Effect of ion fluxes on regulating the light-induced transthylakoid electric potential difference

. 2023 Jan ; 194 () : 60-69. [epub] 20221109

Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36379178
Odkazy

PubMed 36379178
DOI 10.1016/j.plaphy.2022.10.028
PII: S0981-9428(22)00488-0
Knihovny.cz E-zdroje

The light-induced transthylakoid membrane potential (ΔΨ) can not only drive the ATP synthesis through the ATP-synthase in chloroplasts but serve as an essential modifier in the acclimation of photosynthesis to fluctuating light conditions. It has been manifested that during photosynthesis, the light-induced ΔΨ is responsive to multiple factors among which the ion channels/transporters (e.g., V-K+, VCCN1, and KEA3) are key to adjust the ion distribution on the two sides of the thylakoid membrane and hence shape the kinetics of ΔΨ. However, an in-depth mechanistic understanding of ion fluxes on adjusting the transthylakoid electric potentials is still unclear. This lack of a mechanistic understanding is due to the experimental difficulty of closely observing ion fluxes in vivo and also hacking the evolution of parameters in a highly intertwined photosynthetic network. In this work, a computer model was applied to investigate the roles of ion fluxes on adjusting transthylakoid electric potentials upon a temporal cycle of a period of high illumination followed by a dark-adapted phase. The computing data revealed that, firstly, upon illumination, the dissipation of the steady-ΔΨ by ∼10 mV is contributed from the V-K+-driven K+ flux whilst ∼8 mV of the steady-ΔΨ is dissipated by the VCCN1-pumped Cl- flux, but there were no appreciable KEA3-evoked variations on ΔΨ; secondly, on transition from high light to darkness, V-K+ and KEA3 are serving as major contributors whereas VCCN1 taking a counterbalancing part in shaping a standard trace of ECS (electrochromic shift), which commonly shows a sharp fall to a minimum before returning to the baseline in darkness. Besides, the functional consequences on components of ΔΨ adjusted by every particular ion channel/transporter were also explored. By employing the model, we bring evidence that particular thylakoid-harbored proteins, namely V-K+, VCCN1, and KEA3, function by distinct mechanisms in the dynamic adjustment of electric potential, which might be mainly importnat under fluctuating light conditions.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement

. 2024 Aug ; 161 (1-2) : 21-49. [epub] 20240415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...