LACTB exerts tumor suppressor properties in epithelial ovarian cancer through regulation of Slug

. 2023 Jan ; 6 (1) : . [epub] 20221114

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36375842

Epithelial-mesenchymal transition (EMT) is a cellular mechanism used by cancer cells to acquire migratory and stemness properties. In this study, we show, through in vitro, in vivo, and 3D culture experiments, that the mitochondrial protein LACTB manifests tumor suppressor properties in ovarian cancer. We show that LACTB is significantly down-regulated in epithelial ovarian cancer cells and clinical tissues. Re-expression of LACTB negatively effects the growth of cancer cells but not of non-tumorigenic cells. Mechanistically, we show that LACTB leads to differentiation of ovarian cancer cells and loss of their stemness properties, which is achieved through the inhibition of the EMT program and the LACTB-dependent down-regulation of Snail2/Slug transcription factor. This study uncovers a novel role of LACTB in ovarian cancer and proposes new ways of counteracting the oncogenic EMT program in this model system.

Erratum v

PubMed

Zobrazit více v PubMed

Yang Y, Yang Y, Yang J, Zhao X, Wei X (2020) Tumor microenvironment in ovarian cancer: Function and therapeutic strategy. Front Cell Dev Biol 8: 758. 10.3389/fcell.2020.00758 PubMed DOI PMC

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71: 209–249. 10.3322/caac.21660 PubMed DOI

Jayson GC, Kohn EC, Kitchener HC, Ledermann JA (2014) Ovarian cancer. Lancet 384: 1376–1388. 10.1016/s0140-6736(13)62146-7 PubMed DOI

Kurman RJ, Shih IM (2010) The origin and pathogenesis of epithelial ovarian cancer: A proposed unifying theory. Am J Surg Pathol 34: 433–443. 10.1097/pas.0b013e3181cf3d79 PubMed DOI PMC

Reade CJ, McVey RM, Tone AA, Finlayson SJ, McAlpine JN, Fung-Kee-Fung M, Ferguson SE (2014) The fallopian tube as the origin of high grade serous ovarian cancer: Review of a paradigm shift. J Obstet Gynaecol Can 36: 133–140. 10.1016/s1701-2163(15)30659-9 PubMed DOI

Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20: 69–84. 10.1038/s41580-018-0080-4 PubMed DOI

Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119: 1420–1428. 10.1172/jci39104 PubMed DOI PMC

Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454. 10.1038/nrc822 PubMed DOI

Derynck R, Weinberg RA (2019) EMT and cancer: More than meets the eye. Dev Cell 49: 313–316. 10.1016/j.devcel.2019.04.026 PubMed DOI PMC

Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142. 10.1038/nrm1835 PubMed DOI

Lin J, Ding D (2017) The prognostic role of the cancer stem cell marker CD44 in ovarian cancer: A meta-analysis. Cancer Cell Int 17: 8. 10.1186/s12935-016-0376-4 PubMed DOI PMC

Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev Cell 14: 818–829. 10.1016/j.devcel.2008.05.009 PubMed DOI

Davidson B, Trope CG, Reich R (2012) Epithelial-mesenchymal transition in ovarian carcinoma. Front Oncol 2: 33. 10.3389/fonc.2012.00033 PubMed DOI PMC

Takai M, Terai Y, Kawaguchi H, Ashihara K, Fujiwara S, Tanaka T, Tsunetoh S, Tanaka Y, Sasaki H, Kanemura M, et al. (2014) The EMT (epithelial-mesenchymal-transition)-related protein expression indicates the metastatic status and prognosis in patients with ovarian cancer. J Ovarian Res 7: 76. 10.1186/1757-2215-7-76 PubMed DOI PMC

Peitsaro N, Polianskyte Z, Tuimala J, Porn-Ares I, Liobikas J, Speer O, Lindholm D, Thompson J, Eriksson O (2008) Evolution of a family of metazoan active-site-serine enzymes from penicillin-binding proteins: A novel facet of the bacterial legacy. BMC Evol Biol 8: 26. 10.1186/1471-2148-8-26 PubMed DOI PMC

Polianskytea Z, Peitsaro N, Dapkunasa A, Liobikasa J, Soliymanib R, Lalowskib M, Oliver S, Seitsonenc J, Butcherc S, Cereghettid GM, et al. (2009) LACTB is a filament-forming protein localized in mitochondria. Proc Natl Acad Sci U S A 106: 18960–18965. 10.1073/pnas.0906734106 PubMed DOI PMC

