Proline, hydroxyproline, and pyrrolidone carboxylic acid derivatives as highly efficient but reversible transdermal permeation enhancers
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-09600S
Grantová Agentura České Republiky
19-09600S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000841
European Union
PubMed
36376455
PubMed Central
PMC9663686
DOI
10.1038/s41598-022-24108-6
PII: 10.1038/s41598-022-24108-6
Knihovny.cz E-zdroje
- MeSH
- aplikace kožní MeSH
- hydroxyprolin metabolismus MeSH
- kožní absorpce * MeSH
- kůže metabolismus MeSH
- kyseliny karboxylové metabolismus MeSH
- léčivé přípravky metabolismus MeSH
- lidé MeSH
- organické látky metabolismus MeSH
- permeabilita MeSH
- prolin * metabolismus MeSH
- pyrrolidinony farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydroxyprolin MeSH
- kyseliny karboxylové MeSH
- léčivé přípravky MeSH
- organické látky MeSH
- prolin * MeSH
- pyrrolidinony MeSH
Overcoming the skin barrier properties efficiently, temporarily, and safely for successful transdermal drug delivery remains a challenge. We synthesized three series of potential skin permeation enhancers derived from natural amino acid derivatives proline, 4-hydroxyproline, and pyrrolidone carboxylic acid, which is a component of natural moisturizing factor. Permeation studies using in vitro human skin identified dodecyl prolinates with N-acetyl, propionyl, and butyryl chains (Pro2, Pro3, and Pro4, respectively) as potent enhancers for model drugs theophylline and diclofenac. The proline derivatives were generally more active than 4-hydroxyprolines and pyrrolidone carboxylic acid derivatives. Pro2-4 had acceptable in vitro toxicities on 3T3 fibroblast and HaCaT cell lines with IC50 values in tens of µM. Infrared spectroscopy using the human stratum corneum revealed that these enhancers preferentially interacted with the skin barrier lipids and decreased the overall chain order without causing lipid extraction, while their effects on the stratum corneum protein structures were negligible. The impacts of Pro3 and Pro4 on an in vitro transepidermal water loss and skin electrical impedance were fully reversible. Thus, proline derivatives Pro3 and Pro4 have an advantageous combination of high enhancing potency, low cellular toxicity, and reversible action, which is important for their potential in vivo use as the skin barrier would quickly recover after the drug/enhancer administration is terminated.
Zobrazit více v PubMed
Finnin BC, Morgan TM. Transdermal penetration enhancers: Applications, limitations, and potential. J. Pharm. Sci. 1999;88:955–958. PubMed
Kováčik A, Kopečná M, Vávrová K. Permeation enhancers in transdermal drug delivery: Benefits and limitations. Expert Opin. Drug Deliv. 2020;17:145–155. PubMed
Menon G, Kligman A. Barrier functions of human skin: a holistic view. Skin Pharmacol. Physiol. 2009;22:178–189. PubMed
Benson HA. Transdermal drug delivery: Penetration enhancement techniques. Curr. Drug Deliv. 2005;2:23–33. PubMed
Williams AC, Barry BW. Penetration enhancers. Adv. Drug Deliv. Rev. 2012;64:128–137. PubMed
Wiedersberg S, Guy RH. Transdermal drug delivery: 30+ years of war and still fighting! J. Control Release. 2014;190:150–156. PubMed
Chen Y, Quan P, Liu X, Wang M, Fang L. Novel chemical permeation enhancers for transdermal drug delivery. Asian J. Pharm. Sci. 2014;9:51–64.
