Developmental effects of constitutive mTORC1 hyperactivity and environmental enrichment on structural synaptic plasticity and behaviour in a rat model of autism spectrum disorder

. 2023 Jan ; 57 (1) : 17-31. [epub] 20221209

Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36380588

Autism spectrum disorder (ASD) is a neurodevelopmental condition causing a range of social and communication impairments. Although the role of multiple genes and environmental factors has been reported, the effects of the interplay between genes and environment on the onset and progression of the disease remains elusive. We housed wild-type (Tsc2+/+) and tuberous sclerosis 2 deficient (Tsc2+/-) Eker rats (ASD model) in individually ventilated cages or enriched conditions and conducted a series of behavioural tests followed by the histochemical analysis of dendritic spines and plasticity in three age groups (days 45, 90 and 365). The elevated plus-maze test revealed a reduction of anxiety by enrichment, whereas the mobility of young and adult Eker rats in the open field was lower compared to the wild type. In the social interaction test, an enriched environment reduced social contact in the youngest group and increased anogenital exploration in 90- and 365-day-old rats. Self-grooming was increased by environmental enrichment in young and adult rats and decreased in aged Eker rats. Dendritic spine counts revealed an increased spine density in the cingulate gyrus in adult Ekers irrespective of housing conditions, whereas spine density in hippocampal pyramidal neurons was comparable across all genotypes and groups. Morphometric analysis of dendritic spines revealed age-related changes in spine morphology and density, which were responsive to animal genotype and environment. Taken together, our findings suggest that under TSC2 haploinsufficiency and mTORC1 hyperactivity, the expression of behavioural signs and neuroplasticity in Eker rats can be differentially influenced by the developmental stage and environment.

Zobrazit více v PubMed

Bai, D., Yip, B. H. K., Windham, G. C., Sourander, A., Francis, R., Yoffe, R., Glasson, E., Mahjani, B., Suominen, A., Leonard, H., Gissler, M., Buxbaum, J. D., Wong, K., Schendel, D., Kodesh, A., Breshnahan, M., Levine, S. Z., Parner, E. T., Hansen, S. N., … Sandin, S. (2019). Association of genetic and environmental factors with autism in a 5-country cohort. JAMA Psychiatry, 76, 1035-1043. https://doi.org/10.1001/jamapsychiatry.2019.1411

Brain, P., & Benton, D. (1979). The interpretation of physiological correlates of differential housing in laboratory rats. Life Sciences, 24, 99-115. https://doi.org/10.1016/0024-3205(79)90119-X

Chaste, P., & Leboyer, M. (2012). Autism risk factors: Genes, environment, and gene-environment interactions. Dialogues in Clinical Neuroscience, 14, 281-292. https://doi.org/10.31887/DCNS.2012.14.3/pchaste

Cheroni, C., Caporale, N., & Testa, G. (2020). Autism spectrum disorder at the crossroad between genes and environment: Contributions, convergences, and interactions in ASD developmental pathophysiology. Molecular Autism, 11, 69. https://doi.org/10.1186/s13229-020-00370-1

Crino, P. B. (2016). The mTOR signalling cascade: Paving new roads to cure neurological disease. Nature Reviews. Neurology, 12, 379-392. https://doi.org/10.1038/nrneurol.2016.81

Curatolo, P., Moavero, R., van Scheppingen, J., & Aronica, E. (2018). mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Review of Neurotherapeutics, 18, 185-201. https://doi.org/10.1080/14737175.2018.1428562

Davidovitch, M., Hemo, B., Manning-Courtney, P., & Fombonne, E. (2013). Prevalence and incidence of autism spectrum disorder in an Israeli population. Journal of Autism and Developmental Disorders, 43, 785-793. https://doi.org/10.1007/s10803-012-1611-z

de la Torre-Ubieta, L., Won, H., Stein, J. L., & Geschwind, D. H. (2016). Advancing the understanding of autism disease mechanisms through genetics. Nature Medicine, 22, 345-361. https://doi.org/10.1038/nm.4071

Eker, R. (1954). Familial renal adenomas in Wistar rats: A preliminary report. Acta Pathologica et Microbiologica Scandinavica, 34, 554-562. https://doi.org/10.1111/j.1699-0463.1954.tb00301.x

Erli, F., Palmos, A. B., Raval, P., Mukherjee, J., Sellers, K. J., Gatford, N. J. F., Moss, S. J., Brandon, N. J., Penzes, P., & Srivastava, D. P. (2020). Estradiol reverses excitatory synapse loss in a cellular model of neuropsychiatric disorders. Translational Psychiatry, 10, 16. https://doi.org/10.1038/s41398-020-0682-4

