Resources of Iranian agarics (Basidiomycota) with an outlook on their antioxidant potential
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36386711
PubMed Central
PMC9650231
DOI
10.3389/fmicb.2022.1015440
Knihovny.cz E-zdroje
- Klíčová slova
- ABTS assay, basidiomycetes, diversity, gilled mushrooms, phylogeny,
- Publikační typ
- časopisecké články MeSH
Agaric fungi are an important group of macromycetes with diverse ecological and functional properties, yet are poorly studied in many parts of the world. Here, we comprehensively analyzed 558 agaric species in Iran to reveal their resources of edible and poisonous species as well as their ecological guilds and luminescence potential. We also made a thorough survey of the antioxidant activity of the species. Phylogenetic relationships were reconstructed based on nuclear ribosomal LSU and ITS sequences. Our results reveal that agarics of Iran comprise about 189 edible, 128 poisonous, 254 soil saprotrophic, 172 ectomycorrhizal, 146 wood-inhabiting, 18 leaf/litter-inhabiting, 9 parasitic, and 19 luminescent species. Twenty percent of the Iranian agaric species possess antioxidant activity, phylogenetically distributed in four orders and 21 agaric families. About 5% of the antioxidant species can be considered strong antioxidants, many of which are also edible and could be utilized to develop functional foods. This is the first study combining phylogeny and antioxidant potential of agaric mushrooms in a large scale, and the obtained results would guide the selection of agaric taxa to be examined in the future for taxonomic revisions, biotechnological applications, and applied phylogeny studies.
Department of Biotechnology Iranian Research Organization for Science and Technology Tehran Iran
Department of Botany Moravian Museum Zelný trh 6 Brno Czechia
Zobrazit více v PubMed
Adamek M., Alanjary M., Ziemert N. (2019). Applied evolution: phylogeny-based approaches in natural products research. Nat. Prod. Rep. 36, 1295–1312. doi: 10.1039/C9NP00027E, PMID: PubMed DOI
Amoopour M., Ghobad-Nejhad M., Khodaparast S. A. (2016). New records of polypores from Iran, with a checklist of polypores for Gilan Province. Czech Mycol. 68, 139–148. doi: 10.33585/cmy.68203 DOI
Antonín V., Ďuriška O., Jančovičová S., Para R., Kudláček T., Tomšovský M. (2022). Multilocus phylogeny and taxonomy of European Melanoleuca subgenus Melanoleuca. Mycologia 114, 114–143. doi: 10.1080/00275514.2021.1966246 PubMed DOI
Asatiani M. D., Elisashvili V., Songulashvili G., Reznick A. Z., Wasser S. P. (2010). “Higher basidiomycetes mushrooms as a source of antioxidants” in Progress in Mycology. eds. Rai M., Kövics G. (Springer: Dordrecht; ), 311–326.
Aslim B., Ozturk S. (2011). Phenolic composition and antimicrobial and antioxidant activities of Leucoagaricus leucothites (Vittad.). Wasser. J. Med. Food 14, 1419–1424. doi: 10.1089/jmf.2010.0259, PMID: PubMed DOI
Bauer R., Begerow D., Sampaio J. P., Weiss M., Oberwinkler F. (2006). The simple-septate basidiomycetes: a synopsis. Mycol. Prog. 5, 41–66. doi: 10.1007/s11557-006-0502-0 DOI
Bermudes D., Petersen R. H., Nealson K. H. (1992). Low-level bioluminescence detected in Mycena haematopus basidiocarps. Mycologia 84, 799–802. doi: 10.2307/3760392 DOI
Bondar V. S., Shimomura O., Gitelson J. I. (2012). Luminescence of higher mushrooms. J. Siberian Univ. Biol. 5, 331–351. doi: 10.17516/1997-1389-0127 DOI
Buswell J. A. (2018). “Mushroom-mediated protection from oxidative damage to DNA” in Biol. Macrofungi. eds. Singh B., Lallawmsanga, Passari A. (Cham: Springer; ), 115–127.
