Developmental effects of constitutive mTORC1 hyperactivity and environmental enrichment on structural synaptic plasticity and behaviour in a rat model of autism spectrum disorder
Jazyk angličtina Země Francie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36380588
DOI
10.1111/ejn.15864
Knihovny.cz E-zdroje
- Klíčová slova
- Eker rats, animal models of autism, cingulate gyrus, dendritic spine, enriched environment, open field test, tuberous sclerosis complex,
- MeSH
- hipokampus metabolismus MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- mTORC1 metabolismus MeSH
- neuroplasticita MeSH
- poruchy autistického spektra * genetika metabolismus MeSH
- pyramidové buňky metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mTORC1 MeSH
Autism spectrum disorder (ASD) is a neurodevelopmental condition causing a range of social and communication impairments. Although the role of multiple genes and environmental factors has been reported, the effects of the interplay between genes and environment on the onset and progression of the disease remains elusive. We housed wild-type (Tsc2+/+) and tuberous sclerosis 2 deficient (Tsc2+/-) Eker rats (ASD model) in individually ventilated cages or enriched conditions and conducted a series of behavioural tests followed by the histochemical analysis of dendritic spines and plasticity in three age groups (days 45, 90 and 365). The elevated plus-maze test revealed a reduction of anxiety by enrichment, whereas the mobility of young and adult Eker rats in the open field was lower compared to the wild type. In the social interaction test, an enriched environment reduced social contact in the youngest group and increased anogenital exploration in 90- and 365-day-old rats. Self-grooming was increased by environmental enrichment in young and adult rats and decreased in aged Eker rats. Dendritic spine counts revealed an increased spine density in the cingulate gyrus in adult Ekers irrespective of housing conditions, whereas spine density in hippocampal pyramidal neurons was comparable across all genotypes and groups. Morphometric analysis of dendritic spines revealed age-related changes in spine morphology and density, which were responsive to animal genotype and environment. Taken together, our findings suggest that under TSC2 haploinsufficiency and mTORC1 hyperactivity, the expression of behavioural signs and neuroplasticity in Eker rats can be differentially influenced by the developmental stage and environment.
3rd Faculty of Medicine Charles University Prague Czech Republic
Faculty of Science and Engineering University of Greenwich London Chatham Maritime UK
Zobrazit více v PubMed
Bai, D., Yip, B. H. K., Windham, G. C., Sourander, A., Francis, R., Yoffe, R., Glasson, E., Mahjani, B., Suominen, A., Leonard, H., Gissler, M., Buxbaum, J. D., Wong, K., Schendel, D., Kodesh, A., Breshnahan, M., Levine, S. Z., Parner, E. T., Hansen, S. N., … Sandin, S. (2019). Association of genetic and environmental factors with autism in a 5-country cohort. JAMA Psychiatry, 76, 1035-1043. https://doi.org/10.1001/jamapsychiatry.2019.1411
Brain, P., & Benton, D. (1979). The interpretation of physiological correlates of differential housing in laboratory rats. Life Sciences, 24, 99-115. https://doi.org/10.1016/0024-3205(79)90119-X