Eslinger, P. J., Anders, S., Ballarini, T., Boutros, S., Krach, S., Mayer, A. V., Moll, J., Newton, T. L., Schroeter, M. L., de Oliveira-Souza, R., Raber, J., Sullivan, G. B., Swain, J. E., Lowe, L., & Zahn, R. (2021). The neuroscience of social feelings: Mechanisms of adaptive social functioning. Neuroscience and Biobehavioral Reviews, 128, 592-620. https://doi.org/10.1016/j.neubiorev.2021.05.028

Feliciano, D. M. (2020). The neurodevelopmental pathogenesis of tuberous sclerosis complex (TSC). Frontiers in Neuroanatomy, 14, 39. https://doi.org/10.3389/fnana.2020.00039

Friard, O., & Gamba, M. (2016). BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods in Ecology and Evolution, 7, 1325-1330. https://doi.org/10.1111/2041-210X.12584

Frye, C. A., Petralia, S. M., & Rhodes, M. E. (2000). Estrous cycle and sex differences in performance on anxiety tasks coincide with increases in hippocampal progesterone and 3alpha,5alpha-THP. Pharmacology, Biochemistry, and Behavior, 67, 587-596. https://doi.org/10.1016/S0091-3057(00)00392-0

Fu, C., & Ess, K. C. (2013). Conditional and domain-specific inactivation of the Tsc2 gene in neural progenitor cells. Genesis, 51, 284-292. https://doi.org/10.1002/dvg.22377

Gadad, B. S., Hewitson, L., Young, K. A., & German, D. C. (2013). Neuropathology and animal models of autism: Genetic and environmental factors. Autism Research and Treatment, 2013, 731935. https://doi.org/10.1155/2013/731935

Gonzalez, C. L., & Kolb, B. (2003). A comparison of different models of stroke on behaviour and brain morphology. The European Journal of Neuroscience, 18, 1950-1962. https://doi.org/10.1046/j.1460-9568.2003.02928.x

Granak, S., Hoschl, C., & Ovsepian, S. V. (2021). Dendritic spine remodeling and plasticity under general anesthesia. Brain Structure & Function, 226, 2001-2017. https://doi.org/10.1007/s00429-021-02308-6

Henske, E. P., Jozwiak, S., Kingswood, J. C., Sampson, J. R., & Thiele, E. A. (2016). Tuberous sclerosis complex. Nature Reviews. Disease Primers, 2, 16035. https://doi.org/10.1038/nrdp.2016.35

Hoeffer, C. A., & Klann, E. (2010). mTOR signaling: At the crossroads of plasticity, memory and disease. Trends in Neurosciences, 33, 67-75. https://doi.org/10.1016/j.tins.2009.11.003

Joensuu, M., Lanoue, V., & Hotulainen, P. (2018). Dendritic spine actin cytoskeleton in autism spectrum disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 84, 362-381. https://doi.org/10.1016/j.pnpbp.2017.08.023

Kalueff, A. V., & Tuohimaa, P. (2005a). Contrasting grooming phenotypes in three mouse strains markedly different in anxiety and activity (129S1, BALB/c and NMRI). Behavioural Brain Research, 160, 1-10. https://doi.org/10.1016/j.bbr.2004.11.010

Kalueff, A. V., & Tuohimaa, P. (2005b). The grooming analysis algorithm discriminates between different levels of anxiety in rats: Potential utility for neurobehavioural stress research. Journal of Neuroscience Methods, 143, 169-177. https://doi.org/10.1016/j.jneumeth.2004.10.001

Kenerson, H., Dundon, T. A., & Yeung, R. S. (2005). Effects of rapamycin in the Eker rat model of tuberous sclerosis complex. Pediatric Research, 57, 67-75. https://doi.org/10.1203/01.PDR.0000147727.78571.07

Kutna, V., O'Leary, V. B., Hoschl, C., & Ovsepian, S. V. (2022). Cerebellar demyelination and neurodegeneration associated with mTORC1 hyperactivity may contribute to the developmental onset of autism-like neurobehavioral phenotype in a rat model. Autism Research, 15, 791-805. https://doi.org/10.1002/aur.2688

Kutna, V., O'Leary, V. B., Newman, E., Hoschl, C., & Ovsepian, S. V. (2021). Revisiting brain tuberous sclerosis complex in rat and human: Shared molecular and cellular pathology leads to distinct neurophysiological and behavioral phenotypes. Neurotherapeutics, 18, 845-858. https://doi.org/10.1007/s13311-020-01000-7

