Immune mechanisms, resistance genes, and their roles in the prevention of mastitis in dairy cows
Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection
Document type Journal Article, Review
PubMed
36415759
PubMed Central
PMC9673033
DOI
10.5194/aab-65-371-2022
PII: 01021829
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Review MeSH
Mastitis is one of the most important diseases of the mammary gland. The increased incidence of this disease in cows is due to the breeding of dairy cattle for higher yields, which is accompanied by an increased susceptibility to mastitis. Therefore, the difficulty involved with preventing this disease has increased. An integral part of current research is the elimination of mastitis in order to reduce the consumption of antibiotic drugs, thereby reducing the resistance of microorganisms and decreasing companies' economic losses due to mastitis (i.e. decreased milk yield, increased drug costs, and reduced milk supply). Susceptibility to mastitis is based on dairy cows' immunity, health, nutrition, and welfare. Thus, it is important to understand the immune processes in the body in order to increase the resistance of animals. Recently, various studies have focused on the selection of mastitis resistance genes. An important point is also the prevention of mastitis. This publication aims to describe the physiology of the mammary gland along with its immune mechanisms and to approximate their connection with potential mastitis resistance genes. This work describes various options for mastitis elimination and focuses on genetic selection and a closer specification of resistance genes to mastitis. Among the most promising resistance genes for mastitis, we consider CD14, CXCR1, lactoferrin, and lactoglobulin.
See more in PubMed
Alain K, Karrow NA, Thibault C, St-Pierre J, Lessard M, Bissonnette N. Osteopontin: an early innate immune marker of Escherichia coli mastitis harbors genetic polymorphisms with possible links with resistance to mastitis. BMC Genomics. 2019;10:1–17. doi: 10.1186/1471-2164-10-444. PubMed DOI PMC
Alhussien MN, Dang AK. Interaction between stress hormones and phagocytic cells and its effect on the health status of dairy cows: A review. Vet World. 2020;13:1837–1848. doi: 10.14202/vetworld.2020.1837-1848. PubMed DOI PMC
Alim MA, Sun D, Zhang Y, Zhang Y, Zhang Q, Liu L. DNA Polymorphisms in the lactoglobulin ans K-casein Gense Associated with Milk Production Traits on Dairy Cattle. [last access: 5 October 2022];Bioresearch Communications-(BRC) 2015 1:82–86. https://bioresearchcommunications.com/index.php/brc/article/view/169.
Akhtar M, Guo S, Guo YF, Zahoor A, Shaukat A, Chen Y, Guo M. Upregulated-gene expression of pro-inflammatory cytokines (TNF- PubMed DOI
Alekish M, Ababneh H, Ismail Z, Alshehabat M. The relationship between lactoferrin gene polymorphism and subclinical mastitis in Awassi ewes. J Anim Plant Sci. 2019;29:1193–1197.
Asselstine V, Miglior F, Suárez-Vega A, Fonseca PAS, Mallard B, Karrow N, Cánovas A. Genetic mechanisms regulating the host response during mastitis. J Dairy Sci. 2019;102:9043–9059. doi: 10.3168/jds.2019-16504. PubMed DOI
Ateya AI, El-Seady YY, Atwa SM, Merghani BH, Sayed NA. Novel single nucleotide polymorphisms in lactoferrin gene and their association with mastitis susceptibility in Holstein cattle. Genetika. 2019;48:199–210. doi: 10.2298/GENSR1601199A. DOI
Bobbo T, Penasa M, Cassandro M. Genetic aspects of milk differential somatic cell count in Holstein cows: A preliminary analysis. J Dairy Sci. 2019;102:4275–4279. doi: 10.3168/jds.2018-16092. PubMed DOI
Bannerman DD. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J Anim Sci. 2009;87:10–25. doi: 10.2527/jas.2008-1187. PubMed DOI
Bannerman DD, Paape MJ, Hare WR, Hope JC. Characterization of the bovine innate immune response to intramammary infection with Klebsiella pneumoniae. J Dairy Sci. 2004;87:2420–2432. doi: 10.3168/jds.S0022-0302(04)73365-2. PubMed DOI
Bannerman DD, Paape MJ, Hare WR, Sohn EJ. Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge. J Dairy Sci. 2003;86:3128–3137. doi: 10.3168/jds.S0022-0302(03)73914-9. PubMed DOI
Bannerman DD, Paape MJ, Lee JW, Zhao X, Hope JC, Rainard P. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin Vaccine Immunol. 2004;11:463–472. doi: 10.1128/CDLI.11.3.463-472.2004. PubMed DOI PMC
Bannerman DD, Kauf ACW, Paape MJ, Springer HR, Goff JP. Comparison of Holstein and Jersey innate immune responses to Escherichia coli intramammary infection. J Dairy Sci. 2008;91:2225–2235. doi: 10.3168/jds.2008-1013. PubMed DOI
Bassel LL, Caswell JL. Bovine neutrophils in health and disease. Cell Tiss Res. 2018;371:617–637. doi: 10.1007/s00441-018-2789-y. PubMed DOI
Bikle DD, Xie Z, Tu CL. Calcium regulation of keratinocyte differentiation. Expert Rev Endo Metab. 2012;7:461–472. doi: 10.1586/eem.12.34. PubMed DOI PMC
Blowey RW, Edmondson P. Mastitis control in dairy herds. CABI; Wallingford, Oxfordshire, UK: [last access: 1 August 2022]. 2010. 266 pp. https://books.google.cz.