Chaste, P., & Leboyer, M. (2012). Autism risk factors: Genes, environment, and gene-environment interactions. Dialogues in Clinical Neuroscience, 14, 281-292. https://doi.org/10.31887/DCNS.2012.14.3/pchaste
Cheroni, C., Caporale, N., & Testa, G. (2020). Autism spectrum disorder at the crossroad between genes and environment: Contributions, convergences, and interactions in ASD developmental pathophysiology. Molecular Autism, 11, 69. https://doi.org/10.1186/s13229-020-00370-1
Crino, P. B. (2016). The mTOR signalling cascade: Paving new roads to cure neurological disease. Nature Reviews. Neurology, 12, 379-392. https://doi.org/10.1038/nrneurol.2016.81
Curatolo, P., Moavero, R., van Scheppingen, J., & Aronica, E. (2018). mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Review of Neurotherapeutics, 18, 185-201. https://doi.org/10.1080/14737175.2018.1428562
Davidovitch, M., Hemo, B., Manning-Courtney, P., & Fombonne, E. (2013). Prevalence and incidence of autism spectrum disorder in an Israeli population. Journal of Autism and Developmental Disorders, 43, 785-793. https://doi.org/10.1007/s10803-012-1611-z
de la Torre-Ubieta, L., Won, H., Stein, J. L., & Geschwind, D. H. (2016). Advancing the understanding of autism disease mechanisms through genetics. Nature Medicine, 22, 345-361. https://doi.org/10.1038/nm.4071
Eker, R. (1954). Familial renal adenomas in Wistar rats: A preliminary report. Acta Pathologica et Microbiologica Scandinavica, 34, 554-562. https://doi.org/10.1111/j.1699-0463.1954.tb00301.x
Erli, F., Palmos, A. B., Raval, P., Mukherjee, J., Sellers, K. J., Gatford, N. J. F., Moss, S. J., Brandon, N. J., Penzes, P., & Srivastava, D. P. (2020). Estradiol reverses excitatory synapse loss in a cellular model of neuropsychiatric disorders. Translational Psychiatry, 10, 16. https://doi.org/10.1038/s41398-020-0682-4
Eslinger, P. J., Anders, S., Ballarini, T., Boutros, S., Krach, S., Mayer, A. V., Moll, J., Newton, T. L., Schroeter, M. L., de Oliveira-Souza, R., Raber, J., Sullivan, G. B., Swain, J. E., Lowe, L., & Zahn, R. (2021). The neuroscience of social feelings: Mechanisms of adaptive social functioning. Neuroscience and Biobehavioral Reviews, 128, 592-620. https://doi.org/10.1016/j.neubiorev.2021.05.028
Feliciano, D. M. (2020). The neurodevelopmental pathogenesis of tuberous sclerosis complex (TSC). Frontiers in Neuroanatomy, 14, 39. https://doi.org/10.3389/fnana.2020.00039
Friard, O., & Gamba, M. (2016). BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods in Ecology and Evolution, 7, 1325-1330. https://doi.org/10.1111/2041-210X.12584
Frye, C. A., Petralia, S. M., & Rhodes, M. E. (2000). Estrous cycle and sex differences in performance on anxiety tasks coincide with increases in hippocampal progesterone and 3alpha,5alpha-THP. Pharmacology, Biochemistry, and Behavior, 67, 587-596. https://doi.org/10.1016/S0091-3057(00)00392-0
Fu, C., & Ess, K. C. (2013). Conditional and domain-specific inactivation of the Tsc2 gene in neural progenitor cells. Genesis, 51, 284-292. https://doi.org/10.1002/dvg.22377
Gadad, B. S., Hewitson, L., Young, K. A., & German, D. C. (2013). Neuropathology and animal models of autism: Genetic and environmental factors. Autism Research and Treatment, 2013, 731935. https://doi.org/10.1155/2013/731935
Gonzalez, C. L., & Kolb, B. (2003). A comparison of different models of stroke on behaviour and brain morphology. The European Journal of Neuroscience, 18, 1950-1962. https://doi.org/10.1046/j.1460-9568.2003.02928.x