Kutna, V., Uttl, L., Waltereit, R., Kristofikova, Z., Kaping, D., Petrasek, T., Hoschl, C., & Ovsepian, S. V. (2020). Tuberous sclerosis (tsc2+/−) model Eker rats reveals extensive neuronal loss with microglial invasion and vascular remodeling related to brain neoplasia. Neurotherapeutics, 17, 329-339. https://doi.org/10.1007/s13311-019-00812-6

Lopes, D. A., Souza, T. M. O., de Andrade, J. S., Silva, M. F. S., Antunes, H. K. M., Le Sueur Maluf, L., Cespedes, I. C., & Viana, M. B. (2019). Anxiolytic and panicolytic-like effects of environmental enrichment seem to be modulated by serotonin neurons located in the dorsal subnucleus of the dorsal raphe. Brain Research Bulletin, 150, 272-280. https://doi.org/10.1016/j.brainresbull.2019.06.012

Ma, T., Hoeffer, C. A., Capetillo-Zarate, E., Yu, F., Wong, H., Lin, M. T., Tampellini, D., Klann, E., Blitzer, R. D., & Gouras, G. K. (2010). Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer's disease. PLoS ONE, 5, e12845. https://doi.org/10.1371/journal.pone.0012845

Mancuso, J. J., Chen, Y., Li, X., Xue, Z., & Wong, S. T. (2013). Methods of dendritic spine detection: From Golgi to high-resolution optical imaging. Neuroscience, 251, 129-140. https://doi.org/10.1016/j.neuroscience.2012.04.010

Marcondes, F. K., Miguel, K. J., Melo, L. L., & Spadari-Bratfisch, R. C. (2001). Estrous cycle influences the response of female rats in the elevated plus-maze test. Physiology & Behavior, 74, 435-440. https://doi.org/10.1016/S0031-9384(01)00593-5

Martin, E. I., Ressler, K. J., Binder, E., & Nemeroff, C. B. (2010). The neurobiology of anxiety disorders: Brain imaging, genetics, and psychoneuroendocrinology. Clinics in Laboratory Medicine, 30, 865-891. https://doi.org/10.1016/j.cll.2010.07.006

Mechan, A. O., Moran, P. M., Elliott, M., Young, A. J., Joseph, M. H., & Green, R. (2002). A comparison between dark agouti and Sprague-Dawley rats in their behaviour on the elevated plus-maze, open-field apparatus and activity meters, and their response to diazepam. Psychopharmacology, 159, 188-195. https://doi.org/10.1007/s002130100902

Meikle, L., Pollizzi, K., Egnor, A., Kramvis, I., Lane, H., Sahin, M., & Kwiatkowski, D. J. (2008). Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: Effects on mTORC1 and Akt signaling lead to improved survival and function. The Journal of Neuroscience, 28, 5422-5432. https://doi.org/10.1523/JNEUROSCI.0955-08.2008

Miller, C. K., Halbing, A. A., Patisaul, H. B., & Meitzen, J. (2021). Interactions of the estrous cycle, novelty, and light on female and male rat open field locomotor and anxiety-related behaviors. Physiology & Behavior, 228, 113203. https://doi.org/10.1016/j.physbeh.2020.113203

Mizuguchi, M., Takashima, S., Yamanouchi, H., Nakazato, Y., Mitani, H., & Hino, O. (2000). Novel cerebral lesions in the Eker rat model of tuberous sclerosis: Cortical tuber and anaplastic ganglioglioma. Journal of Neuropathology and Experimental Neurology, 59, 188-196. https://doi.org/10.1093/jnen/59.3.188

Ozonoff, S., Heung, K., Byrd, R., Hansen, R., & Hertz-Picciotto, I. (2008). The onset of autism: Patterns of symptom emergence in the first years of life. Autism Research, 1, 320-328. https://doi.org/10.1002/aur.53

Patro, N., Kumar, K., & Patro, I. (2013). Quick Golgi method: Modified for high clarity and better neuronal anatomy. Indian Journal of Experimental Biology, 51, 685-693.

Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates. Academic Press/Elsevier, Amsterdam.

