Proline, hydroxyproline, and pyrrolidone carboxylic acid derivatives as highly efficient but reversible transdermal permeation enhancers

. 2022 Nov 14 ; 12 (1) : 19495. [epub] 20221114

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36376455

Grantová podpora
19-09600S Grantová Agentura České Republiky
19-09600S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000841 European Union

Odkazy

PubMed 36376455
PubMed Central PMC9663686
DOI 10.1038/s41598-022-24108-6
PII: 10.1038/s41598-022-24108-6
Knihovny.cz E-zdroje

Overcoming the skin barrier properties efficiently, temporarily, and safely for successful transdermal drug delivery remains a challenge. We synthesized three series of potential skin permeation enhancers derived from natural amino acid derivatives proline, 4-hydroxyproline, and pyrrolidone carboxylic acid, which is a component of natural moisturizing factor. Permeation studies using in vitro human skin identified dodecyl prolinates with N-acetyl, propionyl, and butyryl chains (Pro2, Pro3, and Pro4, respectively) as potent enhancers for model drugs theophylline and diclofenac. The proline derivatives were generally more active than 4-hydroxyprolines and pyrrolidone carboxylic acid derivatives. Pro2-4 had acceptable in vitro toxicities on 3T3 fibroblast and HaCaT cell lines with IC50 values in tens of µM. Infrared spectroscopy using the human stratum corneum revealed that these enhancers preferentially interacted with the skin barrier lipids and decreased the overall chain order without causing lipid extraction, while their effects on the stratum corneum protein structures were negligible. The impacts of Pro3 and Pro4 on an in vitro transepidermal water loss and skin electrical impedance were fully reversible. Thus, proline derivatives Pro3 and Pro4 have an advantageous combination of high enhancing potency, low cellular toxicity, and reversible action, which is important for their potential in vivo use as the skin barrier would quickly recover after the drug/enhancer administration is terminated.

Zobrazit více v PubMed

Finnin BC, Morgan TM. Transdermal penetration enhancers: Applications, limitations, and potential. J. Pharm. Sci. 1999;88:955–958. PubMed

Kováčik A, Kopečná M, Vávrová K. Permeation enhancers in transdermal drug delivery: Benefits and limitations. Expert Opin. Drug Deliv. 2020;17:145–155. PubMed

Menon G, Kligman A. Barrier functions of human skin: a holistic view. Skin Pharmacol. Physiol. 2009;22:178–189. PubMed

Benson HA. Transdermal drug delivery: Penetration enhancement techniques. Curr. Drug Deliv. 2005;2:23–33. PubMed

Williams AC, Barry BW. Penetration enhancers. Adv. Drug Deliv. Rev. 2012;64:128–137. PubMed

Wiedersberg S, Guy RH. Transdermal drug delivery: 30+ years of war and still fighting! J. Control Release. 2014;190:150–156. PubMed

Chen Y, Quan P, Liu X, Wang M, Fang L. Novel chemical permeation enhancers for transdermal drug delivery. Asian J. Pharm. Sci. 2014;9:51–64.

Fincher TK, Yoo SD, Player MR, Sowell JW, Sr, Michniak BB. In vitro evaluation of a series of N-dodecanoyl-L-amino acid methyl esters as dermal penetration enhancers. J. Pharm. Sci. 1996;85:920–923. PubMed

Harris WT, et al. n-pentyl N-acetylprolinate. A new skin penetration enhancer. J. Pharm. Sci. 1995;84:640–642. PubMed

Tenjarla SN, Kasina R, Puranajoti P, Omar MS, Harris WT. Synthesis and evaluation of N-acetylprolinate esters—novel skin penetration enhancers. Int. J. Pharm. 1999;192:147–158. PubMed

Hrabálek A, et al. Synthesis and enhancing effect of transkarbam 12 on the transdermal delivery of theophylline, clotrimazole, flobufen, and griseofulvin. Pharm. Res. 2006;23:912–919. PubMed

Novotný M, et al. Ammonium carbamates as highly active transdermal permeation enhancers with a dual mechanism of action. J. Control Release. 2011;150:164–170. PubMed

Novotný J, et al. Dimethylamino acid esters as biodegradable and reversible transdermal permeation enhancers: Effects of linking chain length, chirality and polyfluorination. Pharm. Res. 2009;26:811–821. PubMed