Cateni F., Gargano M. L., Procida G., Venturella G., Cirlincione F., Ferraro V. (2022). Mycochemicals in wild and cultivated mushrooms: nutrition and health. Phytochem. Rev. 21, 339–383. doi: 10.1007/s11101-021-09748-2 DOI
Chang R. (1996). Functional properties of edible mushrooms. Nutr. Rev. 54, S91–S93. doi: 10.1111/j.1753-4887.1996.tb03825.x PubMed DOI
Chew A. L. C., Desjardin D. E., Tan Y. S., Musa M. Y., Sabaratnam V. (2015). Bioluminescent fungi from peninsular Malaysia – a taxonomic and phylogenetic overview. Fung. Divers. 70, 149–187. doi: 10.1007/s13225-014-0302-9 DOI
Crous P. W., Cowan D. A., Maggs-Kölling G., Yilmaz N., Larsson E., Angelini C., et al. . (2020). Fungal planet description sheets: 1112–1181. Persoonia 45, 251–409. doi: 10.3767/persoonia.2020.45.10, PMID: PubMed DOI PMC
Desjardin D. E., Oliveira A. G., Stevani C. V. (2008). Fungi bioluminescence revisited. Photochem. Photobiol. Sci. 7, 170–182. doi: 10.1039/b713328f, PMID: PubMed DOI
Dogan H. H., Aydin S. (2013). Some biological activities of Lactarius vellereus (Fr.) Fr. In Turkey. Pakistan. J. Biol. Sci. 16, 1279–1286. doi: 10.3923/pjbs.2013.1279.1286 PubMed DOI
Dress A. W., Flamm C., Fritzsch G., Grünewald S., Kruspe M., Prohaska S. J., et al. . (2008). Noisy: identification of problematic columns in multiple sequence alignments. Algorithms Mol. Biol. 3, 1–10. doi: 10.1186/1748-7188-3-7 PubMed DOI PMC
El Sheikha A. F. (2022). Nutritional profile and health benefits of Ganoderma lucidum “Lingzhi, Reishi, or Mannentake” as functional foods: current scenario and future perspectives. Foods 11:1030. doi: 10.3390/foods11071030, PMID: PubMed DOI PMC
Ferreira I. C., Barros L., Abreu R. (2009). Antioxidants in wild mushrooms. Curr. Med. Chem. 16, 1543–1560. doi: 10.2174/092986709787909587 PubMed DOI
Floudas D., Bentzer J., Ahrén D., Johansson T., Persson P., Tunlid A. (2020). Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. ISME J. 14, 2046–2059. doi: 10.1038/s41396-020-0667-6, PMID: PubMed DOI PMC
Gadd G. M. (2001). Fungi in Bioremediation Cambridge University Press.