Jakoube P, Cutano V, Gonzalez-Morena JM, Keckesova Z (2021) Mitochondrial tumor suppressors-the energetic enemies of tumor progression. Cancer Res 81: 4652–4667. 10.1158/0008-5472.can-21-0518 PubMed DOI PMC

Keckesova Z, Donaher JL, De Cock J, Freinkman E, Lingrell S, Bachovchin DA, Bierie B, Tischler V, Noske A, Okondo MC, et al. (2017) LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature 543: 681–686. 10.1038/nature21408 PubMed DOI PMC

Ma Y, Wang L, He F, Yang J, Ding Y, Ge S, Fan X, Zhou Y, Xu X, Jia R (2021) LACTB suppresses melanoma progression by attenuating PP1A and YAP interaction. Cancer Lett 506: 67–82. 10.1016/j.canlet.2021.02.022 PubMed DOI

Yang F, Yan Z, Nie W, Cheng X, Liu Z, Wang W, Shao C, Fu G, Yu Y (2021) LACTB induced apoptosis of oxaliplatin-resistant gastric cancer through regulating autophagy-mediated mitochondrial apoptosis pathway. Am J Transl Res 13: 601–616. PubMed PMC

Li HT, Dong DY, Liu Q, Xu YQ, Chen L (2019) Overexpression of LACTB, a mitochondrial protein that inhibits proliferation and invasion in glioma cells. Oncol Res 27: 423–429. 10.3727/096504017x15030178624579 PubMed DOI PMC

Zeng K, Chen X, Hu X, Liu X, Xu T, Sun H, Pan Y, He B, Wang S (2021) Correction: LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation. Oncogene 40: 3772–3773. 10.1038/s41388-021-01795-5 PubMed DOI

Wang YC, Yo YT, Lee HY, Liao YP, Chao TK, Su PH, Lai HC (2012) ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome. Am J Pathol 180: 1159–1169. 10.1016/j.ajpath.2011.11.015 PubMed DOI

Sawada K, Mitra AK, Radjabi AR, Bhaskar V, Kistner EO, Tretiakova M, Jagadeeswaran S, Montag A, Becker A, Kenny HA, et al. (2008) Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res 68: 2329–2339. 10.1158/0008-5472.can-07-5167 PubMed DOI PMC

Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY (2019) The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells 8: 1118. 10.3390/cells8101118 PubMed DOI PMC

Deep G, Jain AK, Ramteke A, Ting H, Vijendra KC, Gangar SC, Agarwal C, Agarwal R (2014) SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Mol Cancer 13: 37. 10.1186/1476-4598-13-37 PubMed DOI PMC

Bennett JA, Steward LR, Rudolph J, Voss AP, Aydin H (2022) Architecture and assembly mechanism of human LACTB. bioRxiv. 10.1101/2022.04.21.489104 (Preprint posted April 22, 2022). PubMed DOI PMC

Xue C, He Y, Zhu W, Chen X, Yu Y, Hu Q, Chen J, Liu L, Ren F, Ren Z, et al. (2018) Low expression of LACTB promotes tumor progression and predicts poor prognosis in hepatocellular carcinoma. Am J Transl Res 10: 4152–4162. PubMed PMC

Yang X, Zhao H, Sui Y, So WY, Gary TC, Ozaki R, Yeung CY, Xu G, Tong PCY, Chan JCN (2009) Additive interaction between the renin-angiotensin system and lipid metabolism for cancer in type 2 diabetes. Diabetes 58: 1518–1525. 10.2337/db09-0105 PubMed DOI PMC

Cascone A, Lalowski M, Lindholm D, Eriksson O (2022) Unveiling the function of the mitochondrial filament-forming protein LACTB in lipid metabolism and cancer. Cells 11: 1703. 10.3390/cells11101703 PubMed DOI PMC

Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, et al. (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37: 710–717. 10.1038/ng1589 PubMed DOI PMC

Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, et al. (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452: 429–435. 10.1038/nature06757 PubMed DOI PMC

Gu A, Jie Y, Yao Q, Zhang Y, Mingyan E (2017) Slug is associated with tumor metastasis and angiogenesis in ovarian cancer. Reprod Sci 24: 291–299. 10.1177/1933719116654989 PubMed DOI

Uygur B, Wu WS (2011) SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis. Mol Cancer 10: 139. 10.1186/1476-4598-10-139 PubMed DOI PMC