Boudjellab N, Chan-Tang HS, Zhao X. Bovine interleukin-1 expression by cultured mammary epithelial cells (MAC-T) and its involvement in the release of MAC-T derived interleukin-8. Comp Biochem Phys A. 2000;127:191–199. doi: 10.1016/S1095-6433(00)00257-9. PubMed DOI
Bradley AJ, Green MJ. A study of the incidence and significance of intramammary enterobacterial infections acquired during the dry period. J Dairy Sci. 2000;83:1957–1965. doi: 10.3168/jds.S0022-0302(00)75072-7. PubMed DOI
Bradley AJ, Green MJ. The importance of the nonlactating period in the epidemiology of intramammary infection and strategies for prevention. Vet Clin N Am-Food A. 2004;20:547–568. doi: 10.1016/j.cvfa.2004.06.010. PubMed DOI
Burvenich C, Detilleux J, Paape MJ, Massart-Leën AM. Physiological and genetic factors that influence the cow resistance to mastitis, especially during early lactation. Flem Vet J. 2000:9–20.
Burvenich C, Van Merris V, Mehrzad J, Diez-Fraile A, Duchateau L. Severity of E. coli mastitis is mainly determined by cow factors. Vet Res. 2003;34:521–564. doi: 10.1051/vetres:2003023. PubMed DOI
Carlén E, Strandberg E, Roth A. Genetic parameters for clinical mastitis, somatic cell score, and production in the first three lactations of Swedish Holstein cows. J Dairy Sci. 2004;87:3062–3070. doi: 10.3168/jds.S0022-0302(04)73439-6. PubMed DOI
Chaneton L, Sáez JP, Bussmann LE. Antimicrobial activity of bovine PubMed DOI
Chegini A, Hossein-Zadeh NG, Hosseini-Moghadam SH, Shadparvar AA. Genetic correlation estimates between milk production traits, mastitis and different measures of somatic cells in Holstein cows. An Prod Sci. 2018;59:1031–1038. doi: 10.1071/AN17325. DOI
Cheng WN, Han SG. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments – A review. Asian-Austral J Anim. 2020;33:1699. doi: 10.5713/ajas.20.0156. PubMed DOI PMC
Coulon JB, Hurtaud C, Rémond B, Verite R. Factors contributing to variation in the proportion of casein in cows' milk true protein: a review of recent INRA experiments. J Dairy Res. 1998;65:375–387. doi: 10.1017/S0022029998002866. PubMed DOI
Deb R, Singh U, Kumar S, Kumar A, Sharma A, Mann S, Singh R. TIR domain of bovine TLR4 gene in Frieswal crossbred cattle: An early marker for mastitis resistance. Ind J Anim Sci. 2013;83:633–635.
Derakhshani H, Fehr KB, Sepehri S, Francoz D, De Buck J, Barkema HW, Khafipour E. Invited review: Microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. J Dairy Sci. 2018;101:10605–10625. doi: 10.3168/jds.2018-14860. PubMed DOI
Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E. Composition of the teat canal and intramammary microbiota of dairy cows subjected to antimicrobial dry cow therapy and internal teat sealant. J Dairy Sci. 2018;101:10191–10205. doi: 10.3168/jds.2018-14858. PubMed DOI
Elazar S, Gonen E, Livneh-Kol A, Rosenshine I, Shpigel NY. Essential role of neutrophils but not mammary alveolar macrophages in a murine model of acute Escherichia coli mastitis. Vet Res. 2010;41:53. doi: 10.1051/vetres/2010025. PubMed DOI PMC
Erskine RJ. Vaccination strategies for mastitis. Vet Clin N Am-Food A. 2012;28:257–270. doi: 10.1016/j.cvfa.2012.03.002. PubMed DOI
Esposito G, Irons PC, Webb EC, Chapwanya A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. An Repro Sci. 2014;144:60–71. doi: 10.1016/j.anireprosci.2013.11.007. PubMed DOI
Ezz MA, Marey MA, Elweza AE, Kawai T, Heppelmann M, Pfarrer C, Miyamoto A. TLR2/4 signaling pathway mediates sperm-induced inflammation in bovine endometrial epithelial cells in vitro. PLoS One. 2019;14:e0214516. doi: 10.1371/journal.pone.0214516. PubMed DOI PMC
Faraj TA, McLaughlin CL, Erridge C. Host defenses against metabolic endotoxaemia and their impact on lipopolysaccharide detection. Int Rev Immun. 2017;36:125–144. doi: 10.1080/08830185.2017.1280483. PubMed DOI