Gardes M., Bruns T. D. (1993). ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Molec. Ecol. 2, 113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x, PMID: PubMed DOI
Gargano M. L., van Griensven L. J., Isikhuemhen O. S., Lindequist U., Venturella G., Wasser S. P., et al. . (2017). Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst. 151, 548–565. doi: 10.1080/11263504.2017.1301590 DOI
Ghobad-Nejhad M., Bernicchia A. (2019). An outlook on the diversity of polypores shared between Iran and the Mediterranean area. Mycol. Iran. 6, 33–39. doi: 10.22043/MI.2020.121099 DOI
Ghobad-Nejhad M., Hallenberg N. (2012). Checklist of Iranian non-gilled/non-gasteroid hymenomycetes (Agaricomycotina). Mycotaxon 119, 1–41. doi: 10.5248/119.493 DOI
Ghobad-Nejhad M., Hallenberg N., Hyvönen J., Yurchenko E. (2012). The Caucasian corticioid fungi: level of endemism, similarity, and possible contribution to European fungal diversity. Fung. Divers. 52, 35–48. doi: 10.1007/s13225-011-0122-0 DOI
Ghobad-Nejhad M., Langer E. (2017). First inventory of aphyllophoroid basidiomycetes of Zagros forests, W Iran. Plant Biosyst. 151, 844–854. doi: 10.1080/11263504.2016.1211199 DOI
Ghobad-Nejhad M., Langer E., Antonín V., Gates G., Noroozi J., Zare R. (2020). The gilled fungi and boletes of Iran: diversity, systematics, and nrDNA data. Mycol. Iran. 7, 1–43. doi: 10.22043/MI.2021.123456 DOI
Ghobad-Nejhad M., Langer E., Nakasone K., Diederich P., Nilsson R. H., Rajchenberg M., et al. . (2021). Digging up the roots: taxonomic and phylogenetic disentanglements in Corticiaceae s.s. (Corticiales, Basidiomycota) and evolution of nutritional modes. Front. Microbiol. 12:704802. doi: 10.3389/fmicb.2021.704802, PMID: PubMed DOI PMC
Gitelson J. I., Bondar V. S., Medvedeva S. E., Rodicheva E. K., Vydryakova G. A. (2012). Chemiluminescent emission of tissues of fruit bodies of higher fungi. Dokl. Biochem. Biophys. 443, 105–108. doi: 10.1134/S1607672912020123, PMID: PubMed DOI
Guo Y. J., Deng G. F., Xu X. R., Wu S., Li S., Xia E. Q., et al. . (2012). Antioxidant capacities, phenolic compounds, and polysaccharide contents of 49 edible macrofungi. Food Func. 3, 1195–1205. doi: 10.1039/c2fo30110e, PMID: PubMed DOI
Hallenberg N. (1981). Synopsis of wood-inhabiting Aphyllophorales (basidiomycetes) and heterobasidiomycetes from N. Iran. Mycotaxon 12, 473–502.
Hartley A. J., de Mattos-Shipley K., Collins C. M., Kilaru S., Foster G. D., Bailey A. M. (2009). Investigating pleuromutilin-producing Clitopilus species and related basidiomycetes. FEMS Microb. L. 297, 24–30. doi: 10.1111/j.1574-6968.2009.01656.x PubMed DOI
He M. Q., Zhao R. L., Hyde K. D., Begerow D., Kemler M., Yurkov A., et al. . (2019). Notes, outline and divergence times of Basidiomycota. Fung. Divers. 99, 105–367. doi: 10.1007/s13225-019-00435-4 DOI
Heleno S. A., Barros L., Martins A., Queiroz M. J., Santos-Buelga C., Ferreira I. C. (2012). Phenolic, polysaccharidic, and lipidic fractions of mushrooms from northeastern Portugal: chemical compounds with antioxidant properties. J. Agric. Food Chem. 60, 4634–4640. doi: 10.1021/jf300739m, PMID: PubMed DOI
Herzog R., Solovyeva I., Bölker M., Lugones L. G., Hennicke F. (2019). Exploring molecular tools for transformation and gene expression in the cultivated edible mushroom Agrocybe aegerita. Mol. Gen. Genomics. 294, 663–677. doi: 10.1007/s00438-018-01528-6, PMID: PubMed DOI
Hopple J. S., Jr., Vilgalys R. (1999). Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly. Molec. Phylogen. Evol. 13, 1–19. doi: 10.1006/mpev.1999.0634, PMID: PubMed DOI
Hyde K. D., Xu J., Rapior S., Jeewon R., Lumyong S., Niego A. G. T., et al. . (2019). The amazing potential of fungi, 50 ways we can exploit fungi industrially. Fung. Divers. 97, 1–136. doi: 10.1007/s13225-019-00430-9 DOI
Islam T., Ganesan K., Xu B. B. (2019). New insight into mycochemical profiles and antioxidant potential of edible and medicinal mushrooms: a review. Int. J. Med. Mushrooms 21, 237–251. doi: 10.1615/IntJMedMushrooms.2019030079, PMID: PubMed DOI
Kaewnarin K., Suwannarach N., Kumla J., Lumyong S. (2016). Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. J. Funct. Foods 27, 352–364. doi: 10.1016/j.jff.2016.09.008 DOI
Ke H. M., Tsai I. J. (2022). Understanding and using fungal bioluminescence–recent progress and future perspectives. Curr. Opin. Green Sust. Chem. 33:100570. doi: 10.1016/j.cogsc.2021.100570 DOI
Kiarsi M., Ostadtaghizadeh A., Aghababaeian H., Khaleghy M., Araghi L. (2019). Mushroom poisoning of 1151 people in Iran, the lessons learnt: a brief report of cases and the literature review. Iran Red Crescent Med J 21:e91977. doi: 10.5812/ircmj.91977 DOI
Kirk P. M., Cannon P. F., Minter D. W., Stalpers J. A. (2008). Dictionary of the Fungi, 10th ed.; CABI: Wallingford, p. 12.