He LC, Gao FH, Xu HZ, Zhao S, Ma CM, Li J, Zhang S, Wu YL (2012) Ikaros inhibits proliferation and, through upregulation of Slug, increases metastatic ability of ovarian serous adenocarcinoma cells. Oncol Rep 28: 1399–1405. 10.3892/or.2012.1946 PubMed DOI

Kurrey NK, K A, Bapat SA (2005) Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol 97: 155–165. 10.1016/j.ygyno.2004.12.043 PubMed DOI

Fang D, Chen H, Zhu JY, Wang W, Teng Y, Ding HF, Jing Q, Su SB, Huang S (2016) Epithelial–mesenchymal transition of ovarian cancer cells is sustained by Rac1 through simultaneous activation of MEK1/2 and Src signaling pathways. Oncogene 36: 1546–1558. 10.1038/onc.2016.323 PubMed DOI PMC

Loret N, Denys H, Tummers P, Berx G (2019) The role of epithelial-to-mesenchymal plasticity in ovarian cancer progression and therapy resistance. Cancers (Basel) 11: 838. 10.3390/cancers11060838 PubMed DOI PMC

Ponnusamy MP, Lakshmanan I, Jain M, Das S, Chakraborty S, Dey P, Batra SK (2010) MUC4 mucin-induced epithelial to mesenchymal transition: A novel mechanism for metastasis of human ovarian cancer cells. Oncogene 29: 5741–5754. 10.1038/onc.2010.309 PubMed DOI PMC

Gao FJ, Zhu Y, Nilsson M, Sundfeldt K (2014) TGF-β isoforms induce EMT independent migration of ovarian cancer cells. Cancer Cell Int 14: 72. 10.1186/s12935-014-0072-1 PubMed DOI PMC

Alsina-Sanchis E, Figueras A, Lahiguera A, Gil-Martin M, Pardo B, Piulats JM, Marti L, Ponce J, Matias-Guiu X, Vidal A, et al. (2017) TGFβ controls ovarian cancer cell proliferation. Int J Mol Sci 18: 1658. 10.3390/ijms18081658 PubMed DOI PMC

Hao Y, Baker D, Ten Dijke P (2019) TGF-beta-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 20: 2767. 10.3390/ijms20112767 PubMed DOI PMC

Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Joseph G, Childs T, Chen J, Li J, Weberpals J, et al. (2012) EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12: 91. 10.1186/1471-2407-12-91 PubMed DOI PMC

Xu Y, Shi H, Wang M, Huang P, Xu M, Han S, Li H, Wang Y (2022) LACTB suppresses carcinogenesis in lung cancer and regulates the EMT pathway. Exp Ther Med 23: 247. 10.3892/etm.2022.11172 PubMed DOI PMC

Xu W, Yu M, Qin J, Luo Y, Zhong M (2020) LACTB regulates PIK3R3 to promote autophagy and inhibit EMT and proliferation through the PI3K/AKT/mTOR signaling pathway in colorectal cancer. Cancer Manag Res 12: 5181–5200. 10.2147/cmar.s250661 PubMed DOI PMC

Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: A comparison with Snail and E47 repressors. J Cell Sci 116: 499–511. 10.1242/jcs.00224 PubMed DOI

Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19: 156–172. 10.1038/cr.2009.5 PubMed DOI PMC

Levanon K, Ng V, Piao HY, Zhang Y, Chang MC, Roh MH, Kindelberger DW, Hirsch MS, Crum CP, Marto JA, et al. (2010) Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis. Oncogene 29: 1103–1113. 10.1038/onc.2009.402 PubMed DOI PMC

Ferreira Mendes JM, de Faro Valverde L, Torres Andion Vidal M, Paredes BD, Coelho P, Allahdadi KJ, Coletta RD, Souza BsdF, Rocha CAG (2020) Effects of IGF-1 on proliferation, angiogenesis, tumor stem cell populations and activation of AKT and hedgehog pathways in oral squamous cell carcinoma. Int J Mol Sci 21: 6487. 10.3390/ijms21186487 PubMed DOI PMC

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37: 907–915. 10.1038/s41587-019-0201-4 PubMed DOI PMC

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, et al. (2021) Twelve years of SAMtools and BCFtools. Gigascience 10: giab008. 10.1093/gigascience/giab008 PubMed DOI PMC

Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T (2016) deepTools2: A next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44: W160–W165. 10.1093/nar/gkw257 PubMed DOI PMC

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26. 10.1038/nbt.1754 PubMed DOI PMC

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al. (2004) Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 5: R80. 10.1186/gb-2004-5-10-r80 PubMed DOI PMC

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, et al. (2015) Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods 12: 115–121. 10.1038/nmeth.3252 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...