Freu G, Tomazi T, Monteiro CP, Barcelos MM, Alves BG, Santos MVD. Internal teat sealant administered at drying off reduces intramammary infections during the dry and early lactation periods of dairy cows. Animals. 2020;10:1522. doi: 10.3390/ani10091522. PubMed DOI PMC
Galvao KN, Pighetti GM, Cheong SH, Nydam DV, Gilbert RO. Association between interleukin-8 receptor- PubMed DOI
García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van Tassell CP. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. P Natl Acad Sci USA. 2016;113:3995–4004. doi: 10.1073/pnas.1519061113. PubMed DOI PMC
Gilbert FB, Cunha P, Jensen K, Glass EJ, Foucras G, Robert-Granié C, Rainard P. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Vet Res. 2013;44:1–23. doi: 10.1186/1297-9716-44-40. PubMed DOI PMC
Gogoi-Tiwari J, Williams V, Waryah CB, Costantino P, Al-Salami H, Mathavan S, Mukkur T. Mammary gland pathology subsequent to acute infection with strong versus weak biofilm forming Staphylococcus aureus bovine mastitis isolates: a pilot study using non-invasive mouse mastitis model. PLoS One. 2017;12:e0170668. doi: 10.1371/journal.pone.0170668. PubMed DOI PMC
Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients. 2020;12:236. doi: 10.3390/nu12010236. PubMed DOI PMC
Griesbeck-Zilch B, Osman M, Kühn C, Schwerin M, Bruckmaier RH, Pfaffl MW, Wellnitz O. Analysis of key molecules of the innate immune system in mammary epithelial cells isolated from marker-assisted and conventionally selected cattle. J Dairy Sci. 2009;92:4621–4633. doi: 10.3168/jds.2008-1954. PubMed DOI
Guccione J, Pesce A, Pascale M, Salzano C, Tedeschi G, D'Andrea L, Ciaramella P. Efficacy of a polyvalent mastitis vaccine against Staphylococcus aureus on a dairy Mediterranean buffalo farm: results of two clinical field trials. BMC Vet Res. 2016;13:1–9. doi: 10.1186/s12917-017-0944-4. PubMed DOI PMC
Günther J, Seyfert HM. Seminars in immunopathology, Vol 40. Springer Berlin Heidelberg; 2018. The first line of defence: insights into mechanisms and relevance of phagocytosis in epithelial cells; pp. 555–565. PubMed DOI PMC
Hagiwara SI, Kawai K, Anri A, Nagahata H. Lactoferrin concentrations in milk from normal and subclinical mastitic cows. J Vet Med Sci. 2003;65:319–323. doi: 10.1292/jvms.65.319. PubMed DOI
Hamel J, Zhang Y, Wente N, Krömker V. Heat stress and cow factors affect bacteria shedding pattern from naturally infected mammary gland quarters in dairy cattle. J Dairy Sci. 2021;104:786–794. doi: 10.3168/jds.2020-19091. PubMed DOI
Harmon RJ, Newbould FHS. Neutrophil leukocyte as a source of lactoferrin in bovine milk. Am J Vet Res. 1980;41:1603–1606.
Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME. Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet. 2010;6:e1001139. doi: 10.1371/journal.pgen.1001139. PubMed DOI PMC
Hirsch V, Blufstein A, Behm C, Andrukhov O. The Alterations in CD14 Expression in Periodontitis: A Systematic Review. Appl Sci. 2021;11:2444. doi: 10.3390/app11052444. DOI
He X, Liu W, Shi M, Yang Z, Zhang X, Gong P. Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPAR PubMed DOI
Hedrick JA, Morales J, Zlotnik A. Recent advances in chemokines and chemokine receptors. Crit Rev Immun. 1999;19:1–47. doi: 10.1615/CritRevImmunol.v19.i1.10. PubMed DOI
Heringstad B, Chang YM, Gianola D, Klemetsdal G. Genetic association between susceptibility to clinical mastitis and protein yield in Norwegian dairy cattle. J Dairy Sci. 2005;88:1509–1514. doi: 10.3168/jds.S0022-0302(05)72819-8. PubMed DOI
Heringstad B, Klemetsdal G, Ruane J. Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries. Livest Prod Sci. 2000;64:95–106. doi: 10.1016/S0301-6226(99)00128-1. DOI
Herrera D. Predisposing factors and means of prevention of colibacillar mastitis. Albéitar. 2009;124:16–17.