Kosanic M., Rankovic B., Dasic M. (2013). Antioxidant and antimicrobial properties of mushrooms. Bulg. J. Agric. Sci. 19, 1040–1046.
Kotlobay A. A., Sarkisyan K. S., Mokrushina Y. A., Marcet-Houben M., Serebrovskaya E. O., Markina N. M. (2018). Genetically encodable bioluminescent system from fungi. Proc. Natl. Acad. Sci. 115, 12728–12732. doi: 10.1073/pnas.1803615115, PMID: PubMed DOI PMC
Kozarski M., Klaus A., Jakovljevic D., Todorovic N., Vunduk J., Petrović P., et al. . (2015). Antioxidants of edible mushrooms. Molecules 20, 19489–19525. doi: 10.3390/molecules201019489, PMID: PubMed DOI PMC
Kück U., Bloemendal S., Teichert I. (2014). Putting fungi to work: harvesting a cornucopia of drugs, toxins, and antibiotics. PLoS Pathog. 10:e1003950. doi: 10.1371/journal.ppat.1003950, PMID: PubMed DOI PMC
Lu H., Lou H., Hu J., Liu Z., Chen Q. (2020). Macrofungi: a review of cultivation strategies, bioactivity, and application of mushrooms. Compr. Rev. Food Sci. Food Saf. 19, 2333–2356. doi: 10.1111/1541-4337.12602, PMID: PubMed DOI
Madeira F., Park Y. M., Lee J., Buso N., Gur T., Madhusoodanan N., et al. . (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641. doi: 10.1093/nar/gkz268, PMID: PubMed DOI PMC
Mäkelä M. R., Hildén K. S., Kuuskeri J. (2021). Fungal lignin-modifying peroxidases and H2O2-producing enzymes. Encycl. Mycol. 2, 247–259. doi: 10.1016/B978-0-12-809633-8.21127-8 DOI
Malakauskienė A. (2018). Reported and potential bioluminescent species in Lithuania. Biologija 64, 181–190. doi: 10.6001/biologija.v64i3.3823 DOI
Mihail J. D. (2015). Bioluminescence patterns among north American Armillaria species. Fung. Biol. 119, 528–537. doi: 10.1016/j.funbio.2015.02.004, PMID: PubMed DOI
Miller M. A., Pfeiffer W., Schwartz T. (2010). “Creating the CIPRES science gateway for inference of large phylogenetic trees,” in Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, LA, 1–8.