Vávrová K, Hrabalek A, Doležal P, Holas T, Zbytovská J. L-Serine and glycine based ceramide analogues as transdermal permeation enhancers: Polar head size and hydrogen bonding. Bioorg. Med. Chem. Lett. 2003;13:2351–2353. PubMed

Janůšová B, et al. Amino acid derivatives as transdermal permeation enhancers. J. Control Release. 2013;165:91–100. PubMed

Pereira R, Silva SG, Pinheiro M, Reis S, Vale M. Current status of amino acid-based permeation enhancers in transdermal drug delivery. Membranes. 2021;11:343. PubMed PMC

Kopečná M, et al. Esters of terpene alcohols as highly potent, reversible, and low toxic skin penetration enhancers. Sci. Rep. 2019;9:1–12. PubMed PMC

Vávrová K, Hrabálek A, Doležal P. Enhancement effects of (R) and (S) enantiomers and the racemate of a model enhancer on permeation of theophylline through human skin. Arch. Dermatol. Res. 2002;294:383–385. PubMed

Školová B, et al. Ceramides in the skin lipid membranes: Length matters. Langmuir. 2013;29:15624–15633. PubMed

Limanov V, Svitova I, Kruchenok T, Tsvirova I, Yaroslavskaya L. Synthesis and bactericidal activity of amino acid higher ester hydrochlorides. Pharm. Chem. J. 1984;18:708–711.

Kopečná M, et al. Dodecyl amino glucoside enhances transdermal and topical drug delivery via reversible interaction with skin barrier lipids. Pharm. Res. 2017;34:640–653. PubMed

Michniak B, Player M, Godwin D, Lockhart C, Sowell J. In vitro evaluation of azone analogs as dermal penetration enhancers: V. Miscellaneous compounds. Int. J. Pharm. 1998;161:169–178.

Kopečná M, Kováčik A, Novák P, Bettex MB, Vávrová K. Transdermal permeation and skin retention of diclofenac and etofenamate/flufenamic acid from over-the-counter pain relief products. J. Pharm. Sci. 2021;110:2517–2523. PubMed

Nokhodchi A, Sharabiani K, Rashidi MR, Ghafourian T. The effect of terpene concentrations on the skin penetration of diclofenac sodium. Int. J. Pharm. 2007;335:97–105. PubMed

Kopečná M, et al. Fluorescent penetration enhancers reveal complex interactions among the enhancer, drug, solvent, and skin. Mol. Pharm. 2019;16:886–897. PubMed

Vavrova K, Zbytovska J, Hrabalek A. Amphiphilic transdermal permeation enhancers: Structure-activity relationships. Curr. Med. Chem. 2005;12:2273–2291. PubMed

Mendelsohn R, Flach CR, Moore DJ. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim. Biophys. Acta. 2006;1758:923–933. PubMed

Snyder R, Strauss H, Elliger C. Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains. J. Phys. Chem. 1982;86:5145–5150.

Boncheva M, Damien F, Normand V. Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy. Biochim. Biophys. Acta. 2008;1778:1344–1355. PubMed

MacPhail R, Strauss H, Snyder R, Elliger C. Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains. J. Phys. Chem. 1984;88:334–341.

Knutson K, Krill S, Lambert W, Higuchi W. Physicochemical aspects of transdermal permeation. J. Control Release. 1987;6:59–74.

Kim Y-C, Park J-H, Ludovice PJ, Prausnitz MR. Synergistic enhancement of skin permeability by N-lauroylsarcosine and ethanol. Int. J. Pharm. 2008;352:129–138. PubMed

Gniadecka M, Nielsen OF, Christensen DH, Wulf HC. Structure of water, proteins, and lipids in intact human skin, hair, and nail. J. Investig. Dermatol. 1998;110:393–398. PubMed

Takeuchi Y, et al. Effects of fatty acids, fatty amines and propylene glycol on rat stratum corneum lipids and proteins in vitro measured by Fourier transform infrared/attenuated total reflection (FT-IR/ATR) spectroscopy. Chem. Pharm. Bull. 1992;40:1887–1892. PubMed

Lin S-Y, Duan K-J, Lin T-C. Simultaneous determination of the protein conversion process in porcine stratum corneum after pretreatment with skin enhancers by a combined microscopic FT-IR/DSC system. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1996;52:1671–1678.