Hogan J, Smith KL. Coliform mastitis. Vet Res. 2003;34:507–519. doi: 10.1051/vetres:2003022. PubMed DOI
Hu ZL, Park CA, Reecy JM. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucl Acid Res. 2019;47:701–710. doi: 10.1093/nar/gky1084. PubMed DOI PMC
Huang FC. The Interleukins Orchestrate Mucosal Immune Responses to Salmonella Infection in the Intestine. Cells. 2021;10:3492. doi: 10.3390/cells10123492. PubMed DOI PMC
Huang YQ, Morimoto K, Hosoda K, Yoshimura Y, Isobe N. Differential immunolocalization between lingual antimicrobial peptide and lactoferrin in mammary gland of dairy cows. Vet Immunol Immunop. 2012;145:499–504. doi: 10.1016/j.vetimm.2011.10.017. PubMed DOI
Ibeagha-Awemu EM, Lee JW, Ibeagha AE, Zhao X. Bovine CD14 gene characterization and relationship between polymorphisms and surface expression on monocytes and polymorphonuclear neutrophils. BMC Genet. 2008;9:1–11. doi: 10.1186/1471-2156-9-50. PubMed DOI PMC
Ingvartsen KL, Moyes K. Nutrition, immune function and health of dairy cattle. Animal. 2013;7:112–122. doi: 10.1017/S175173111200170X. PubMed DOI
Ismail ZB. Mastitis vaccines in dairy cows: Recent developments and recommendations of application. Vet World. 2017;10:1057. doi: 10.14202/vetworld.2017.1057-1062. PubMed DOI PMC
Iung LHS, Ramírez-Diaz J, Pertile SFN, Petrini J, Salvian M, Rodriguez MAP, Lima RR, Machado PF, Coutinho LL, Mourao GB. Genome-wide association for somatic cell score in Holstein cows raised in tropical conditions. Proceedings 10th World Congress of Genetics Applied to Livestock Production; 2015. DOI
Jones CA. Effect of zinc source on zinc retention and animal health [MS Thesis] University of Missouri; Columbia: 1995.
Jones GM, Bailey TL. Understanding the basics of mastitis. College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Publication, Virginia Cooperative Extension; 2009. pp. 404–233.
Kamiński S, Cieślińska A, Kostyra E. Polymorphism of bovine beta-casein and its potential effect on human health. J Appl Gen. 2007;48:189–198. doi: 10.1007/BF03195213. PubMed DOI
Karthikeyan A, Radhika G, Aravindakshan TV, Pruthviraj DR, Pragathi KS. Genetic basis of mastitis resistance in cattle. Int J Sci Environ Tech. 2016;5:2192–2199.
Khan I, Maldonado E, Silva L, Almeida D, Johnson WE, O'Brien SJ, Antunes A. The vertebrate TLR supergene family evolved dynamically by gene gain/loss and positive selection revealing a host–pathogen arms race in birds. Diversity. 2019;11:131. doi: 10.3390/d11080131. DOI
Kolls JK, McCray PB, Chan YR. Cytokine-mediated regulation of anti-microbial proteins. Nat Rev Immun. 2008;8:829. doi: 10.1038/nri2433. PubMed DOI PMC
König S, May K. Invited review: Phenotyping strategies and quantitative-genetic background of resistance, tolerance and resilience associated traits in dairy cattle. Animal. 2019;13:897–908. doi: 10.1017/S1751731118003208. PubMed DOI
Korhonen H, Marnila P, Gill HS. Milk immunoglobulins and complement factors. Brit J Nutr. 2000;84:75–80. doi: 10.1017/S0007114500002282. PubMed DOI
Kriventsov IM, Kriventsova VF, Borisova GV. The interrelationship between the inhibitory activity of milk with different types of beta-lactoglobulins and the resistance of cattle to mastitis. Genetika. 1975;11:37–44. PubMed
Krupová Z, Zavadilová L, Wolfová M, Krupa E, Kašná E, Fleischer P. Udder and claw-related health traits in selection of czech holstein cows. Ann Animal Sci. 2019;19:647–661. doi: 10.2478/aoas-2019-0037. DOI
Kurz JP, Yang Z, Weiss RB, Wilson DJ, Rood KA, Liu GE, Wang Z. A genome-wide association study for mastitis resistance in phenotypically well-characterized Holstein dairy cattle using a selective genotyping approach. Immunogenetics. 2019;71:35–47. PubMed
Langrová T, Sládek Z, Ryšánek D. Vliv bakterií Staphylococcus aureus a Streptococcus uberis na morfologické projevy apoptózy neutrofilních granulocytů mléčné žlázy skotu in vitro. Acta univ agric et silvic Mendel Brun. 2005;53:61–74.