Granak, S., Hoschl, C., & Ovsepian, S. V. (2021). Dendritic spine remodeling and plasticity under general anesthesia. Brain Structure & Function, 226, 2001-2017. https://doi.org/10.1007/s00429-021-02308-6
Henske, E. P., Jozwiak, S., Kingswood, J. C., Sampson, J. R., & Thiele, E. A. (2016). Tuberous sclerosis complex. Nature Reviews. Disease Primers, 2, 16035. https://doi.org/10.1038/nrdp.2016.35
Hoeffer, C. A., & Klann, E. (2010). mTOR signaling: At the crossroads of plasticity, memory and disease. Trends in Neurosciences, 33, 67-75. https://doi.org/10.1016/j.tins.2009.11.003
Joensuu, M., Lanoue, V., & Hotulainen, P. (2018). Dendritic spine actin cytoskeleton in autism spectrum disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 84, 362-381. https://doi.org/10.1016/j.pnpbp.2017.08.023
Kalueff, A. V., & Tuohimaa, P. (2005a). Contrasting grooming phenotypes in three mouse strains markedly different in anxiety and activity (129S1, BALB/c and NMRI). Behavioural Brain Research, 160, 1-10. https://doi.org/10.1016/j.bbr.2004.11.010
Kalueff, A. V., & Tuohimaa, P. (2005b). The grooming analysis algorithm discriminates between different levels of anxiety in rats: Potential utility for neurobehavioural stress research. Journal of Neuroscience Methods, 143, 169-177. https://doi.org/10.1016/j.jneumeth.2004.10.001
Kenerson, H., Dundon, T. A., & Yeung, R. S. (2005). Effects of rapamycin in the Eker rat model of tuberous sclerosis complex. Pediatric Research, 57, 67-75. https://doi.org/10.1203/01.PDR.0000147727.78571.07
Kutna, V., O'Leary, V. B., Hoschl, C., & Ovsepian, S. V. (2022). Cerebellar demyelination and neurodegeneration associated with mTORC1 hyperactivity may contribute to the developmental onset of autism-like neurobehavioral phenotype in a rat model. Autism Research, 15, 791-805. https://doi.org/10.1002/aur.2688
Kutna, V., O'Leary, V. B., Newman, E., Hoschl, C., & Ovsepian, S. V. (2021). Revisiting brain tuberous sclerosis complex in rat and human: Shared molecular and cellular pathology leads to distinct neurophysiological and behavioral phenotypes. Neurotherapeutics, 18, 845-858. https://doi.org/10.1007/s13311-020-01000-7
Kutna, V., Uttl, L., Waltereit, R., Kristofikova, Z., Kaping, D., Petrasek, T., Hoschl, C., & Ovsepian, S. V. (2020). Tuberous sclerosis (tsc2+/−) model Eker rats reveals extensive neuronal loss with microglial invasion and vascular remodeling related to brain neoplasia. Neurotherapeutics, 17, 329-339. https://doi.org/10.1007/s13311-019-00812-6
Lopes, D. A., Souza, T. M. O., de Andrade, J. S., Silva, M. F. S., Antunes, H. K. M., Le Sueur Maluf, L., Cespedes, I. C., & Viana, M. B. (2019). Anxiolytic and panicolytic-like effects of environmental enrichment seem to be modulated by serotonin neurons located in the dorsal subnucleus of the dorsal raphe. Brain Research Bulletin, 150, 272-280. https://doi.org/10.1016/j.brainresbull.2019.06.012
Ma, T., Hoeffer, C. A., Capetillo-Zarate, E., Yu, F., Wong, H., Lin, M. T., Tampellini, D., Klann, E., Blitzer, R. D., & Gouras, G. K. (2010). Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer's disease. PLoS ONE, 5, e12845. https://doi.org/10.1371/journal.pone.0012845
Mancuso, J. J., Chen, Y., Li, X., Xue, Z., & Wong, S. T. (2013). Methods of dendritic spine detection: From Golgi to high-resolution optical imaging. Neuroscience, 251, 129-140. https://doi.org/10.1016/j.neuroscience.2012.04.010