Moncalvo J. M., Vilgalys R., Redhead S. A., Johnson J. E., James T. Y., Catherine Aime M., et al. . (2002). One hundred and seventeen clades of euagarics. Mol. Phyl. Evol. 23, 357–400. doi: 10.1016/S1055-7903(02)00027, PMID: PubMed DOI
Navarro D., Chaduli D., Taussac S., Lesage-Meessen L., Grisel S., Haon M., et al. . (2021). Large-scale phenotyping of 1,000 fungal strains for the degradation of non-natural, industrial compounds. Comm. Biol. 4, 1–10. doi: 10.1038/s42003-021-02401-w PubMed DOI PMC
Nazari Mahroo S., Ghobad-Nejhad M., Khodaparast S. A. (2018). A survey on Peniophora (Russulales, Basidiomycota) species in Iran. Nova Hedwig. 107, 257–270. doi: 10.1127/nova_hedwigia/2018/0468 DOI
Nguyen K. A., Wikee S., Lumyong S. (2018). Brief review: lignocellulolytic enzymes from polypores for efficient utilization of biomass. Mycosphere 9, 1073–1088. doi: 10.5943/mycosphere/9/6/2 DOI
Niego A. G., Rapior S., Thongklang N., Raspé O., Jaidee W., Lumyong S., et al. . (2021). Macrofungi as a nutraceutical source: promising bioactive compounds and market value. J. Fungi 7:397. doi: 10.3390/jof7050397, PMID: PubMed DOI PMC
Nilsson R. H., Tedersoo L., Abarenkov K., Ryberg M., Kristiansson E., Hartmann M. (2012). Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4, 37–63. doi: 10.3897/mycokeys.4.3606 DOI
Nylander J. A. A. (2004). MrModeltest v2. Program Distributed by the Author Sweden: Evolutionary Biology Centre, Uppsala University.
Oba Y., Suzuki Y., Martins G. N., Carvalho R. P., Pereira T. A., Waldenmaier H. E., et al. . (2017). Identification of hispidin as a bioluminescent active compound and its recycling biosynthesis in the luminous fungal fruiting body. Photochem. Photobiol. Sci. 16, 1435–1440. doi: 10.1039/C7PP00216E, PMID: PubMed DOI
Oliveira A. G., Desjardin D. E., Perry B. A., Stevani C. V. (2012). Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. Photochem. Photobiol. Sci. 11, 848–852. doi: 10.1039/c2pp25032b, PMID: PubMed DOI
Öztürk M., Duru M. E., Kivrak Ş., Mercan-Doğan N., Türkoglu A., Özler M. A. (2011). In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: a comparative study on the three most edible mushrooms. Food Chem. Toxic. 49, 1353–1360. doi: 10.1016/j.fct.2011.03.019, PMID: PubMed DOI
Parad G. A., Ghobad-Nejhad M., Tabari M., Yousefzadeh H., Esmaeilzadeh O., Tedersoo L., et al. . (2018). Cantharellus alborufescens and C. ferruginascens (Cantharellaceae, Basidiomycota) new to Iran. Cryptogam. Mycol. 39, 299–310. doi: 10.7872/crym/v39.iss3.2018.299 DOI
Parad G. A., Tabari M., Ghobad-Nejhad M., Esmailzadeh O., Yousefzadeh H. (2020). Environmental factors affecting the presence of edible Zarde-Kija mushroom (Cantharellus alborufescens) in plain forest of Noor (Mazandaran). Iran. J. Forest 12, 1–15.