Lee JW, Paape MJ, Elsasser TH, Zhao X. Elevated milk soluble CD14 in bovine mammary glands challenged with Escherichia coli lipopolysaccharide. J Dairy Sci. 2003;86:2382–2389. doi: 10.3168/jds.S0022-0302(03)73832-6. PubMed DOI
Leitner G, Shoshani E, Krifucks O, Chaffer M, Saran A. Milk leucocyte population patterns in bovine udder infection of different aetiology. J Vet Med Ser B. 2000;47:581–589. doi: 10.1046/j.1439-0450.2000.00388.x. PubMed DOI
Lewandowska-Sabat AM, Günther J, Seyfert HM, Olsaker I. Combining quantitative trait loci and heterogeneous microarray data analyses reveals putative candidate pathways affecting mastitis in cattle. Animal Gen. 2012;43:793–799. doi: 10.1111/j.1365-2052.2012.02342.x. PubMed DOI
Li N, Richoux R, Boutinaud M, Martin P, Gagnaire V. Role of somatic cells on dairy processes and products: a review. Dairy Sci Technol. 2014;94:517–538. doi: 10.1007/s13594-014-0176-3. PubMed DOI PMC
Li X, Huang W, Gu J, Du X, Lei L, Yuan X, Liu G. SREBP-1c overactivates ROS-mediated hepatic NF- PubMed DOI
Litwińczuk Z, Król J, Brodziak A, Barłowska J. Changes of protein content and its fractions in bovine milk from different breeds subject to somatic cell count. J Dairy Sci. 2011;94:684–691. doi: 10.3168/jds.2010-3217. PubMed DOI
Luhar R, Patel RK, Singh KM. Studies on the possible association of beta-lactoglobulin genotype with mastitis in dairy cows. Ind J Dairy Sci. 2006;59:155–158.
Lund MS, Guldbrandtsen B, Buitenhuis AJ, Thomsen B, Bendixen C. Detection of quantitative trait loci in Danish Holstein cattle affecting clinical mastitis, somatic cell score, udder conformation traits, and assessment of associated effects on milk yield. J Dairy Sci. 2008;91:4028–4036. doi: 10.3168/jds.2007-0290. PubMed DOI
Mahmood I, Nadeem A, Babar ME, Ali MM, Javed M, Siddiqa A, Pervez MT. Systematic and Integrated Analysis Approach to Prioritize Mastitis Resistant Genes. Pak J Zoolog. 2017;49:103–109. doi: 10.17582/journal.pjz/2017.49.1.103.109. DOI
Mann S, Sipka AS, Grenier JK. The degree of postpartum metabolic challenge in dairy cows is associated with peripheral blood mononuclear cell transcriptome changes of the innate immune system. Develop Compar Immun. 2019;93:28–36. doi: 10.1016/j.dci.2018.11.021. PubMed DOI
Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181. doi: 10.1146/annurev-pathol-020712-164023. PubMed DOI PMC
Meredith BK, Kearney FJ, Finlay EK, Bradley DG, Fahey AG, Berry DP, Lynn DJ. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genet. 2012;13:1–11. doi: 10.1186/1471-2156-13-21. PubMed DOI PMC
Miles AM, Huson HJ. Graduate student literature review: understanding the genetic mechanisms underlying mastitis. J Dairy Sci. 2021;104:1183–1191. doi: 10.3168/jds.2020-18297. PubMed DOI
Mladosievičová B, Bachárová L, Bucová M, Cingelová S, Goncalvesová E, Grešíková M, Hricák V, Látalová P, Murín J, Pika T, Rajec T, Rečková M, Roziaková L, Svoboda M, Šimková I, Špánik S, Štvrtinová V, Valentová M, von Haehling S, Vymětal J, Wagnerová M. Kardioonkologie, 2. přepracované a doplněné vydání. Grada; Praha: 2015. 208 pp.
Mohammadnezhad M, Mianji GR, Farhadi A. Identification of allelic variants of complement C4-A and Lactoferrin genes using iPLEX technique and its association with somatic cell count in Holstein cattle. Animal Prod. 2021;23:1–11. doi: 10.22059/JAP.2021.309975.623559. DOI
Musayeva K, Sederevicius A, Zelvyte R, Monkeviciene I, Beliavska AD, Garbenyte Z. Lactoferrin and immunogl obulin content in cow milk in relation to somatic cell count and number of lactations. Vet IR Zootech. 2018;76
Nickerson SC. Mastitis control in replacement heifers. Adv Dairy Technol. 1991;8:389–398. doi: 10.21423/aabppro19916717. DOI
Nikaido H. In: Outer membrane, Escherichia coli and Salmonella typhimurium: cellular and molecular biology, Vol 1. Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, editors. American Society for Microbiology; Washington, DC: 1987. pp. 7–22.