Marcondes, F. K., Miguel, K. J., Melo, L. L., & Spadari-Bratfisch, R. C. (2001). Estrous cycle influences the response of female rats in the elevated plus-maze test. Physiology & Behavior, 74, 435-440. https://doi.org/10.1016/S0031-9384(01)00593-5
Martin, E. I., Ressler, K. J., Binder, E., & Nemeroff, C. B. (2010). The neurobiology of anxiety disorders: Brain imaging, genetics, and psychoneuroendocrinology. Clinics in Laboratory Medicine, 30, 865-891. https://doi.org/10.1016/j.cll.2010.07.006
Mechan, A. O., Moran, P. M., Elliott, M., Young, A. J., Joseph, M. H., & Green, R. (2002). A comparison between dark agouti and Sprague-Dawley rats in their behaviour on the elevated plus-maze, open-field apparatus and activity meters, and their response to diazepam. Psychopharmacology, 159, 188-195. https://doi.org/10.1007/s002130100902
Meikle, L., Pollizzi, K., Egnor, A., Kramvis, I., Lane, H., Sahin, M., & Kwiatkowski, D. J. (2008). Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: Effects on mTORC1 and Akt signaling lead to improved survival and function. The Journal of Neuroscience, 28, 5422-5432. https://doi.org/10.1523/JNEUROSCI.0955-08.2008
Miller, C. K., Halbing, A. A., Patisaul, H. B., & Meitzen, J. (2021). Interactions of the estrous cycle, novelty, and light on female and male rat open field locomotor and anxiety-related behaviors. Physiology & Behavior, 228, 113203. https://doi.org/10.1016/j.physbeh.2020.113203
Mizuguchi, M., Takashima, S., Yamanouchi, H., Nakazato, Y., Mitani, H., & Hino, O. (2000). Novel cerebral lesions in the Eker rat model of tuberous sclerosis: Cortical tuber and anaplastic ganglioglioma. Journal of Neuropathology and Experimental Neurology, 59, 188-196. https://doi.org/10.1093/jnen/59.3.188
Ozonoff, S., Heung, K., Byrd, R., Hansen, R., & Hertz-Picciotto, I. (2008). The onset of autism: Patterns of symptom emergence in the first years of life. Autism Research, 1, 320-328. https://doi.org/10.1002/aur.53
Patro, N., Kumar, K., & Patro, I. (2013). Quick Golgi method: Modified for high clarity and better neuronal anatomy. Indian Journal of Experimental Biology, 51, 685-693.
Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates. Academic Press/Elsevier, Amsterdam.
Peier, A. M., McIlwain, K. L., Kenneson, A., Warren, S. T., Paylor, R., & Nelson, D. L. (2000). (over)correction of FMR1 deficiency with YAC transgenics: Behavioral and physical features. Human Molecular Genetics, 9, 1145-1159. https://doi.org/10.1093/hmg/9.8.1145
Penzes, P., Buonanno, A., Passafaro, M., Sala, C., & Sweet, R. A. (2013). Developmental vulnerability of synapses and circuits associated with neuropsychiatric disorders. Journal of Neurochemistry, 126, 165-182. https://doi.org/10.1111/jnc.12261
Penzes, P., Cahill, M. E., Jones, K. A., VanLeeuwen, J. E., & Woolfrey, K. M. (2011). Dendritic spine pathology in neuropsychiatric disorders. Nature Neuroscience, 14, 285-293. https://doi.org/10.1038/nn.2741
Petrasek, T., Vojtechova, I., Klovrza, O., Tuckova, K., Vejmola, C., Rak, J., Sulakova, A., Kaping, D., Bernhardt, N., de Vries, P. J., Otahal, J., & Waltereit, R. (2021). mTOR inhibitor improves autistic-like behaviors related to Tsc2 haploinsufficiency but not following developmental status epilepticus. Journal of Neurodevelopmental Disorders, 13, 14. https://doi.org/10.1186/s11689-021-09357-2