Mendelsohn R, Moore DJ. Vibrational spectroscopic studies of lipid domains in biomembranes and model systems. Chem. Phys. Lipids. 1998;96:141–157. PubMed

Moore DJ, Rerek ME, Mendelsohn R. Lipid domains and orthorhombic phases in model stratum corneum: evidence from Fourier transform infrared spectroscopy studies. Biochem. Biophys. Res. Commun. 1997;231:797–801. PubMed

Alexander H, Brown S, Danby S, Flohr C. Research techniques made simple: transepidermal water loss measurement as a research tool. J. Investig. Dermatol. 2018;138:2295.e2291–2300.e2291. PubMed

Agner T, Serup J. Sodium lauryl sulphate for irritant patch testing-a dose-response study using bioengineering methods for determination of skin irritation. J. Investig. Dermatol. 1990;95:543–547. PubMed

Grubauer G, Elias PM, Feingold KR. Transepidermal water loss: the signal for recovery of barrier structure and function. J. Lipid Res. 1989;30:323–333. PubMed

Buraczewska I, Berne B, Lindberg M, Törmä H, Lodén M. Changes in skin barrier function following long-term treatment with moisturizers, a randomized controlled trial. Br. J. Dermatol. 2007;156:492–498. PubMed

Held E, Lund H, Agner T. Effect of different moisturizers on SLS-irritated human skin. Contact Dermat. 2001;44:229–234. PubMed

Green PG, Guy RH, Hadgraft J. In vitro and in vivo enhancement of skin permeation with oleic and lauric acids. Int. J. Pharm. 1988;48:103–111.

Kopečná M, et al. Galactosyl pentadecene reversibly enhances transdermal and topical drug delivery. Pharm. Res. 2017;34:2097–2108. PubMed

Levin J, Maibach H. The correlation between transepidermal water loss and percutaneous absorption: An overview. J. Control Release. 2005;103:291–299. PubMed

Rinaldi AO, et al. Direct assessment of skin epithelial barrier by electrical impedance spectroscopy. Allergy. 2019;74:1934–1944. PubMed

Jain, A., Karande, P. & Mitragotri, S. in Percutaneous Penetration Enhancers Drug Penetration Into/Through the Skin 137–149 (Springer, 2017).

Karande P, Jain A, Mitragotri S. Insights into synergistic interactions in binary mixtures of chemical permeation enhancers for transdermal drug delivery. J. Control Release. 2006;115:85–93. PubMed

Nicander I, Ollmar S, Eek A, Rozell BL, Emtestam L. Correlation of impedance response patterns to histological findings in irritant skin reactions induced by various surfactants. Br. J. Dermatol. 1996;134:221–228. PubMed

Karande P, Jain A, Ergun K, Kispersky V, Mitragotri S. Design principles of chemical penetration enhancers for transdermal drug delivery. PNAS. 2005;102:4688–4693. PubMed PMC

Janůšová B, et al. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. BBA-Mol. Cell Biol. Lipids. 2011;1811:129–137. PubMed

Nicander I, Ollmar S, Rozell BL, Eek A, Emtestam L. Electrical impedance measured to five skin depths in mild irritant dermatitis induced by sodium lauryl sulphate. Br. J. Dermatol. 1995;132:718–724. PubMed

Bárány E, Lindberg M, Lodén M. Biophysical characterization of skin damage and recovery after exposure to different surfactants. Contact Dermatitis. 1999;40:98–103. PubMed

Löffler H, Happle R. Profile of irritant patch testing with detergents: sodium lauryl sulfate, sodium laureth sulfate and alkyl polyglucoside. Contact Dermatitis. 2003;48:26–32. PubMed

Lee JY, Effendy I, Maibach HI. Acute irritant contact dermatitis: Recovery time in man. Contact Dermatitis. 1997;36:285–290. PubMed

Kligman AM, Christophers E. Preparation of isolated sheets of human stratum corneum. Arch. Dermatol. 1963;88:702–705. PubMed

Bravo D, Rigley TH, Gibran N, Strong DM, Newman-Gage H. Effect of storage and preservation methods on viability in transplantable human skin allografts. Burns. 2000;26:367–378. doi: 10.1016/s0305-4179(99)00169-2. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...