Ogorevc J, Kunej T, Razpet A, Dovc P. Database of cattle candidate genes and genetic markers for milk production and mastitis. Animal Gen. 2009;40:832–851. doi: 10.1111/j.1365-2052.2009.01921.x. PubMed DOI PMC
Ohtsuka H, Kudo K, Mori K, Nagai F, Hatsugaya A, Tajima M, Kawamura SI. Acute Phase Response in Naturally Occurring Coliform Mastitis. J Vet Med Sci. 2001;63:675–678. doi: 10.1292/jvms.63.675. PubMed DOI
Oviedo-Boyso J, Valdez-Alarcón JJ, Cajero-Juárez M, Ochoa-Zarzosa A, López-Meza JE, Bravo-Patiño A, Baizabal-Aguirre VM. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J Infect. 2007;54:399–409. doi: 10.1016/j.jinf.2006.06.010. PubMed DOI
Paape M, Mehrzad J, Zhao X, Detilleux J, Burvenich C. Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J Mammary Gland Biol. 2002;7:109–121. doi: 10.1023/A:1020343717817. PubMed DOI
Pant SD, Verschoor CP, Skelding AM, Schenkel FS, You Q, Biggar GA, Karrow NA. Bovine IFNGR2, IL12RB1, IL12RB2, and IL23R polymorphisms and MAP infection status. Mamm Genom. 2011;22:583–588. doi: 10.1007/s00335-011-9332-8. PubMed DOI
Paulrud CO. Basic concepts of the bovine teat canal. Vet Res Commun. 2005;29:215–245. doi: 10.1023/B:VERC.0000047496.47571.41. PubMed DOI
Pawlik A, Sender G, Kapera M, Korwin-Kossakowska A. Association between interleukin 8 receptor PubMed DOI PMC
Persson K, Colditz IG, Flapper P, Franklin NAF, Seow HF. Cytokine-induced inflammation in the ovine teat and udder. Vet Immunol Immunop. 1996;53:73–85. doi: 10.1016/0165-2427(96)05561-4. PubMed DOI
Pighetti GM, Elliott AA. Gene polymorphisms: the keys for marker assisted selection and unraveling core regulatory pathways for mastitis resistance. J Mammary Gland Biol. 2011;16:421–432. doi: 10.1007/s10911-011-9238-9. PubMed DOI
Poppe M, Veerkamp RF, Van Pelt ML, Mulder HA. Exploration of variance, autocorrelation, and skewness of deviations from lactation curves as resilience indicators for breeding. J Dairy Sci. 2020;103:1667–1684. doi: 10.3168/jds.2019-17290. PubMed DOI
Pyörälä S. New strategies to prevent mastitis. Reprod Domes Animal. 2002;37:211–216. doi: 10.1046/j.1439-0531.2002.00378.x. PubMed DOI
Rainard P, Riollet C. Innate immunity of the bovine mammary gland. Vet Res. 2006;37:369–400. doi: 10.1051/vetres:2006007. PubMed DOI
Rainard P. Mammary microbiota of dairy ruminants: fact or fiction? Vet Res. 2017;48:1–10. doi: 10.1186/s13567-017-0429-2. PubMed DOI PMC
Rainard P, Foucras G, Fitzgerald JR, Watts JL, Koop G, Middleton JR. Knowledge gaps and research priorities in Staphylococcus aureus mastitis control. Transbound Emerg Dis. 2018;65:149–165. doi: 10.1111/tbed.12698. PubMed DOI
Rambeaud M, Pighetti G. Impaired neutrophil migration associated with specific bovine CXCR2 genotypes. Infect Immun. 2005;73:4955–4959. doi: 10.1128/IAI.73.8.4955-4959.2005. PubMed DOI PMC
Ranoa DRE, Kelley SL, Tapping RI. Human lipopolysaccharide-binding protein (LBP) and CD14 independently deliver triacylated lipoproteins to Toll-like receptor 1 (TLR1) and TLR2 and enhance formation of the ternary signaling complex. J Biol Chem. 2013;288:9729–9741. doi: 10.1074/jbc.M113.453266. PubMed DOI PMC
Reece WO. Fyziologie a funkční anatomie domácích zvířat. 2nd ed. Grana; Praha: 2011. 480 pp.
Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ, Hauschildt S. LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immun. 2011;31:379–446. doi: 10.1615/critrevimmunol.v31.i5.20. PubMed DOI
Rubin CI, Atweh GF. The role of stathmin in the regulation of the cell cycle. J Cell Biochem. 2004;93:242–250. doi: 10.1002/jcb.20187. PubMed DOI
Rudziak P, Ellis CG, Kowalewska PM. Role and molecular mechanisms of pericytes in regulation of leukocyte diapedesis in inflamed tissues. Med Inflamm. 2019;2019:4123605. doi: 10.1155/2019/4123605. PubMed DOI PMC
Ruiz R, Tedeschi LO, Sepúlveda A. Investigation of the effect of pegbovigrastim on some periparturient immune disorders and performance in Mexican dairy herds. J Dairy Sci. 2017;100:3305–3317. doi: 10.3168/jds.2016-12003. PubMed DOI
Sahana G, Guldbrandtsen B, Thomsen B, Lund MS. Confirmation and fine-mapping of clinical mastitis and somatic cell score QTL in N ordic H olstein cattle. Animal Gen. 2013;44:620–626. doi: 10.1111/age.12053. PubMed DOI
Sahana G, Guldbrandtsen B, Thomsen B, Holm LE, Panitz F, Brøndum RF, Lund MS. Genome-wide association study using high-density single nucleotide polymorphism arrays and whole-genome sequences for clinical mastitis traits in dairy cattle. J Dairy Sci. 2014;97:7258–7275. doi: 10.3168/jds.2014-8141. PubMed DOI
Senthilkumar S, Kannan TA, Gnanadevi R, Ramesh G, Sumathi D. Comparative Histoarchitectural Studies on Teat of Small Ruminants. Ind J Vet Anatom. 2020;32:40–42.