Ramos, A. (2008). Animal models of anxiety: Do I need multiple tests? Trends in Pharmacological Sciences, 29, 493-498. https://doi.org/10.1016/j.tips.2008.07.005
Reith, R. M., McKenna, J., Wu, H., Hashmi, S. S., Cho, S. H., Dash, P. K., & Gambello, M. J. (2013). Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiology of Disease, 51, 93-103. https://doi.org/10.1016/j.nbd.2012.10.014
Rennebeck, G., Kleymenova, E. V., Anderson, R., Yeung, R. S., Artzt, K., & Walker, C. L. (1998). Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development. Proceedings of the National Academy of Sciences of the United States of America, 95, 15629-15634. https://doi.org/10.1073/pnas.95.26.15629
Rochefort, N. L., & Konnerth, A. (2012). Dendritic spines: From structure to in vivo function. EMBO Reports, 13, 699-708. https://doi.org/10.1038/embor.2012.102
Schneider, M., de Vries, P. J., Schonig, K., Rossner, V., & Waltereit, R. (2017). mTOR inhibitor reverses autistic-like social deficit behaviours in adult rats with both Tsc2 haploinsufficiency and developmental status epilepticus. European Archives of Psychiatry and Clinical Neuroscience, 267, 455-463. https://doi.org/10.1007/s00406-016-0703-8
Schwartzkroin, P. A., Roper, S. N., & Wenzel, H. J. (2004). Cortical dysplasia and epilepsy: Animal models. Advances in Experimental Medicine and Biology, 548, 145-174. https://doi.org/10.1007/978-1-4757-6376-8_12
Specchio, N., Pietrafusa, N., Trivisano, M., Moavero, R., De Palma, L., Ferretti, A., Vigevano, F., & Curatolo, P. (2020). Autism and epilepsy in patients with tuberous sclerosis complex. Frontiers in Neurology, 11, 639. https://doi.org/10.3389/fneur.2020.00639
Stafstrom, C. E. (2005). Progress toward understanding epileptogenesis in tuberous sclerosis complex: Two hits, no outs, and the Eker rat is up to bat. Epilepsy Curr, 5, 136-138. https://doi.org/10.1111/j.1535-7511.2005.00045.x
Stafstrom, C. E. (2006). Is cognition altered in the Eker rat model of tuberous sclerosis complex? Epilepsy Curr, 6, 210-212. https://doi.org/10.1111/j.1535-7511.2006.00148.x
Stins, J. F., & Emck, C. (2018). Balance performance in autism: A brief overview. Frontiers in Psychology, 9, 901. https://doi.org/10.3389/fpsyg.2018.00901
Sudakov, S. K., Nazarova, G. A., Alekseeva, E. V., & Bashkatova, V. G. (2013). Estimation of the level of anxiety in rats: Differences in results of open-field test, elevated plus-maze test, and Vogel's conflict test. Bulletin of Experimental Biology and Medicine, 155, 295-297. https://doi.org/10.1007/s10517-013-2136-y
Sztainberg, Y., Kuperman, Y., Tsoory, M., Lebow, M., & Chen, A. (2010). The anxiolytic effect of environmental enrichment is mediated via amygdalar CRF receptor type 1. Molecular Psychiatry, 15, 905-917. https://doi.org/10.1038/mp.2009.151
Talkowski, M. E., Minikel, E. V., & Gusella, J. F. (2014). Autism spectrum disorder genetics: Diverse genes with diverse clinical outcomes. Harvard Review of Psychiatry, 22, 65-75. https://doi.org/10.1097/HRP.0000000000000002
Tang, G., Gudsnuk, K., Kuo, S. H., Cotrina, M. L., Rosoklija, G., Sosunov, A., Sonders, M. S., Kanter, E., Castagna, C., Yamamoto, A., Yue, Z., Arancio, O., Peterson, B. S., Champagne, F., Dwork, A. J., Goldman, J., & Sulzer, D. (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron, 83, 1131-1143. https://doi.org/10.1016/j.neuron.2014.07.040