Pointing S. B., Pelling A. L., Smith G. J. D., Hyde K. D., Reddy C. A. (2001). Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycol. Res. 109, 115–124. doi: 10.1017/S0953756204001376 PubMed DOI
Prior R. L., Wu X., Schaich K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302. doi: 10.1021/jf0502698, PMID: PubMed DOI
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237. doi: 10.1016/S0891-5849(98)00315-3, PMID: PubMed DOI
Rodríguez-Seoane P., Torres Perez M. D., Fernández de Ana C., Sinde-Stompel E., Domínguez H. (2022). Antiradical and functional properties of subcritical water extracts from edible mushrooms and from commercial counterparts. Int. J. Food Sci. Technol. 57, 1420–1428. doi: 10.1111/ijfs.15383 DOI
Ronquist F., Teslenko M., Van Der Mark P., Ayres D. L., Darling A., Höhna S., et al. . (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. doi: 10.1093/sysbio/sys029, PMID: PubMed DOI PMC
Ruiz-Dueñas F. J., Barrasa J. M., Sánchez-García M., Camarero S., Miyauchi S., Serrano A., et al. . (2020). Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Mol. Biol. Evol. 38, 1428–1446. doi: 10.1093/molbev/msaa301, PMID: PubMed DOI PMC
Sánchez C. (2017). Reactive oxygen species and antioxidant properties from mushrooms. Synth. Syst. Biotechnol. 2, 13–22. doi: 10.1016/j.synbio.2016.12.001, PMID: PubMed DOI PMC
Sandargo B., Chepkirui C., Cheng T., Chaverra-Muñoz L., Thongbai B., Stadler M., et al. . (2019). Biological and chemical diversity go hand in hand: basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol. Adv. 37:107344. doi: 10.1016/j.biotechadv.2019.01.011, PMID: PubMed DOI
Shaffique S., Kang S. M., Kim A. Y., Imran M., Aaqil Khan M., Lee I. J. (2021). Current knowledge of medicinal mushrooms related to antioxidant properties. Sustainability 13:7948. doi: 10.3390/su13147948 DOI
Shimomura O. (1991). Superoxide-triggered chemiluminescence of extract of luminous mushroom Panellus stipticus after treatment with methylamine. J. Exp. Bot. 42, 555–560. doi: 10.1093/jxb/42.4.555 DOI
Silvestro D., Michalak I. (2010). raxmlGUI: a graphical front-end for RAxML. Available at: http://sourceforge.net/projects/raxmlgui/ (Accessed July 15, 2022).
Tan J. B., Lim Y. Y. (2015). Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chem. 172, 814–822. doi: 10.1016/j.foodchem.2014.09.141, PMID: PubMed DOI
Thu Z. M., Myo K. K., Aung H. T., Clericuzio M., Armijos C., Vidari G. (2020). Bioactive phytochemical constituents of wild edible mushrooms from Southeast Asia. Molecules 25:1972. doi: 10.3390/molecules25081972, PMID: PubMed DOI PMC
Treu R., Agerer R. (1990). Culture characteristics of some Mycena species. Mycotaxon 38, 279–309.
Vaario L. M., Matsushita N. (2021). Conservation of edible ectomycorrhizal mushrooms: understanding of the ECM fungi mediated carbon and nitrogen movement within forest ecosystems. Nitrogen Agric.-Physiol. Agric. Ecol. Aspects. doi: 10.5772/intechopen.95399 DOI
Varga T., Krizsán K., Földi C., Dima B., Sánchez-García M., Sánchez-Ramírez S., et al. . (2019). Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 3, 668–678. doi: 10.1038/s41559-019-0834-1, PMID: PubMed DOI PMC
Varma A., Hock B. (2013). Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology. Germany: Springer Science & Business Media.
Vydryakova G. A., Bissett J. (2016). Differential regulation of proteins and a possible role for manganese superoxide dismutase in bioluminescence of Panellus stipticus revealed by suppression subtractive hybridization. Adv. Microbiol. 06, 613–626. doi: 10.4236/aim.2016.69061 DOI
Wang Y., Xu B. (2014). Distribution of antioxidant activities and total phenolic contents in acetone, ethanol, water and hot water extracts from 20 edible mushrooms via sequential extraction. Austin J. Nutr. Food Sci. 2:5.
Webster J., Weber R. W. S. (2007). Introduction to Fungi; Cambridge University Press: Cambridge.
White T. J., Bruns T., Lee S., Taylor J. W. (1990). “Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics” in PCR Protocols: A Guide to Methods and Applications. eds. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (New York, NY: Academic Press; ), 315–322.
Wu F., Zhou L. W., Yang Z. L., Bau T., Li T. H., Dai Y. C. (2019). Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fung. Divers. 98, 1–76. doi: 10.1007/s13225-019-00432-7 DOI
Xiao F., Xu T., Lu B., Liu R. (2020). Guidelines for antioxidant assays for food components. Food Front. 1, 60–69. doi: 10.1002/fft2.10 DOI