Sharifi S, Pakdel A, Ebrahimie E, Aryan Y, Ghaderi Zefrehee M, Reecy JM. Prediction of key regulators and downstream targets of E. coli induced mastitis. J Appl Gen. 2019;60:367–373. doi: 10.1007/s13353-019-00499-7. PubMed DOI
Sharma P, Parmar SNS, Thakur MS, Nauriyal DS, Ranjan R. Association of bovine lactoferrin gene with mastitis in frieswal cattle. Iran J Appl Animal Sci. 2015;5:859–863.
Shimazaki KI, Kawai K. Advances in lactoferrin research concerning bovine mastitis. Biochem Cell Biol. 2017;95:69–75. doi: 10.1139/bcb-2016-0044. PubMed DOI
Singh H, Gallier S. Nature's complex emulsion: The fat globules of milk. Food Hydrocol. 2017;68:81–89. doi: 10.1016/j.foodhyd.2016.10.011. DOI
Singh U, Deb R, Alyethodi RR, Alex R, Kumar S, Chakraborty S, Sharma A. Molecular markers and their applications in cattle genetic research: A review. Biomark Gen Med. 2014;6:49–58. doi: 10.1016/j.bgm.2014.03.001. DOI
Singh U, Deb R, Kumar S, Singh R, Sengar G, Sharma A. Association of prolactin and beta-lactoglobulin genes with milk production traits and somatic cell count among Indian Frieswal (HF DOI
Sordillo LM, Streicher KL. Mammary gland immunity and mastitis susceptibility. J Mammary Gland Biol. 2002;7:135–146. doi: 10.1023/A:1020347818725. PubMed DOI
Soyeurt H, Bastin C, Colinet FG, Arnould VR, Berry DP, Wall E, McParland S. Mid-infrared prediction of lactoferrin content in bovine milk: potential indicator of mastitis. Animal. 2012;6:1830–1838. doi: 10.1017/S1751731112000791. PubMed DOI
Sperandeo P, Martorana AM, Polissi A. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. Biochim Biophys Ac. 2017;1862:1451–1460. doi: 10.1016/j.bbalip.2016.10.006. PubMed DOI
Su CH, Lin IH, Tzeng TY, Hsieh WT, Hsu MT. Regulation of IL-20 expression by estradiol through KMT2B-mediated epigenetic modification. PloS One. 2016;11:e0166090. doi: 10.1371/journal.pone.0166090. PubMed DOI PMC
Swain DK, Kushwah MS, Kaur M, Patbandha TK, Mohanty AK, Dang AK. Formation of NET, phagocytic activity, surface architecture, apoptosis and expression of toll like receptors 2 and 4 (TLR2 and TLR4) in neutrophils of mastitic cows. Vet Res Commun. 2014;38:209–219. doi: 10.1007/s11259-014-9606-1. PubMed DOI
Talbot BG, Lacasse P. Progress in the development of mastitis vaccines. Livest Prod Sci. 2005;98:101–113. doi: 10.1016/j.livprodsci.2005.10.018. DOI
Teijeira Á, Garasa S, Gato M, Alfaro C, Migueliz I, Cirella A, Melero I. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;52:856–871. doi: 10.1016/j.immuni.2020.03.001. PubMed DOI
Tiezzi F, Parker-Gaddis KL, Cole JB, Clay JS, Maltecca C. A genome-wide association study for clinical mastitis in first parity US Holstein cows using single-step approach and genomic matrix re-weighting procedure. PLoS One. 2015;10:e0114919. doi: 10.1371/journal.pone.0114919. PubMed DOI PMC
Tiwari JG, Babra C, Tiwari H, Williams V, De Wet S, Gibson J, Mukkur T. Trends in therapeutic and prevention strategies for management of bovine mastitis: an overview. J Vaccine Vaccina. 2013;4:1–11. doi: 10.4172/2157-7560.1000176. DOI
Toman M, Bárta O, Dostál J, Faldyna M, Holáň V, Hořín P, Hruban V, Jeklová E, Knotek Z, Kopecký J, Koudela B, Krejčí J, Nechvátalová K, Ondráčková P, Plachý J, Pospíšil R, Pospíšil Z, Rybníkář A, Ryšánek D, Smola J, Šíma P, Tlaskalová H, Trebichavský I, Veselský L. Veterinární imunologie. Grada Publishing, as; Praha 7: 2009. 392 pp.