Tavazoie, S. F., Alvarez, V. A., Ridenour, D. A., Kwiatkowski, D. J., & Sabatini, B. L. (2005). Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nature Neuroscience, 8, 1727-1734. https://doi.org/10.1038/nn1566
Tsai, P. T., Hull, C., Chu, Y., Greene-Colozzi, E., Sadowski, A. R., Leech, J. M., Steinberg, J., Crawley, J. N., Regehr, W. G., & Sahin, M. (2012). Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature, 488, 647-651. https://doi.org/10.1038/nature11310
Tsai, P. T., Rudolph, S., Guo, C., Ellegood, J., Gibson, J. M., Schaeffer, S. M., Mogavero, J., Lerch, J. P., Regehr, W., & Sahin, M. (2018). Sensitive periods for cerebellar-mediated autistic-like behaviors. Cell Reports, 25(2), 357-367.e4. https://doi.org/10.1016/j.celrep.2018.09.039
Tseng, C. J., McDougle, C. J., Hooker, J. M., & Zurcher, N. R. (2022). Epigenetics of autism Spectrum disorder: Histone deacetylases. Biological Psychiatry, 91(11), 922-933. https://doi.org/10.1016/j.biopsych.2021.11.021
Van de Weerd, H. A., Aarsen, E. L., Mulder, A., Kruitwagen, C. L., Hendriksen, C. F., & Baumans, V. (2002). Effects of environmental enrichment for mice: Variation in experimental results. Journal of Applied Animal Welfare Science, 5, 87-109. https://doi.org/10.1207/S15327604JAWS0502_01
Waltereit, R., Japs, B., Schneider, M., de Vries, P. J., & Bartsch, D. (2011). Epilepsy and Tsc2 haploinsufficiency lead to autistic-like social deficit behaviors in rats. Behavior Genetics, 41, 364-372. https://doi.org/10.1007/s10519-010-9399-0
Wenzel, H. J., Patel, L. S., Robbins, C. A., Emmi, A., Yeung, R. S., & Schwartzkroin, P. A. (2004). Morphology of cerebral lesions in the Eker rat model of tuberous sclerosis. Acta Neuropathologica, 108, 97-108. https://doi.org/10.1007/s00401-004-0865-8
Werling, D. M., & Geschwind, D. H. (2013). Sex differences in autism spectrum disorders. Current Opinion in Neurology, 26, 146-153. https://doi.org/10.1097/WCO.0b013e32835ee548
Winter, S. S., Koppen, J. R., Ebert, T. B., & Wallace, D. G. (2013). Limbic system structures differentially contribute to exploratory trip organization of the rat. Hippocampus, 23, 139-152. https://doi.org/10.1002/hipo.22075
Won, H., Mah, W., & Kim, E. (2013). Autism spectrum disorder causes, mechanisms, and treatments: Focus on neuronal synapses. Frontiers in Molecular Neuroscience, 6, 19. https://doi.org/10.3389/fnmol.2013.00019
Wurbel, H. (2001). Ideal homes? Housing effects on rodent brain and behaviour. Trends in Neurosciences, 24, 207-211. https://doi.org/10.1016/S0166-2236(00)01718-5
Yasuda, S., Sugiura, H., Katsurabayashi, S., Shimada, T., Tanaka, H., Takasaki, K., Iwasaki, K., Kobayashi, T., Hino, O., & Yamagata, K. (2014). Activation of Rheb, but not of mTORC1, impairs spine synapse morphogenesis in tuberous sclerosis complex. Scientific Reports, 4, 5155. https://doi.org/10.1038/srep05155
Yeung, R. S. (2004). Lessons from the Eker rat model: From cage to bedside. Current Molecular Medicine, 4, 799-806. https://doi.org/10.2174/1566524043359791
Yeung, R. S., Katsetos, C. D., & Klein-Szanto, A. (1997). Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. The American Journal of Pathology, 151, 1477-1486.
Zhou, X., Zhu, J., Liu, K. Y., Sabatini, B. L., & Wong, S. T. (2006). Mutual information-based feature selection in studying perturbation of dendritic structure caused by TSC2 inactivation. Neuroinformatics, 4, 81-94. https://doi.org/10.1385/NI:4:1:81