Fincher TK, Yoo SD, Player MR, Sowell JW, Sr, Michniak BB. In vitro evaluation of a series of N-dodecanoyl-L-amino acid methyl esters as dermal penetration enhancers. J. Pharm. Sci. 1996;85:920–923. PubMed
Harris WT, et al. n-pentyl N-acetylprolinate. A new skin penetration enhancer. J. Pharm. Sci. 1995;84:640–642. PubMed
Tenjarla SN, Kasina R, Puranajoti P, Omar MS, Harris WT. Synthesis and evaluation of N-acetylprolinate esters—novel skin penetration enhancers. Int. J. Pharm. 1999;192:147–158. PubMed
Hrabálek A, et al. Synthesis and enhancing effect of transkarbam 12 on the transdermal delivery of theophylline, clotrimazole, flobufen, and griseofulvin. Pharm. Res. 2006;23:912–919. PubMed
Novotný M, et al. Ammonium carbamates as highly active transdermal permeation enhancers with a dual mechanism of action. J. Control Release. 2011;150:164–170. PubMed
Novotný J, et al. Dimethylamino acid esters as biodegradable and reversible transdermal permeation enhancers: Effects of linking chain length, chirality and polyfluorination. Pharm. Res. 2009;26:811–821. PubMed
Vávrová K, Hrabalek A, Doležal P, Holas T, Zbytovská J. L-Serine and glycine based ceramide analogues as transdermal permeation enhancers: Polar head size and hydrogen bonding. Bioorg. Med. Chem. Lett. 2003;13:2351–2353. PubMed
Janůšová B, et al. Amino acid derivatives as transdermal permeation enhancers. J. Control Release. 2013;165:91–100. PubMed
Pereira R, Silva SG, Pinheiro M, Reis S, Vale M. Current status of amino acid-based permeation enhancers in transdermal drug delivery. Membranes. 2021;11:343. PubMed PMC
Kopečná M, et al. Esters of terpene alcohols as highly potent, reversible, and low toxic skin penetration enhancers. Sci. Rep. 2019;9:1–12. PubMed PMC
Vávrová K, Hrabálek A, Doležal P. Enhancement effects of (R) and (S) enantiomers and the racemate of a model enhancer on permeation of theophylline through human skin. Arch. Dermatol. Res. 2002;294:383–385. PubMed
Školová B, et al. Ceramides in the skin lipid membranes: Length matters. Langmuir. 2013;29:15624–15633. PubMed
Limanov V, Svitova I, Kruchenok T, Tsvirova I, Yaroslavskaya L. Synthesis and bactericidal activity of amino acid higher ester hydrochlorides. Pharm. Chem. J. 1984;18:708–711.
Kopečná M, et al. Dodecyl amino glucoside enhances transdermal and topical drug delivery via reversible interaction with skin barrier lipids. Pharm. Res. 2017;34:640–653. PubMed
Michniak B, Player M, Godwin D, Lockhart C, Sowell J. In vitro evaluation of azone analogs as dermal penetration enhancers: V. Miscellaneous compounds. Int. J. Pharm. 1998;161:169–178.
Kopečná M, Kováčik A, Novák P, Bettex MB, Vávrová K. Transdermal permeation and skin retention of diclofenac and etofenamate/flufenamic acid from over-the-counter pain relief products. J. Pharm. Sci. 2021;110:2517–2523. PubMed
Nokhodchi A, Sharabiani K, Rashidi MR, Ghafourian T. The effect of terpene concentrations on the skin penetration of diclofenac sodium. Int. J. Pharm. 2007;335:97–105. PubMed
Kopečná M, et al. Fluorescent penetration enhancers reveal complex interactions among the enhancer, drug, solvent, and skin. Mol. Pharm. 2019;16:886–897. PubMed
Vavrova K, Zbytovska J, Hrabalek A. Amphiphilic transdermal permeation enhancers: Structure-activity relationships. Curr. Med. Chem. 2005;12:2273–2291. PubMed
Mendelsohn R, Flach CR, Moore DJ. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim. Biophys. Acta. 2006;1758:923–933. PubMed
Snyder R, Strauss H, Elliger C. Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains. J. Phys. Chem. 1982;86:5145–5150.
Boncheva M, Damien F, Normand V. Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy. Biochim. Biophys. Acta. 2008;1778:1344–1355. PubMed
MacPhail R, Strauss H, Snyder R, Elliger C. Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains. J. Phys. Chem. 1984;88:334–341.
Knutson K, Krill S, Lambert W, Higuchi W. Physicochemical aspects of transdermal permeation. J. Control Release. 1987;6:59–74.
Kim Y-C, Park J-H, Ludovice PJ, Prausnitz MR. Synergistic enhancement of skin permeability by N-lauroylsarcosine and ethanol. Int. J. Pharm. 2008;352:129–138. PubMed
Gniadecka M, Nielsen OF, Christensen DH, Wulf HC. Structure of water, proteins, and lipids in intact human skin, hair, and nail. J. Investig. Dermatol. 1998;110:393–398. PubMed
Takeuchi Y, et al. Effects of fatty acids, fatty amines and propylene glycol on rat stratum corneum lipids and proteins in vitro measured by Fourier transform infrared/attenuated total reflection (FT-IR/ATR) spectroscopy. Chem. Pharm. Bull. 1992;40:1887–1892. PubMed
Lin S-Y, Duan K-J, Lin T-C. Simultaneous determination of the protein conversion process in porcine stratum corneum after pretreatment with skin enhancers by a combined microscopic FT-IR/DSC system. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1996;52:1671–1678.