Peier, A. M., McIlwain, K. L., Kenneson, A., Warren, S. T., Paylor, R., & Nelson, D. L. (2000). (over)correction of FMR1 deficiency with YAC transgenics: Behavioral and physical features. Human Molecular Genetics, 9, 1145-1159. https://doi.org/10.1093/hmg/9.8.1145

Penzes, P., Buonanno, A., Passafaro, M., Sala, C., & Sweet, R. A. (2013). Developmental vulnerability of synapses and circuits associated with neuropsychiatric disorders. Journal of Neurochemistry, 126, 165-182. https://doi.org/10.1111/jnc.12261

Penzes, P., Cahill, M. E., Jones, K. A., VanLeeuwen, J. E., & Woolfrey, K. M. (2011). Dendritic spine pathology in neuropsychiatric disorders. Nature Neuroscience, 14, 285-293. https://doi.org/10.1038/nn.2741

Petrasek, T., Vojtechova, I., Klovrza, O., Tuckova, K., Vejmola, C., Rak, J., Sulakova, A., Kaping, D., Bernhardt, N., de Vries, P. J., Otahal, J., & Waltereit, R. (2021). mTOR inhibitor improves autistic-like behaviors related to Tsc2 haploinsufficiency but not following developmental status epilepticus. Journal of Neurodevelopmental Disorders, 13, 14. https://doi.org/10.1186/s11689-021-09357-2

Ramos, A. (2008). Animal models of anxiety: Do I need multiple tests? Trends in Pharmacological Sciences, 29, 493-498. https://doi.org/10.1016/j.tips.2008.07.005

Reith, R. M., McKenna, J., Wu, H., Hashmi, S. S., Cho, S. H., Dash, P. K., & Gambello, M. J. (2013). Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiology of Disease, 51, 93-103. https://doi.org/10.1016/j.nbd.2012.10.014

Rennebeck, G., Kleymenova, E. V., Anderson, R., Yeung, R. S., Artzt, K., & Walker, C. L. (1998). Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development. Proceedings of the National Academy of Sciences of the United States of America, 95, 15629-15634. https://doi.org/10.1073/pnas.95.26.15629

Rochefort, N. L., & Konnerth, A. (2012). Dendritic spines: From structure to in vivo function. EMBO Reports, 13, 699-708. https://doi.org/10.1038/embor.2012.102

Schneider, M., de Vries, P. J., Schonig, K., Rossner, V., & Waltereit, R. (2017). mTOR inhibitor reverses autistic-like social deficit behaviours in adult rats with both Tsc2 haploinsufficiency and developmental status epilepticus. European Archives of Psychiatry and Clinical Neuroscience, 267, 455-463. https://doi.org/10.1007/s00406-016-0703-8

Schwartzkroin, P. A., Roper, S. N., & Wenzel, H. J. (2004). Cortical dysplasia and epilepsy: Animal models. Advances in Experimental Medicine and Biology, 548, 145-174. https://doi.org/10.1007/978-1-4757-6376-8_12

Specchio, N., Pietrafusa, N., Trivisano, M., Moavero, R., De Palma, L., Ferretti, A., Vigevano, F., & Curatolo, P. (2020). Autism and epilepsy in patients with tuberous sclerosis complex. Frontiers in Neurology, 11, 639. https://doi.org/10.3389/fneur.2020.00639

Stafstrom, C. E. (2005). Progress toward understanding epileptogenesis in tuberous sclerosis complex: Two hits, no outs, and the Eker rat is up to bat. Epilepsy Curr, 5, 136-138. https://doi.org/10.1111/j.1535-7511.2005.00045.x

Stafstrom, C. E. (2006). Is cognition altered in the Eker rat model of tuberous sclerosis complex? Epilepsy Curr, 6, 210-212. https://doi.org/10.1111/j.1535-7511.2006.00148.x

Stins, J. F., & Emck, C. (2018). Balance performance in autism: A brief overview. Frontiers in Psychology, 9, 901. https://doi.org/10.3389/fpsyg.2018.00901

Sudakov, S. K., Nazarova, G. A., Alekseeva, E. V., & Bashkatova, V. G. (2013). Estimation of the level of anxiety in rats: Differences in results of open-field test, elevated plus-maze test, and Vogel's conflict test. Bulletin of Experimental Biology and Medicine, 155, 295-297. https://doi.org/10.1007/s10517-013-2136-y

Sztainberg, Y., Kuperman, Y., Tsoory, M., Lebow, M., & Chen, A. (2010). The anxiolytic effect of environmental enrichment is mediated via amygdalar CRF receptor type 1. Molecular Psychiatry, 15, 905-917. https://doi.org/10.1038/mp.2009.151

Talkowski, M. E., Minikel, E. V., & Gusella, J. F. (2014). Autism spectrum disorder genetics: Diverse genes with diverse clinical outcomes. Harvard Review of Psychiatry, 22, 65-75. https://doi.org/10.1097/HRP.0000000000000002