Vallimont JE, Dechow CD, Sattler CG, Clay JS. Heritability estimates associated with alternative definitions of mastitis and correlations with somatic cell score and yield. J Dairy Sci. 2009;92:3402–3410. doi: 10.3168/jds.2008-1229. PubMed DOI
Vangroenweghe F, Lamote I, Burvenich C. Physiology of the periparturient period and its relation to severity of clinical mastitis. Domes Animal Endo. 2005;29:283–293. doi: 10.1016/j.domaniend.2005.02.016. PubMed DOI
Védrine M, Berthault C, Leroux C, Répérant-Ferter M, Gitton C, Barbey S, Germon P. Sensing of Escherichia coli and LPS by mammary epithelial cells is modulated by O-antigen chain and CD14. PLoS One. 2018;13:e0202664. doi: 10.1371/journal.pone.0202664. PubMed DOI PMC
Wall R, Powell A, Sohn E, Foster-Frey J, Bannerman D, Paape M. Enhanced host immune recognition of mastitis causing Escherchia coli in CD-14 transgenic mice. Animal Biotech. 2009;20:1–14. doi: 10.1080/10495390802594206. PubMed DOI
Wang Y, Zarlenga DS, Paape MJ, Dahl GE. Recombinant bovine soluble CD14 sensitizes the mammary gland to lipopolysaccharide. Vet Immunol Immunop. 2002;86:115–124. doi: 10.1016/S0165-2427(02)00021-1. PubMed DOI
Wang Y, Zarlenga DS, Paape MJ. US6984503B1 – Use of recombinant bovine CD14 in the treatment and prevention of coliform mastitis in dairy cows – Google Patents. US Patent and Trademark Office; Washington, DC: 2006. US Patent No 6, 984, 503.
Weigel KA, Shook GE. Genetic selection for mastitis resistance. Vet Clin. 2018;34:457–472. doi: 10.1016/j.cvfa.2018.07.001. PubMed DOI
Wentao MA, Yi WANG, Fei GAO, Mengxia NING, Ahua LIU, Yanyan LI, Dekun CHEN. Development of a monoclonal antibody against bovine DOI
Whitfield C, Trent MS. Biosynthesis and export of bacterial lipopolysaccharides. Ann Rev Biochem. 2014;83:99–128. doi: 10.1146/annurev-biochem-060713-035600. PubMed DOI
Williamson JH, Woolford MW, Day AM. The prophylactic effect of a dry-cow antibiotic against Streptococcus uberis. New Zeal Vet J. 1995;43:228–234. doi: 10.1080/00480169.1995.35898. PubMed DOI
Wu T, Wang C, Ding L, Shen Y, Cui H, Wang M, Wang H. Arginine relieves the inflammatory response and enhances the casein expression in bovine mammary epithelial cells induced by lipopolysaccharide. Med Inflamm. 2016;2016:9618795. doi: 10.1155/2016/9618795. PubMed DOI PMC
Wu J, Niu P, Zhao Y, Cheng Y, Chen W, Lin L, Xu Z. Impact of miR-223-3p and miR-2909 on inflammatory factors IL-6, IL-1ß, and TNF- PubMed DOI PMC
Wu Z, Zhang Z, Lei Z, Lei P. CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev. 2019;48:24–31. doi: 10.1016/j.cytogfr.2019.06.003. PubMed DOI
Youngerman SM, Saxton AM, Oliver SP, Pighetti GM. Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle. J Dairy Sci. 2004;87:2442–2448. doi: 10.3168/jds.S0022-0302(04)73367-6. PubMed DOI
Zadoks RN, Allore HG, Barkema HW, Sampimon OC, Wellenberg GJ, Gröhn YT, Schukken YH. Cow-and quarter-level risk factors for Streptococcus uberis and Staphylococcus aureus mastitis. J Dairy Sci. 2001;84:2649–2663. doi: 10.3168/jds.S0022-0302(01)74719-4. PubMed DOI
Zhao FF, Wu TY, Wang HR, Ding LY, Ahmed G, Li HW, Shen YZ. Jugular arginine infusion relieves lipopolysaccharide-triggered inflammatory stress and improves immunity status of lactating dairy cows. J Dairy Sci. 2018;101:5961–5970. doi: 10.3168/jds.2017-13850. PubMed DOI
Zhao X, Lacasse P. Mammary tissue damage during bovine mastitis: causes and control. J Animal Sci. 2008;86:57–65. doi: 10.2527/jas.2007-0302. PubMed DOI
Zhang Z, Li XP, Yang F, Luo JY, Wang XR, Liu LH, Li HS. Influences of season, parity, lactation, udder area, milk yield, and clinical symptoms on intramammary infection in dairy cows. J Dairy Sci. 2016;99:6484–6493. doi: 10.3168/jds.2016-10932. PubMed DOI