Mendelsohn R, Moore DJ. Vibrational spectroscopic studies of lipid domains in biomembranes and model systems. Chem. Phys. Lipids. 1998;96:141–157. PubMed
Moore DJ, Rerek ME, Mendelsohn R. Lipid domains and orthorhombic phases in model stratum corneum: evidence from Fourier transform infrared spectroscopy studies. Biochem. Biophys. Res. Commun. 1997;231:797–801. PubMed
Alexander H, Brown S, Danby S, Flohr C. Research techniques made simple: transepidermal water loss measurement as a research tool. J. Investig. Dermatol. 2018;138:2295.e2291–2300.e2291. PubMed
Agner T, Serup J. Sodium lauryl sulphate for irritant patch testing-a dose-response study using bioengineering methods for determination of skin irritation. J. Investig. Dermatol. 1990;95:543–547. PubMed
Grubauer G, Elias PM, Feingold KR. Transepidermal water loss: the signal for recovery of barrier structure and function. J. Lipid Res. 1989;30:323–333. PubMed
Buraczewska I, Berne B, Lindberg M, Törmä H, Lodén M. Changes in skin barrier function following long-term treatment with moisturizers, a randomized controlled trial. Br. J. Dermatol. 2007;156:492–498. PubMed
Held E, Lund H, Agner T. Effect of different moisturizers on SLS-irritated human skin. Contact Dermat. 2001;44:229–234. PubMed
Green PG, Guy RH, Hadgraft J. In vitro and in vivo enhancement of skin permeation with oleic and lauric acids. Int. J. Pharm. 1988;48:103–111.
Kopečná M, et al. Galactosyl pentadecene reversibly enhances transdermal and topical drug delivery. Pharm. Res. 2017;34:2097–2108. PubMed
Levin J, Maibach H. The correlation between transepidermal water loss and percutaneous absorption: An overview. J. Control Release. 2005;103:291–299. PubMed
Rinaldi AO, et al. Direct assessment of skin epithelial barrier by electrical impedance spectroscopy. Allergy. 2019;74:1934–1944. PubMed
Jain, A., Karande, P. & Mitragotri, S. in Percutaneous Penetration Enhancers Drug Penetration Into/Through the Skin 137–149 (Springer, 2017).
Karande P, Jain A, Mitragotri S. Insights into synergistic interactions in binary mixtures of chemical permeation enhancers for transdermal drug delivery. J. Control Release. 2006;115:85–93. PubMed
Nicander I, Ollmar S, Eek A, Rozell BL, Emtestam L. Correlation of impedance response patterns to histological findings in irritant skin reactions induced by various surfactants. Br. J. Dermatol. 1996;134:221–228. PubMed
Karande P, Jain A, Ergun K, Kispersky V, Mitragotri S. Design principles of chemical penetration enhancers for transdermal drug delivery. PNAS. 2005;102:4688–4693. PubMed PMC
Janůšová B, et al. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. BBA-Mol. Cell Biol. Lipids. 2011;1811:129–137. PubMed
Nicander I, Ollmar S, Rozell BL, Eek A, Emtestam L. Electrical impedance measured to five skin depths in mild irritant dermatitis induced by sodium lauryl sulphate. Br. J. Dermatol. 1995;132:718–724. PubMed
Bárány E, Lindberg M, Lodén M. Biophysical characterization of skin damage and recovery after exposure to different surfactants. Contact Dermatitis. 1999;40:98–103. PubMed
Löffler H, Happle R. Profile of irritant patch testing with detergents: sodium lauryl sulfate, sodium laureth sulfate and alkyl polyglucoside. Contact Dermatitis. 2003;48:26–32. PubMed
Lee JY, Effendy I, Maibach HI. Acute irritant contact dermatitis: Recovery time in man. Contact Dermatitis. 1997;36:285–290. PubMed
Kligman AM, Christophers E. Preparation of isolated sheets of human stratum corneum. Arch. Dermatol. 1963;88:702–705. PubMed
Bravo D, Rigley TH, Gibran N, Strong DM, Newman-Gage H. Effect of storage and preservation methods on viability in transplantable human skin allografts. Burns. 2000;26:367–378. doi: 10.1016/s0305-4179(99)00169-2. PubMed DOI