Tang, G., Gudsnuk, K., Kuo, S. H., Cotrina, M. L., Rosoklija, G., Sosunov, A., Sonders, M. S., Kanter, E., Castagna, C., Yamamoto, A., Yue, Z., Arancio, O., Peterson, B. S., Champagne, F., Dwork, A. J., Goldman, J., & Sulzer, D. (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron, 83, 1131-1143. https://doi.org/10.1016/j.neuron.2014.07.040

Tavazoie, S. F., Alvarez, V. A., Ridenour, D. A., Kwiatkowski, D. J., & Sabatini, B. L. (2005). Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nature Neuroscience, 8, 1727-1734. https://doi.org/10.1038/nn1566

Tsai, P. T., Hull, C., Chu, Y., Greene-Colozzi, E., Sadowski, A. R., Leech, J. M., Steinberg, J., Crawley, J. N., Regehr, W. G., & Sahin, M. (2012). Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature, 488, 647-651. https://doi.org/10.1038/nature11310

Tsai, P. T., Rudolph, S., Guo, C., Ellegood, J., Gibson, J. M., Schaeffer, S. M., Mogavero, J., Lerch, J. P., Regehr, W., & Sahin, M. (2018). Sensitive periods for cerebellar-mediated autistic-like behaviors. Cell Reports, 25(2), 357-367.e4. https://doi.org/10.1016/j.celrep.2018.09.039

Tseng, C. J., McDougle, C. J., Hooker, J. M., & Zurcher, N. R. (2022). Epigenetics of autism Spectrum disorder: Histone deacetylases. Biological Psychiatry, 91(11), 922-933. https://doi.org/10.1016/j.biopsych.2021.11.021

Van de Weerd, H. A., Aarsen, E. L., Mulder, A., Kruitwagen, C. L., Hendriksen, C. F., & Baumans, V. (2002). Effects of environmental enrichment for mice: Variation in experimental results. Journal of Applied Animal Welfare Science, 5, 87-109. https://doi.org/10.1207/S15327604JAWS0502_01

Waltereit, R., Japs, B., Schneider, M., de Vries, P. J., & Bartsch, D. (2011). Epilepsy and Tsc2 haploinsufficiency lead to autistic-like social deficit behaviors in rats. Behavior Genetics, 41, 364-372. https://doi.org/10.1007/s10519-010-9399-0

Wenzel, H. J., Patel, L. S., Robbins, C. A., Emmi, A., Yeung, R. S., & Schwartzkroin, P. A. (2004). Morphology of cerebral lesions in the Eker rat model of tuberous sclerosis. Acta Neuropathologica, 108, 97-108. https://doi.org/10.1007/s00401-004-0865-8

Werling, D. M., & Geschwind, D. H. (2013). Sex differences in autism spectrum disorders. Current Opinion in Neurology, 26, 146-153. https://doi.org/10.1097/WCO.0b013e32835ee548

Winter, S. S., Koppen, J. R., Ebert, T. B., & Wallace, D. G. (2013). Limbic system structures differentially contribute to exploratory trip organization of the rat. Hippocampus, 23, 139-152. https://doi.org/10.1002/hipo.22075

Won, H., Mah, W., & Kim, E. (2013). Autism spectrum disorder causes, mechanisms, and treatments: Focus on neuronal synapses. Frontiers in Molecular Neuroscience, 6, 19. https://doi.org/10.3389/fnmol.2013.00019

Wurbel, H. (2001). Ideal homes? Housing effects on rodent brain and behaviour. Trends in Neurosciences, 24, 207-211. https://doi.org/10.1016/S0166-2236(00)01718-5

Yasuda, S., Sugiura, H., Katsurabayashi, S., Shimada, T., Tanaka, H., Takasaki, K., Iwasaki, K., Kobayashi, T., Hino, O., & Yamagata, K. (2014). Activation of Rheb, but not of mTORC1, impairs spine synapse morphogenesis in tuberous sclerosis complex. Scientific Reports, 4, 5155. https://doi.org/10.1038/srep05155

Yeung, R. S. (2004). Lessons from the Eker rat model: From cage to bedside. Current Molecular Medicine, 4, 799-806. https://doi.org/10.2174/1566524043359791

Yeung, R. S., Katsetos, C. D., & Klein-Szanto, A. (1997). Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. The American Journal of Pathology, 151, 1477-1486.

Zhou, X., Zhu, J., Liu, K. Y., Sabatini, B. L., & Wong, S. T. (2006). Mutual information-based feature selection in studying perturbation of dendritic structure caused by TSC2 inactivation. Neuroinformatics, 4, 81-94. https://doi.org/10.1385/NI:4:1:81

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...