journal of Insect Conservation, 19(4), 753-763. https://doi.org/10.1007/s10841-015-9797-y
Zar, J. H. (2009). Biostatistical analysis. Addison-Wesley Longman.
Zima, J., Jr., Lestina, D., & Konvicka, M. (2013). Characterization of ten polymorphic microsatellite markers for an endangered butterfly Argynnis niobe and their cross-species utility in the closely related species A. adippe (Lepidoptera: Nymphalidae). European Journal of Entomology, 110(2), 383-387. https://doi.org/10.14411/eje.2013.098
Zimmermann, K., Fric, Z., Jiskra, P., Kopeckova, M., Vlasanek, P., Zapletal, M., & Konvicka, M. (2011). Mark-recapture on large spatial scale reveals long distance dispersal in the marsh fritillary, Euphydryas aurinia. Ecological Entomology, 36(4), 499-510. https://doi.org/10.1111/j.1365-2311.2011.01293.x
Zimmermann, K., Konvicka, M., Fric, Z., & Cihakova, V. (2009). Demography of a common butterfly on humid grasslands: Argynnis aglaja (Lepidoptera: Nymphalidae) studied by mark-recapture. Polish Journal of Ecology, 57(4), 715-727.
Zografou, K., Swartz, M. T., Tilden, V. P., McKinney, E. N., Eckenrode, J. A., & Sewall, B. J. (2017). Severe decline and partial recovery of a rare butterfly on an active military training area. Biological Conservation, 216, 43-50. https://doi.org/10.1016/j.biocon.2017.09.026
Wetland butterfly thriving in abandoned jungle: Neptis rivularis in the Czech Republic